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STERN WAVES WITH VORTICITY
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Abstract

Steady two-dimensional free surface flow past a semi-infinite flat plate is considered. The
vorticity in the flow is assumed to be constant. For large values of the Froude numberF ,
an analytical relation betweenF , the vorticity parameter! and the steepnesss of the waves
in the far field is derived. In addition numerical solutions are calculated by a boundary
integral equation method.

1. Introduction

Over the years important progress has been achieved in the computation of two-
dimensional nonlinear free-surface flows past surface piercing obstacles. Such flows
are relevant to the modeling of a ship moving at a constant velocity on the free surface
of a fluid. These flows are often studied by neglecting viscosity and by seeking steady
solutions in a frame of referencemoving with the obstacle. Interesting particular flows
arise from assuming that the object is semi-infinite. They provide a local description
of the flow near the stern or the bow of a very long ship. We refer to these flows as
stern flows when there is a train of waves on the free surface and as bow flows when
the free surface is waveless in the far field.

Vanden-Broeck and Tuck [13], Vanden-Broeck, Schwartz and Tuck [12] and
Vanden-Broeck [10] obtained semi-analytical solutions for the stern flow past a semi-
infinite two-dimensional flat-bottomed body. They assumed that the flow rises up
along the rear face of the body to a stagnation point at which separation occurs.
Vanden-Broeck [9] described analytically and numerically another family of stern
flows in which the flow separates at the corner of the body. Further studies involving
waveless, time dependent and viscous solutions can be found in [3, 5, 8] and [14].
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Dias and Vanden-Broeck [2] computed solutions for the bow flow past a semi-
infinite two-dimensional flat-bottomed body. The free surface is waveless in the far
field but there is a spray at the bow. The spray is modeled by a layer of water
rising along the bow and falling back as a jet. Bow flows with surface tension were
considered in [1].

All the above calculations assume that the flow is irrotational. This is usually a
very good assumption but vorticity can be generated near solid boundaries or on the
free surface (for example by wind stress).

In this paper, we shall generalize the stern flow of Vanden-Broeck [9] for rotational
flows. We assume that the vorticity is constant throughout the fluid. This assumption
is convenient mathematically and justified when the lengthscale of the free surface
variations is short compared to the lengthscale of the vorticity distribution. The fluid
is assumed to be of infinite depth. Results in water of finite depth were obtained by
McCue and Forbes [6]. Our results should provide a good approximation for flows
in finite depth, when the wavelength of the waves generated is small compared to the
depth. The problem is formulated in Section2. In Section3, we take advantage of
the simplicity of the configuration to derive an exact relation between the amplitude
of the waves in the far field and the main parameters of the flow. In Section4, we
compute nonlinear solutions by a numerical procedure involving an integro-differential
equation coupled with Newton’s iterations. The scheme is similar to the ones used
in [9] and [11]. The numerical results are discussed in Section5. We note that the
results of this paper provide an example of a flow in which the waves discussed in [7]
and [11] occur.

2. Formulation

In this section we formulate the problem of a steady two-dimensional inviscid flow
past a semi-infinite flat-bottomed body (see Figure1). The effect of surface tension
is neglected and the flow is assumed to separate smoothly from the flat bottom. The
flow is rotational and characterized by a constant vorticity�. We introduce Cartesian
coordinates withX = 0 at the edge of the plate. The levelY = 0 corresponds to the
“undisturbed level of the free surface”, that is, the level the free surface would have at
X = ∞ if it reached a constant horizontal level. We denote byC the corresponding
constant value of the velocity on the free surface. The draftH is defined as minus the
ordinate of the edge of the plate.

The flow is described in terms of a stream function9.X;Y/ satisfying

∇29 = −� (2.1)

in the flow domain. We reduce the problem to one for Laplace’s equation by subtracting
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a particular solution of (2.1). Thus if we write

9 =  − �

2
Y2 + CY

then∇2 .X;Y/ = 0. We require that → 0 asY → −∞. This is consistent with
our definition ofC.

We make the variables dimensionless by referring them to the velocity scaleC and
to a length scaleC2=.2g/. Thus we define the dimensionless quantities

x = 2g

C2
X; y = 2g

C2
Y; ! = �C

2g
:

Here! is the dimensionless vorticity.
The quantityw.z/ = u − i v =  y + i x is an analytic function ofz = x + iy,

where the fluid velocity vector is.u−!y+1; v/. We apply Cauchy’s integral formula
to the functionw.z/ on a contour consisting of the free surface, the plate (that is, the
surface just under the plate), a horizontal line aty = −∞ and two vertical lines at
x = ±∞. Sincew.z/ vanishes aty = −∞, there are no contributions from the lines
at y = −∞ and atx = ±∞ and we have

w.z/ = − 1

³ i

∫
L

w.� /

� − z
d�; (2.2)

wherez is on L. HereL denotes the free surface and the plate. The integral in (2.2)
is a Cauchy principal value.

We parameterize the free surface byx = x f .t/, y = yf .t/ and the plate by
x = xp.t/, y = yp.t/ = y.0/ wheret is the arclength. We chooset = 0 at the edge
of the plate. Then

x′
f .t/

2 + y′
f .t/

2 = 1: (2.3)

SinceY.0/ = −H andX.0/ = 0, our choice of dimensionless variables implies

x.0/ = 0; y.0/ = −2=F2;

whereF = C=
√

gH is the Froude number.
On the plate

x′
p.t/

2 = 1; y′
p.t/ = 0:

We consideru andv on the free surface and on the plate as functions oft . Thus
we writeu = u f .t/, v = v f .t/ on the free surface andu = up.t/, v = 0 on the plate.
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Taking the real part of (2.2), we obtain after some algebra and letting

V1 = u f .s/y
′
f .s/ − v f .s/x

′
f .s/ and V2 = u f .s/x

′
f .s/ + v f .s/y

′
f .s/;

³u f .t/ = −
∫ ∞

0

.x f .s/ − xf .t//V1 − .yf .s/− yf .t//V2

.x f .s/− xf .t//2 + .yf .s/− yf .t//2
ds

+
∫ ∞

0

up.s/x′
p.s/.yf .t/− y.0//

.xp.s/− xf .t//2 + .yf .t/ − y.0//2
ds; (2.4)

whenz is on the free surface and

³up.t/ = −
∫ ∞

0

.x f .s/ − xp.t//V1 − .yf .s/ − y.0//V2

.x f .s/− xp.t//2 + .yf .s/ − y.0//2
ds (2.5)

whenz is on the plate.
On the free surface the kinematic condition and Bernoulli equation yield

.u f .t/ − !yf .t/ + 1/y′
f .t/ = v f .t/x

′
f .t/; (2.6)

.u f .t/ − !yf .t/ + 1/2 + v f .t/
2 + yf − 1 = 0: (2.7)

Equation (2.7) expresses the fact that the pressure is constant on the free surface.
For given values of! andF , we seek the functionsu f , v f , x′

f , y′
f andup satisfying

(2.3), (2.4)–(2.7).

3. Conservation of momentum

In this section, we show how to use the principle of conservation of momentum to
derive an exact relation between the Froude numberF , the vorticity parameter! and
the steepnesss of the waves in the far field. For! = 0, this relation reduces to the one
derived by Vanden-Broeck [9]. For simplicity we assume thats is small so that the
waves in the far field are described by linear theory. The validity of this assumption
will be justified by the numerical calculations of Section5.

The principle of conservation of momentum implies that∫
S

[
V.V · n/ + gYn + P

²
n
]

ds = 0: (3.1)

HereS is any closed simply connected contour inside the fluid region,V = .VX;VY/

is the vector velocity,P is the pressure,² is the density andn is the exterior normal
to the contour. We now chooseS to consist of the plateSp, the free surfaceSF , a
vertical lineSR at X = +∞, a horizontal lineSH at Y = −∞ and a vertical lineSL

at X = −∞. Taking the component of (3.1) along theX-axis, we obtain∫
S

[
VX.V · n/ + P

²
nX + gY nX

]
ds = 0: (3.2)
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HerenX is the component ofn along theX-axis. It is convenient to replace the lineSH

by a horizontal line atY = −d, whered is arbitrarily large. The integrals overSp and
SH in (3.2) do not contribute sincenX=0 andV.V · n/ = 0. Along SF , V.V · n/ = 0
andP = 0, so that the integration overSF gives

−
∫ 0

−H

gY dY= g

2
H 2:

Here we choseSR such thaty = 0 at the intersection ofSR andSF .
As X → ∞, we assume a train of linear waves of amplitudea. Using linear theory

(see for example [3]), we write

VX = −�Y + C − aCkekY cosk X; (3.3)

VY = −aCkekY sink X: (3.4)

The choice ofSR implies that cosk X = 0 and sink X = 1 alongSR. Thus

VX = −�Y + C; (3.5)

VY = −aCkekY: (3.6)

To perform the integration overSR, we need an expression for the pressureP. For
this purpose we consider theY-component of the Euler equation

VX
@VY

@X
+ VY

@VY

@Y
= −1

²

@P

@Y
− g: (3.7)

Differentiating (3.4) with respect toX and using cosk X = 0 implies that@VY=@X = 0
alongSR. Therefore integrating (3.7) with respect toY alongSR gives

− P

²
− gY = 1

2
V2

Y + Þ; (3.8)

whereÞ is a constant of integration.
Substituting (3.8) into (3.2), we get after neglecting terms of order exp.−2kd/

∫ 0

−d

(
V2

X + P

²
+ gY

)
dY = �2d3

3
+�d2C + dC2 − a2C2k

4
− Þd:

As X → −∞,

VX = −�Y + T and VY = 0: (3.9)

HereT is a constant which tends toC asd → ∞. We obtain an equation for the
pressure by substituting (3.9) into (3.7) and integrating with respect toY. This gives

−P=² − gY = þ: (3.10)



326 Y. Kang and J.-M. Vanden-Broeck [6]

Hereþ is a constant of integration.
Substitution of (3.10) into (3.2) at X = −∞ yields

−
∫ −H

−d

(
V2

X + p

²
+ gY

)
dY = �2 H 3

3
+�H 2T + H T2 − �2d3

3

−�d2T − dT2 + þ.d − H /:

Combining the various contributions overSF , SR andSL in (3.2) gives

gH2

2
− a2C2k

4
− Hþ + �2H 3

3
+�d2C +�H2T

−�d2T + H T2 + dC2 − dT2 + þd − Þd = 0: (3.11)

We now derive an equation forþ − Þ. We first note that the principle of conservation
of mass implies

∫ −H

−d

.−�Y + T/ dY =
∫ 0

−d

.−�Y + C/ dY: (3.12)

Evaluation of the integrals in (3.12) gives

dC2 − dT2 = −�T H2

2
− �C H2

2
− T HC − H T2: (3.13)

Next we write Bernoulli’s equation atY = −d (whered is arbitrary large) as

1

2
.−�Y + T/2 − þ = 1

2
.−�Y + C/2 − Þ: (3.14)

We then combine (3.13) and (3.14) and obtain

d.þ − Þ/ = �d2T −�d2C − 1

2
.dC2 − dT2/

= �d2T −�d2C + �T H2

4
+ �C H2

4
+ T HC

2
+ T2H

2
: (3.15)

Substitution of (3.13) and (3.15) into (3.11) yields

gH2

2
− a2C2k

4
−þH +�2H 3

3
+ 3

4
�T H2− T HC

2
−�C H2

4
+ T2H

2
=0: (3.16)

SinceT → C asd → ∞, we can simplify (3.16) as

gH2

2
= a2C2k

4
− 1

2
�C H2 − �2 H 3

3
+ þH: (3.17)
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Using Bernoulli’s equation on the streamline consisting of the plate and the free
surface atX = ±∞ and the relations (3.5), (3.6), (3.8) and (3.10) yields

1

2
.−�Y + T/2 − þ = 1

2
.−�Y + C/2 + 1

2
a2C2k2 − Þ: (3.18)

Since T → C as d → ∞, (3.18) implies þ = �C H + 1
2�

2H 2 + Þ + O.a2/.
Furthermore (3.8) on the free surface (whereP = 0, Y = 0 andVY satisfies (3.6))
shows thatÞ = O.a2/. Thereforeþ = �C H + 1

2�
2H 2+O.a2/. Since (3.17) implies

H = O.a/, we can simplify (3.17) as

gH2

2
= a2C2k

4
+ 1

2
�C H2 + O.a3/: (3.19)

Multiplying both sides of (3.19) by 1=.HC2/ gives

1

2F2
= a2k

4H
+ !

F2
: (3.20)

The dispersion relation of linear wavesC2 = .g − �C/=k (see [4] for example)
can be rewritten as

F2 = .1 − 2!/=k H: (3.21)

We note that this dispersion relation implies that the linear waves considered here only
exist forg < �C, that is,! < 0:5.

Substituting (3.21) into (3.20) gives

1

2F2
=

( a

H

)2
(

1− 2!

4F2

)
+ !

F2
: (3.22)

Thus

a=H = √
2:

We derive the relation between steepness of the wave and Froude number by noting
that 2a is the peak-to-trough wave height sinceY = a cosk X. Therefore the steepness
s of the waves (that is, the peak-to-trough wave height divided by the wavelength) is
2a=½. Using (3.21) and (3.22), we have

s = .2.1 − 2!/2/1=2

³F2
: (3.23)

If we set! = 0, (3.23) reduces to the relation

s2 = 2=.³2F4/
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derived by Vanden-Broeck [9]. Next we use (3.21) to derive the following equation
for the dimensionless wavelength

½

H
= 2³F2

1 − 2!
: (3.24)

Finally we note that the wave heighth (that is, the difference of ordinates between a
crest and a trough) is given by

h=H = s½=H = 2a=H = 2
√

2 : (3.25)

4. Numerical schemes

In this section, a numerical scheme based on the integro-differential equation
formulation derived in Section2 is used to solve the problem in the fully nonlinear
case. First, we defineN mesh points on the free surface andN mesh points on the
plate by specifying values of the arclength parametert = Si whereSi = E.i − 1/.
HereE is the interval of discretization. We shall also make use of the intermediate
mesh pointsSi −1=2 = .Si −1+Si /=2. We now define 5N−1 corresponding fundamental
unknown quantities

u f;i = u f .Si /; v f;i = v f .Si /; x′
f;i = x′

f .Si /; y′
f;i = y′

f .Si / (4.1)

(i = 1;2; : : : ; N) on the free surface and

up;i = up.Si /; i = 1;2; : : : ; N − 1 (4.2)

on the plate. We estimate the values ofx f;i = x f .Si /, yf;i = yf .Si / in terms of the
fundamental unknowns by the trapezoidal rule, that is,x f;1 = 0, yf;1 = −2=F2 and

x f;i = x f;i −1 + x′
f .Si −1=2/E; yf;i = yf;i −1 + y′

f .Si −1=2/E; i = 2;3; : : : ; N

wherex′
f .Si −1=2/ andy′

f .Si −1=2/ are evaluated fromx′
f;i andy′

f;i by a four-point inter-
polation formula.

We satisfy (2.3), (2.6) and (2.7) at the mesh pointsSi , i = 1;2; : : : ; N. This yields
3N nonlinear algebraic equations. Next we evaluatex f .Si −1=2/, yf .Si −1=2/ by four-
point interpolation formulas. We then satisfy (2.4) and (2.5) at the pointst = Si −1=2,
i = 2;3; : : : ; N by applying the trapezoidal rule to (2.4) and (2.5) with a sum over
the pointss = Sj , j = 1;2; : : : ; N. The symmetry of the discretization and of the
trapezoidal rule with respect to the singularity of the integrand ats = t enables us
to evaluate the Cauchy principal value integrals by ignoring the singularity, with an
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FIGURE 1. Computed free surface profile with! = 0:05 andF = 6:5.
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FIGURE 2. (1) Computed free surface profile of wave withF = 5:5 and (a):! = 0, (b): ! = 0:2.
(2) Same as (1) with (a):! = 0, (b): ! = −0:2.

accuracy no less than a non-singular integral. This yields 2N − 2 extra nonlinear
equations. One more equation is obtained by imposing

v f;1 = 0: (4.3)

We now have 5N − 1 equations for the 5N − 1 unknowns (4.1)–(4.2). This system is
solved by Newton’s method for given values ofF and!.

We found that the truncation of the integrals in (2.4) and (2.5) at s = SN did not
affect the accuracy of the results near the plate, providedSN was sufficiently large.
The only noticeable effect of the truncation was a distortion of the free surface profile
over the last few computed wavelengths in the far field. This distortion can be moved
to larger and larger values ofX by increasingSN . Furthermore we found that this
distortion could be minimized by choosingSN such thatyf;N = 0. Therefore the
results presented in the next section are based on a modified version of the scheme
described above in which we impose the extra equation

yf;N = 0 (4.4)
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TABLE 1. Values ofs, h=H and½=H for various values of! andF = 5:5 with N = 301 andN = 225.

! s h=H ½=H
Analytical −0:2 0:020834 2:828427 135:760152
solution −0:1 0:017858 2:828427 158:384310

0:0 0:014882 2:828427 190:056914
0:1 0:011905 2:828427 237:574826
0:2 0:008929 2:828427 316:766434

Numerical −0:2 0:020894 2:820860 135:006413
solution −0:1 0:017915 2:821571 157:497852
N = 301 0:0 0:014930 2:821375 188:973970

0:1 0:011939 2:819560 236:169036
0:2 0:008941 2:814659 314:798733

Numerical −0:2 0:020430 2:813131 137:697517
solution −0:1 0:017521 2:814568 160:636548
N = 225 0:0 0:014608 2:815461 192:739231

0:1 0:011686 2:815219 240:873556
0:2 0:008762 2:813313 321:067336

TABLE 2. Values ofs, h=H and½=H for various values of! andF = 2:35 with N = 301 andN = 225.

! s h=H ½=H
Analytical −0:2 0:114119 2:828427 24:784891
solution −0:1 0:097816 2:828427 28:915495

0:0 0:081513 2:828427 34:698727
0:1 0:065211 2:828427 43:373408
0:2 0:048908 2:828427 57:831211

Numerical −0:2 0:137738 3:082258 22:376201
solution −0:1 0:117949 3:084950 26:154959
N = 301 0:0 0:098071 3:079049 31:396071

0:1 0:078529 3:078580 39:203178
0:2 0:058687 3:063495 52:200828

Numerical −0:2 0:134793 3:079198 22:843887
solution −0:1 0:119337 3:083014 25:834607
N = 225 0:0 0:099302 3:080104 31:017534

0:1 0:079107 3:064428 38:737748
0:2 0:057356 3:055341 53:269672
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FIGURE 3. (1) Computed free surface profile of wave withF = 2:35 and (a):! = 0, (b): ! = 0:2.
(2) Same as (1) with (a):! = 0, (b): ! = −0:2.

and addE to the list of unknowns. We then have a system of 5N nonlinear equations
with 5N unknowns to be solved by Newton’s method for given values ofN, F and
!. We note that in this version of the scheme,N is fixed andE is found as part
of the solution to satisfy (4.4). There are of course an infinite number of points in
the far field for whichy = 0, each two successive points being separated by half a
wavelength of the train of waves. The choice of the particular point at which (4.4) is
satisfied depends on the initial guess and defines the point at which the free surface
is truncated. A convenient choice for the initial guess for the modified scheme is a
converged solution of the first scheme in which (4.4) is approximately satisfied.

5. Discussion of the results

The free surface profile contains a train of waves behind the plate. The highest
point of the profile corresponds to the crest nearest the plate and the steepness of the
waves decreases away from the plate and reaches a constant value after a few cycles
even if the vorticity is not zero. As the vorticity increases, the wavelength lengthens.
Most of the computations were performed withN = 301.

In Tables1 and 2, we compare the numerical values ofs, h=H and½=H with
the analytical approximations (3.23), (3.25) and (3.24) for F = 5:5 andF = 2:35.
Results for different values ofN are listed to illustrate theaccuracy of the results. All
the calculations were done with the scheme satisfying (4.4). The results show that the
agreement between analytical and numerical values improves asF increases. This
is consistent with the fact that the amplitude of the waves decreases asF increases.
Therefore the waves in the far field are described by the linear theory asF → ∞.

Typical computed nonlinear profiles are shown in Figures1–3. We note that the
waves in Figure3 are nonlinear gravity waves with sharp crests and broad troughs.
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Finally let us comment on formula (3.23). It implies that for a fixed value of the
Froude numberF , positive vorticity decreases the steepness of the waves in the far
field. This suggests that the generation of vorticity (for example by the boundary
layers) might reduce the wave resistance.
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