ANZIAM J.43(2002), 321332

STERN WAVES WITH VORTICITY
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Abstract

Steady two-dimensional free surface flow past a semi-infinite flat plate is considered. The
vorticity in the flow is assumed to be constant. For large values of the Froude nmber
an analytical relation betweds, the vorticity parametep and the steepnes®f the waves

in the far field is derived. In addition numerical solutions are calculated by a boundary
integral equation method.

1. Introduction

Over the years important progress has been achieved in the computation of two-
dimensional nonlinear free-surface flows past surface piercing obstacles. Such flows
are relevantto the modeling of a ship moving at a constant velocity on the free surface
of afluid. These flows are often studied by neglecting viscosity and by seeking steady
solutions in a frame of reference moving with the obstacle. Interesting particular flows
arise from assuming that the object is semi-infinite. They provide a local description
of the flow near the stern or the bow of a very long ship. We refer to these flows as
stern flows when there is a train of waves on the free surface and as bow flows when
the free surface is waveless in the far field.

Vanden-Broeck and Tucklp], Vanden-Broeck, Schwartz and Tuck? and
Vanden-Broeck]0] obtained semi-analytical solutions for the stern flow past a semi-
infinite two-dimensional flat-bottomed body. They assumed that the flow rises up
along the rear face of the body to a stagnation point at which separation occurs.
Vanden-Broeck §] described analytically and numerically another family of stern
flows in which the flow separates at the corner of the body. Further studies involving
waveless, time dependent and viscous solutions can be fouidind] and [14].
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Dias and Vanden-Broeck] computed solutions for the bow flow past a semi-
infinite two-dimensional flat-bottomed body. The free surface is waveless in the far
field but there is a spray at the bow. The spray is modeled by a layer of water
rising along the bow and falling back as a jet. Bow flows with surface tension were
consideredinf].

All the above calculations assume that the flow is irrotational. This is usually a
very good assumption but vorticity can be generated near solid boundaries or on the
free surface (for example by wind stress).

In this paper, we shall generalize the stern flow of Vanden-Bra@dkf rotational
flows. We assume that the vorticity is constant throughout the fluid. This assumption
is convenient mathematically and justified when the lengthscale of the free surface
variations is short compared to the lengthscale of the vorticity distribution. The fluid
is assumed to be of infinite depth. Results in water of finite depth were obtained by
McCue and Forbes]. Our results should provide a good approximation for flows
in finite depth, when the wavelength of the waves generated is small compared to the
depth. The problem is formulated in SectidnIn Section3, we take advantage of
the simplicity of the configuration to derive an exact relation between the amplitude
of the waves in the far field and the main parameters of the flow. In Seétioe
compute nonlinear solutions by a numerical procedure involving an integro-differential
equation coupled with Newton'’s iterations. The scheme is similar to the ones used
in [9] and [11]. The numerical results are discussed in SecfiofWe note that the
results of this paper provide an example of a flow in which the waves discussgd in |
and [L1] occur.

2. Formulation

In this section we formulate the problem of a steady two-dimensional inviscid flow
past a semi-infinite flat-bottomed body (see Figlye The effect of surface tension
is neglected and the flow is assumed to separate smoothly from the flat bottom. The
flow is rotational and characterized by a constant vorti@ityWe introduce Cartesian
coordinates withX = 0 at the edge of the plate. The lewelk= 0 corresponds to the
“undisturbed level of the free surface”, that is, the level the free surface would have at
X = oo if it reached a constant horizontal level. We denotebthe corresponding
constant value of the velocity on the free surface. The dtaf defined as minus the
ordinate of the edge of the plate.

The flow is described in terms of a stream functib(X, Y) satisfying

VA = —Q (2.1)

in the flow domain. We reduce the problemto one for Laplace’s equation by subtracting
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a particular solution ofZ.1). Thus if we write

Q
U=y — EY2 +CY
thenV2y (X, Y) = 0. We require thaty — 0 asY — —oo. This is consistent with
our definition ofC.
We make the variables dimensionless by referring them to the velocityGcaie
to a length scal€?/(2g). Thus we define the dimensionless quantities

2 2
9% _ Sy

QC
=T YmEh e

Herew is the dimensionless vorticity.

The quantityw(z) = u —iv = ¥y, + i is an analytic function oz = x + iy,
where the fluid velocity vector i&1 —wy + 1, v). We apply Cauchy’s integral formula
to the functionw(z) on a contour consisting of the free surface, the plate (that is, the
surface just under the plate), a horizontal lineyat —oo and two vertical lines at
X = £o00. Sincew(z) vanishes ay = —oo, there are no contributions from the lines
aty = —oo and atx = +oo0 and we have

1 [ w®)

wiJog—z2

w(z) =

de, (2.2)

wherezis onL. HereL denotes the free surface and the plate. The integr&l. i) (
is a Cauchy principal value.

We parameterize the free surface ky= x;(t), y = y;(t) and the plate by
X = Xp(t), Yy = yp(t) = y(0) wheret is the arclength. We choose= 0 at the edge
of the plate. Then

X; ()7 + Y (1) =1 (2.3)
SinceY (0) = —H andX(0) = 0, our choice of dimensionless variables implies
x(0) =0, y(0) = —2/F?,

whereF = C/,/gH is the Froude number.
On the plate

X(1)?=1,  y,t) =0.

We consideiu andv on the free surface and on the plate as functionis dfhus
we writeu = u¢ (), v = v (t) on the free surface and= u,(t), v = 0 on the plate.
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Taking the real part of4.2), we obtain after some algebra and letting

V1=ui(s)Y;(s) —vi(s)X;(s) and V2=u(s)X;(s) + vi(S)Y;(9),

TU() = — /m (X0 (8) =X (V- (¥i(8) = Y1 t)V2
0 (X£(S) — X¢ (1))? 4+ (Y (S) — y¢(1))?

/°° Up(S)X,(S) (Y (1) — y(0)
(2.4)
o (Xp(s) — X (1)? + (yr (t) — y(0))?
whenzis on the free surface and
(X1 (8) = Xp())V1—(yi(s) — y(0)V2
1) =— d 2.5
eV /0 G ® = %2 F e~y o @)

whenzis on the plate.
On the free surface the kinematic condition and Bernoulli equation yield

U (t) — wy; () + Dy; (1) = vi (DX} (D), (2.6)
(Ur () —oyr(t) + D>+ v (1)> +ys —1=0. (2.7)

Equation 2.7) expresses the fact that the pressure is constant on the free surface.
For given values ob andF, we seek the functionsy, vy, X}, y; andu, satisfying

(2.3, (2.9—-2.7).
3. Conservation of momentum

In this section, we show how to use the principle of conservation of momentum to
derive an exact relation between the Froude nuniehe vorticity parametap and
the steepnessof the waves in the far field. Fes = 0, this relation reduces to the one
derived by Vanden-Broecl®]. For simplicity we assume thatis small so that the
waves in the far field are described by linear theory. The validity of this assumption
will be justified by the numerical calculations of Sectin

The principle of conservation of momentum implies that

/[V(V-n)+gYn+;n} ds=0. (3.1)
S

HereSis any closed simply connected contour inside the fluid regios, (Vy, Vy)
is the vector velocitypP is the pressureg is the density and is the exterior normal
to the contour. We now choos®&to consist of the platss,, the free surfac&:, a
vertical line S at X = +o00, a horizontal lineS, atY = —oo and a vertical line§
at X = —oo. Taking the component of3(1) along theX-axis, we obtain

/[VX(V-n)+;nx+gYnx} ds=0. (3.2)
S
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Hereny is the component af along theX-axis. Itis convenientto replace the ligg
by a horizontal line a¥ = —d, whered is arbitrarily large. The integrals ov&, and
S in (3.2) do not contribute sincex=0 andV(V -n) = 0. AlongS-,V(V -n) =0
andP = 0, so that the integration ov&: gives

° g
- = 2 H?
/HngY > H

Here we chosé&s such thaty = 0 at the intersection d8; and S-.
As X — oo, we assume a train of linear waves of amplitadéJsing linear theory
(see for exampled)), we write

Vyx = —QY + C — aCké" cosk X, (3.3)
Vy = —aCké" sink X. (3.4)

The choice ofSg implies that co& X = 0 and sirk X = 1 alongS. Thus

Vy = —QY +C, (3.5)
Vy = —aCké". (3.6)

To perform the integration ove;, we need an expression for the pressBreFor
this purpose we consider thecomponent of the Euler equation
aVy aVy 10P
— —=———9g 3.7
ax o ay oy 9 3.7)
Differentiating 3.4) with respecttoX and using cok X = 0 implies thab\y,/d X = 0
alongSk. Therefore integrating3(7) with respect toY along Sy gives

=]

1

Vx

wherea is a constant of integration.
Substituting 8.8) into (3.2), we get after neglecting terms of order éx2kd)

0 =] QZd3 2c2k
/ (Vf+;+gY>dY= 3 +dec+dc2—a4 — ad.
—d

As X — —oo,

HereT is a constant which tends © asd — co. We obtain an equation for the
pressure by substituting ©) into (3.7) and integrating with respect ¥. This gives

—P/p—gY=§. (3.10)
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Herep is a constant of integration.
Substitution of 8.10 into (3.2) at X = —oo yields

—H QZH3 QZd3
—/ vX2+E+gY dy = + QH2T + HT? -
—d P 3 3

— Qd*T —dT?+ B(d — H).

Combining the various contributions ov8f, Sz andS,_ in (3.2) gives

H2 2c2K QO2%H3
92 _aj —HB + +Qd’C + QH?T
—Qd’T + HT?+dC? —dT?+ 8d — ad = 0. (3.11)

We now derive an equation f@gr— «. We first note that the principle of conservation
of mass implies

—H 0
/ (—QY—i—T)dY:/ (—QY +C)dY. (3.12)
—d —d

Evaluation of the integrals irB(12) gives

QTH? QCH?
2 2

dC® —dT? =

—THC - HT2 (3.13)
Next we write Bernoulli's equation at = —d (whered is arbitrary large) as

1 2 1 2

SCQY T = p=2(-QY +C) —a. (3.14)
We then combine3.13 and (3.14) and obtain

1
d(B — a) = Qd*T — Qd*C — E(dC2 —dT?
QTH?2 QCH? THC T?2H

= Qd*T — Qd°C 3.15
L R L) (3.15)
Substitution of 8.13 and @.15 into (3.11) yields
gH?  a’C Q?H® 3__ , THC QCH? T2H
- —BH -QTH"— - =0. (3.16
> 2 BH+ 3 —|—4 > 2 + 5 ( )
SinceT — C asd — oo, we can simplify 8.16 as
H2  a2C%k 1 Q?H?
oH” _aCk loche- + BH. (3.17)

2 4 2 3
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Using Bernoulli's equation on the streamline consisting of the plate and the free
surface aiX = o0 and the relations3(5), (3.6), (3.8) and @.10 yields

1 1 1
S(-QY + TZ—-B= S(=QY + C)Y* + Ea2c32|<2 —a. (3.18)

SinceT — C asd — oo, (3.19 implies = QCH + 1Q?H? + o + O(a?).
Furthermore §.8) on the free surface (wher@ = 0, Y = 0 andVy satisfies 8.6))
shows thatr = O(a?). Thereforg8 = QCH +1Q?H?+0(a?). Since 8.17) implies
H = O(a), we can simplify 8.17 as

H2 a?C%k 1
92 =ai +EQCH2+O(a3). (3.19)

Multiplying both sides of 8.19 by 1/(HC?) gives

1 a’k o
—_— = — + —. 3.20
2F2 ~ 4H | P2 (3.20)

The dispersion relation of linear wav€$ = (g — QC)/k (see fi] for example)
can be rewritten as

F2 = (1— 2w)/kH. (3.21)

We note that this dispersion relation implies that the linear waves considered here only
exist forg < QC, thatis,»w < 0.5.
Substituting 8.27) into (3.20 gives

1 a\2/1l-2w w
ﬁ=<ﬁ) ( 4F? >+E' (3.22)

a/H =2

Thus

We derive the relation between steepness of the wave and Froude number by notin
that 2ais the peak-to-trough wave height sin¢e= a cosk X. Thereforethe steepness

s of the waves (that is, the peak-to-trough wave height divided by the wavelength) is
2a/A. Using 3.21) and @3.22, we have

g (A — 20

— (3.23)

If we setw = 0, (3.23 reduces to the relation

s = 2/(7°F%
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derived by Vanden-Broecld]. Next we use §.21) to derive the following equation
for the dimensionless wavelength

A 2w F?
H= 120" (3.24)

Finally we note that the wave height(that is, the difference of ordinates between a
crest and a trough) is given by

h/H =s/H =2a/H = 2v2. (3.25)

4. Numerical schemes

In this section, a numerical scheme based on the integro-differential equation
formulation derived in Sectiof is used to solve the problem in the fully nonlinear
case. First, we definBl mesh points on the free surface aNdmesh points on the
plate by specifying values of the arclength parameter § where§ = E( — 1).
HereE is the interval of discretization. We shall also make use of the intermediate
mesh point§_;,, = (S-1+S8)/2. We now define Bl — 1 corresponding fundamental
unknown quantities

Ui = Ui (), v =v1(8), X =Xi(8), Y =Y () (4.1)
(i=1,2,...,N)onthe free surface and
Upi =Up(8), 1=12...,N—-1 (4.2)

on the plate. We estimate the valuesxef = X;(S), Yr.i = Y:(S) in terms of the
fundamental unknowns by the trapezoidal rule, thaxjs,= 0, y;; = —2/F? and

Xii = Xgi—1+ X1 (S_12E,  Yii =VYrica +Yi(S-12)E, 1=23,...,N

wherex; (S_1,2) andy; (S_1,2) are evaluated from}; andy;; by a four-point inter-
polation formula.

We satisfy £2.3), (2.6) and @.7) at the mesh point§,i = 1,2,..., N. This yields
3N nonlinear algebraic equations. Next we evaluat€§_;/2), Y;(S-1/2) by four-
point interpolation formulas. We then satis.4) and @.5) at the pointd = §_;»,
i =2,3,..., N by applying the trapezoidal rule t@ 4) and .5 with a sum over
the pointss = §;, j = 1,2,..., N. The symmetry of the discretization and of the
trapezoidal rule with respect to the singularity of the integransl -att enables us
to evaluate the Cauchy principal value integrals by ignoring the singularity, with an
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FIGURE 1. Computed free surface profile with= 0.05 andF = 6.5.
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FIGURE 2. (1) Computed free surface profile of wave wikh= 5.5 and (a):» = 0, (b): v = 0.2.
(2) Same as (1) with (a)p = 0, (b): @ = —0.2.

accuracy no less than a non-singular integral. This yields—22 extra nonlinear
equations. One more equation is obtained by imposing

Vi1 = 0. (43)

We now have Bl — 1 equations for thel§ — 1 unknowns4.1)—(4.2). This system is
solved by Newton’s method for given valuesffindw.

We found that the truncation of the integrals ih4) and @.5) ats = Sy did not
affect the accuracy of the results near the plate, provieleas sufficiently large.
The only noticeable effect of the truncation was a distortion of the free surface profile
over the last few computed wavelengths in the far field. This distortion can be moved
to larger and larger values of by increasingSy. Furthermore we found that this
distortion could be minimized by choosirt§, such thaty; y = 0. Therefore the
results presented in the next section are based on a modified version of the schem
described above in which we impose the extra equation

YiNn = 0 (44)
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TABLE 1. Values ofs, h/H anda/H for various values of» andF = 5.5 with N = 301 andN = 225.

1) S h/H A/H
Analytical | —0.2 | 0.020834| 2.828427| 135760152
solution —0.1 | 0.017858| 2.828427| 158384310
0.0 | 0.014882| 2.828427| 190056914
0.1 | 0.011905| 2.828427| 237574826
0.2 | 0.008929| 2.828427| 316766434
Numerical| —0.2 | 0.020894| 2.820860| 135006413
solution —0.1 | 0.017915| 2.821571| 157.497852
N = 301 0.0 | 0.014930| 2.821375| 188973970
0.1 | 0.011939| 2.819560| 236.169036
0.2 | 0.008941| 2.814659| 314798733
Numerical| —0.2 | 0.020430| 2.813131| 137.697517
solution —0.1 | 0.017521| 2.814568| 160636548
N =225 0.0 | 0.014608| 2.815461| 192739231
0.1 | 0.011686| 2.815219| 240873556
0.2 | 0.008762| 2.813313| 321067336

TABLE 2. Values ofs, h/H andx /H for various values ob andF = 2.35 with N = 301 andN = 225.

1) S h/H A/H
Analytical | —0.2 | 0.114119| 2.828427| 24.784891
solution —0.1 | 0.097816| 2.828427| 28915495
0.0 | 0.081513| 2.828427| 34.698727
0.1 | 0.065211| 2.828427| 43.373408
0.2 | 0.048908| 2.828427| 57.831211
Numerical| —0.2 | 0.137738| 3.082258| 22.376201
solution —0.1 | 0.117949| 3.084950| 26.154959
N = 301 0.0 | 0.098071| 3.079049| 31.396071
0.1 | 0.078529| 3.078580| 39.203178
0.2 | 0.058687| 3.063495| 52.200828
Numerical| —0.2 | 0.134793| 3.079198| 22.843887
solution —0.1 | 0.119337| 3.083014| 25.834607
N =225 0.0 | 0.099302| 3.080104| 31.017534
0.1 | 0.079107| 3.064428| 38.737748
0.2 | 0.057356| 3.055341| 53269672
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FIGURE 3. (1) Computed free surface profile of wave wikh= 2.35 and (a):w = 0, (b): ® = 0.2.
(2) Same as (1) with (a)p = 0, (b): @ = —0.2.

and adcE to the list of unknowns. We then have a system Nfgonlinear equations

with 5N unknowns to be solved by Newton’s method for given valueblpf and

. We note that in this version of the scheni¢,is fixed andE is found as part

of the solution to satisfy4.4). There are of course an infinite number of points in
the far field for whichy = 0, each two successive points being separated by half a
wavelength of the train of waves. The choice of the particular point at which i§
satisfied depends on the initial guess and defines the point at which the free surfac
is truncated. A convenient choice for the initial guess for the modified scheme is a
converged solution of the first scheme in whigh4j is approximately satisfied.

5. Discussion of the results

The free surface profile contains a train of waves behind the plate. The highest
point of the profile corresponds to the crest nearest the plate and the steepness of th
waves decreases away from the plate and reaches a constant value after a few cycle
even if the vorticity is not zero. As the vorticity increases, the wavelength lengthens.
Most of the computations were performed with= 301.

In Tables1 and 2, we compare the numerical values%fh/H andi/H with
the analytical approximation8 23, (3.295 and @.29 for F = 5.5 andF = 2.35.
Results for different values df are listed to illustrate thaccuracy of the results. All
the calculations were done with the scheme satisfying) ( The results show that the
agreement between analytical and numerical values improvésiasreases. This
is consistent with the fact that the amplitude of the waves decreadesmmseases.
Therefore the waves in the far field are described by the linear thedfy-asoc.

Typical computed nonlinear profiles are shown in Figute3. We note that the
waves in Figures are nonlinear gravity waves with sharp crests and broad troughs.
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Finally let us comment on formul&(23. It implies that for a fixed value of the
Froude numbef, positive vorticity decreases the steepness of the waves in the far
field. This suggests that the generation of vorticity (for example by the boundary
layers) might reduce the wave resistance.
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