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ANALYSIS OF CELL POPULATION PDE MODELS WITH
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Abstract

This paper considers a cell population model with a general maturation rate. This model
is described by a nonlinear PDE. We use the theory of operator semigroups to study the
problem under simple hypotheses on the growth function and the nonlinear term. By
showing that a related operator generates a strongly continuous semigroup, we prove the
existence of a classical solution of the nonlinear problem and its positivity. Itis also proved
that under simple hypotheses, the problem generates a semiflow. The invariance of the
semiflow is studied as well.

1. Introduction

The study of cell population growth models has greatly contributed to the development
of mathematical biology. See Metz and Diekmatd] [and Webb L8] for excellent
accounts of this subject. Recently, a maturity structured model of a blood cell pro-
duction system has been studied by Rey and Mackély [The governing equation

is

% ux,t) + ;—X(x u(x, t))
= puax,t — )1 —u(@x,t — 1)), t=>0; (1.1)
ux,t) = o(x,t), -1 <t<0, xe|[0,1].

Hereu(x,t) is the population density of cells with respect to matuxtat timet
andu, «, T are parameters satisfying> 0, 0 < o« < 1,7 > 0. If we assume that
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the maturity transport term in the model is of the fotfydx)[g(X)u(x, t)] under
the assumption that all cells have general maturationgétg this gives rise to the
following model:

ot ax (1.2)

au(x,t) n g(X)au(x,t) — F),
ux,t) =o(x,t), —t=<t=<0, xel0,1],

whereu, denotes the derivative afwith respect td, g(x) is nonnegative and satisfies
g0 =0 andfoldx/g(x) = 00.
The maturity structured model of a cell population system given by

|au(x,t) L d@xu(x, t)) — Buix.b)

ot ax (1.3)
ux,0 =y, 0=<x<1,

wherep > 1is a constant, was studied by Weldl§][for the special casa(x) = x.
For a general maturation velocig(x), system {.3) may be rewritten as

JU(X. 1) Jux, b
ot T = Txuk ), (1.4)
ux,0 =vy(x), 0<x<1,

wherea(x) is nonnegativea(0) = 0 andfoldx/a(x) = oo.
The model studied by Gyllenberg and Heijma#ki$ described by

nx, b | ageonx, 1) -
5 S = —HOON(X. 1) — beON(x. 1
2p(yt(x)b(y(x))

y(yt))nt — 7, y-1(x))’

wheren(x, t) is the size distribution of cells in the first phase at timend sizex.

The functionsg, « andb are the rates at which cells of sixegrow, die and transit

to the second phase respectively. Here 0 is the constant duration of the second
phasey(x) is the size of a new born cell whose mother entered the second phase with
sizex, and p(x) is the fraction of cells who survive the second phase given that they
entered it with sizex. Under an appropriate substitution (s€ednd [20]) (1.5 can

be transformed into

(1.5)

au(x, t) au(x, t)

ST+ 00— = F(w), (16)

whereg(x) is nonnegative and the same aslirb| but should also satisfﬁol % = 00.
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The model studied by Greiner and Nagg],[and Metz and Diekmannlf], is
described by

auf’;’ : 39(X2lj((x, 2 —(OU(X, 1) —=b()u(X, t) +4b(2X)u(2X, t),

U(a/2,1) =0, u(x, 0) = ug(x).

2.7)

The growth functiorg(x) was taken to be & ¢ < g(x) < § forall x > 0. Itis more
realistic in this case thaf(x) be taken to bg(x) > 0 forx > 0.

From the aforegoing review, we see that it is of interest to study Prokilefhif
the case wherd : [0, 1] x R — R s continuous an@(x) satisfies the following
conditions:

(i) aeC[0,1]anda(x) >0for0<x <1,
(i) a(0) =0, measurgx | a(x) = 0} = 0;
(i) [l ds/a(s) < 00,if0 < x < 1;
(iv) folds/a(s) = oo.
A similar problem was studied irl[ 5, 10, 11], under stronger conditions @ix) and
f(x,v) (thatis,a(x) > 0 (x > 0),aand f are continuously differentiable), using the
classical method of characteristics.

It is well known that issues concerning the smoothness of various coefficients and
terms appearing in differential equations greatly affect the existence, uniqueness an
regularity of solutions and this is especially so in the theory of partial differential
equations (se€l[7]). We will use the theory of operator semigroups to study problem
(1.4) under simple hypotheses aiix) (conditions (i)—(iv)) andf (x, u) given above.

The only assumption made about the nonlinear term is thiat v) and f,(x, v)
are continuous. In fact, whemand f are continuously differentiable ardx) > 0
for x > 0, as mentioned earlier, the existence of the problem can be studied by the
classical theory of characteristics (s&€]). In our case, however, the classical theory
of characteristics cannot be applied. Thus the approach taken in this paper is totally
different from that in 0] and we not only obtain strong results on the existence and
positivity of a classical solution, but also establish a basis for analysing time-delay
cell populations with general maturation velocity, such as modeB énd (L.6). In
this paper, we will show that the related operator generates a strongly continuous
semigroup. By studying the properties of the semigroup, we prove the existence of a
classical solution of the nonlinear problem and the positivity of the solution. Itis also
proved that the problem generates a semiflow. We will prove that the phase space
that is, all nonnegatively continuous functions [@) 1], of the semiflow splits into
two disjoint invariant sets.

The paper is organized as follows: in Sectidnwe prove that the operator
a(x)(d/dx) generates a strongly continuous semigroup of operato3[Onl] and
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show that the semigroup is positive and contractive. Although an analytic semigroup
has many nice properties, it will be shown that our semigroup cannot be extended
to being an analytic semigroup. Next, in Secti@nwe consider the existence of a
classical solution of problenil(4) and the positivity of the solution. We will show
that the mild solution of the problem generates a semiflow. We finally present one of
the properties of the semiflow—invariance (Sectipn

2. Related semigroup of operators

Let Y = CI[0, 1] be the Banach space with norfg| = max-x<1|¢(X)| for
¢ € Y. Leta(x) be a given continuous function ¢@, 1]. Similar to [L2], we define
an operatoH onY. Define the domain oH to be:

D(H) ={¢ € Y | ¢'(X) exists and is continuous atwhena(x) # 0O; (2.2)
lim,_,, a(x)¢’ (x) exists whera(x,) = 0 andx, # 0;
limy_o¢(X) existg

and for¢p € D(H)
de (X)

ax) , if a(x) #0,
dx 46 (%)
(Hp)(X) = { lim a(x) (ZX . if a(xo) = 0andx, # O, (2.2)
Iim0¢~5(x), if x =0,
where

~ a(x) d<;;(xx) , if a(x) #0,

PO =1 dey)
IyanX a(y)d—y , if a(x) = 0andx # 0.

ReEMARK 2.1. The operatorH has also been studied in many other places (see
[21, 6,2, 1]). Itis also related to the problem of characterizing all flowq@ri] (see,
for example, 1]).

Using an idea developed i1 and [21], we can prove the following theorem.

THEOREM 2.1. If a(x) satisfies condition§)—(ii)) in Sectionl, then the operator
—H defined by(2.1) and(2.2) generates a strongly continuous contraction semigroup
if and only iffoldx/a(x) = 0.

PrROOF. Let a(x) satisfy conditions (i)—(iv) in Sectiofi. We will show that—H
is an infinitesimal generator of a strongly continuous contraction semigroup. First,
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we note thaD(—H) is a dense subset df sinceC*[0, 1] ¢ D(—H). We note also
that—H is a closed operator. In fact,df, — ¢ and—H¢, — ¥ in Y asn — oo,
then lim,_. o, ¢,(X) = —¥(x)/a(x) a.e. on[0, 1] and|¢,(X)| < (|1//(x)| + 1)/a(x)
a.e. on[0, 1] for sufficiently largen. Thereforep(x) = ¢ (1) — f ¥(s)/a(s) dsfor
0 < x <1,and we see thatc D(—H) and—H¢ = .

We need to show that the imag¥il + H) of operator| + H is dense inY for
A > 0. Foragiveny €Y, let

X ¥ () efjll)\/a(s)dsdt — lim / 1//(t) —f 1/a(s) dsqt
o a( €~>0*

for 0 < x < 1. ltis clear that the limit exists. Define

o a() = (2.3)
#0) = v/, x=0.

Since there exist;, &, € [0, x] such that
V(E)/A <o) <v¥(&)/r, forte][0x],

we see that limLo ¢(X) = ¥ (0)/A. Thereforep € Y and (Al + H)p = . It
follows thatR(xl + H) =Y for » > 0. From @.3) we also have

|¢(X) = gl vads Fro e kraodgr  0<x<1;

ol < llwll/x,  fora>0. (2.4)

For a givenr > 0 if (Al + H)¢ = O then(e* /1 929¢(x)) = 0 a.e. on[0, 1].
In fact, according to corition (iv), there is an at most countable subBetf [0, 1]
such thai(e* 1 929 (x)) = 0 for all x € [0, 1] — I (see p]) and O€ T is the only
accumulation point of.

We must havey = 0, since lim_ - €/ 929 = 0 and¢ is a continuous function.
So, (Al + H) is injective forx > 0 and we have that.l + H)™* € L(Y,Y) with
[l +H)™ < 1/afora > 0.

By the Hille-Yosida theorem (sed%, 7]), —H generates a strongly continuous
contraction semigroup ovi. Conversely i—H generates &, contraction semigroup
onY,thenthereisa > Owith » € p(—H) such that fory = 1, there exists a unique
¢ € D(—H) satisfying

Ol +Hp =y =1 (2.5)

If fol dx/a(x) < oo, there are two different functiory ande, that satisfy 2.5) and
are defined as follows:

>

p100 == (1—e k%) o<x <1,
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and

Pa(x) = eh M/ /X . g k+aodsgt 0 < x <1
o a()

This contradiction shows that we must haféadx/a(x) = oo and the theorem is
proved.

We will show that the strongly continuous contraction semigrpugt)};-o gener-
ated by—H is positive. In fact, the positivity of the resolvent operator-dfl implies
the positivity of the semigroup. In order to explore further properties of the operator
—H, we give the following proof of positivity.

LetY, ={p € Y| ¢p(X) > Oforx € [0, 1]} be a positive coneY can be ordered
by settingf > g whenever the funtiorf — g € Y,. In such a setting, we see that
(Y, Y., || - |) is a Banach lattice. Recall thei (t)}-o is positive if T (t) Y, C Y, for
t > 0. For the reader’s convenience, we cite the following result.

LEMMA 2.1 (see B]). Let(Y, Y., | - |) be an ordered Banach space for which the
norm is monotone and the operator norm b, Y) is positively attained. I1+H
is a closed densely defined-dissipative operator, andR(l + «H) = Y for some
a > 0, then—H generates a positiv€, semigroup of contraction.

We now prove the following result.

THEOREM 2.2. Leta(x) satisfy(i)—(iv) in Sectionl, then the operator~H defined
by (2.1) and(2.2) generates a positiv€, contraction semigroup.

ProoF. Itfollows from Theoren®.1that—H generates &, contraction semigroup
andR(l +aH) =Y fora > 0.

It is easy to see thaY, is generating, that isY = Y, — Y, and the norm is
monotone, that ig|¢|| < ||| if0 < ¢ < ¢.

We will show thatl (Y, Y) is positively attained. The norm ohis a Riesz norm. In
fact, the|| - ||y is absolutely monotone{(yr < ¢ < v alwaysimplied|¢|| < ||y |)and
Y, is approximately absolutely dominating (for eatle Y thereis ay > 0 such that
- <¢ <y and||y| < «l¢| foralla > 1). According to B, Corollary 1.7.5], the
operator norm oL (Y, Y) is absolutely monotone. Since it # @ (intY, denotes
the set of interior points oY, ), we see that the operator norm is positively attained
(by [3, Theorem 1.7.9]).

It now follows from the arguments above and Lemtha that —H generates a
positive semigroup if we can show thidtis N-dissipative, that is,

N((I +aH)¢) = H(#).
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for all (small)a > 0, andyp € D(H) (see B, Theorem 2.1.1]), wherBl (y) = ||y ||
fory €Y, v, = (Y| + ¥)/2. From the proof of Theore® ], if (I + aH)¢ = v,
then

(X) = l dxlds/aa(s) * Y (t) e SHds/aa(s) dt
o o a ’
therefore

¢ < (I +aH) ™y, and N(@) = llg.ll < IVl = N¥).
So, H is N-dissipative and we conclude the proof of the theorem.

Itis interesting to note that positiv@,-semigroups automatically satisfy a stronger
positivity condition.

COROLLARY 2.1. Suppose(x) satisfies condition§)—(iv) in Sectionl, then the
positiveC, semigroup(T (t)};=o generated by the operaterH satisfies

T (ntY,) CintY, (2.6)
forallt > 0.

PrROOF. This is an immediate consequence &ffProposition 2.2.9].

The following result is obvious.
COROLLARY 2.2. Ifa<0<band
F'={peY|a<ep(x)<hb, forall x € [0, 1]},

thenT(H)I c T, fort > 0.

We are interested in the possibility of extending @gsemigroup{T (t)}i-o to an
analytic semigroup. We first recall the following result.

LEMMA 2.2 (see15]). Let {S(t)}=0 be a uniformly bounde@, semigroup. Let
A be the infinitesimal generator ¢5(t)};-o and assum® € p(A). The following
statements are equivalent
(@ {S(t)}i=0canbe extendedto an analytic semigroupinaseates{z| | argz|<4s}
and||S(2)| is uniformly bounded in every closed subsedigr, §' < §, of A,.
(b) There exists a constafit such that for everyg > Oandz # 0

IR((0 +i D)l =A™ < C/lzl.
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It is well known that a semigroup which can be extended to an analytic semigroup
has many nice properties, but we have the following result for the semi@Tatig;-o.

THEOREM 2.3. Suppos@(x) satisfiegi)—(iv) in Sectionl. Let{T (t)};-o be theC,
semigroup generated by the operateH, then{T (t)};~o cannot be extended to an
analytic semigroup.

PrOOF. Since multiplication of aC, semigroup bye*' does not affect the pos-
sibility or impossibility of extending it to an analytic semigroup, we will consider
the uniformly bounded semigroup(t)e ' for somee > 0. Then—H — ¢l is the
infinitesimal generator of (t)e '. According to the proof of Theore@.1 we see
Oe p(—H —e€l).

Takeo > 0,7 # 0 andtr # (0 + €)>. We also take/,, ¥, € C1[0, 1] such that
¥2(0) + ¥2(0) # 0 and define

dxl((rﬂﬂr)/a(s)ds/W’l(U‘|'| Yo(t) 7j (a+e+lr)/a(s)dsdt O<x<1
a(t) -
X) = 27
PP=1 (0 + a0 + Tv0) SO+ + V0O @7)
(0 +e)2+1 o
When 0< x < 1, we have
) = /X Y (t) o K@+a/as dscos(/ )
o a()
" Ya() g Keta/a® dsgin (/ dt
o a()
i /X 1//1('[) efjlx(aﬂ)/a(s) dsSI ( )
o a()
P10 - [ (o+e)/a(s) ds ( )
+1 —— g o cos 2.8
o a( (28)
Since
/X i g K ota/jasds o /X T ds) dt = _ote
o am ¢ a(s) (c+e2+r
and

/X L g K lota/ae dsgip (/X L ds) dt=——*
o a) ¢ as) (0 +eP+r

we easily see that the functigndefined by 2.7) is continuous ak = 0, ¢ € Y and

(o +e+it)l +H)p =.
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We also get

(o0 +€)?+ 12
[(c +e€)?+1]?

1/2

1/2
ww=( )(M©+ﬁ©).

So
lim_[¢(0)] = (¥7(0) +¥3(0) " # 0. (2.9)

If {T(t)}=0 can be extended to an analytic semigroup, there exists a co@stth
that for everyr > (o + ¢€)?, the following inequality is valid:

90 < lloll = C/z,

and lim,_, ., ¢(0) = 0. This contradicts4.9) and shows thatT (t)};-, cannot be
extended to an analytic semigroup. This completes the proof.

3. Existence

We should notice that the problerh.7) can be written as an abstract ODE in the
Banach spac¥:

du(t)/dt + Hu(t) = g(u(t)), t>0; (3.1)
u() = ¢,
whereu(t) = u(-, t), ¢ € Y, H is defined by %2.1)—(2.2) and
gu®)(x) = f(x, u(x,1)). (3.2)

In this section, we return to the consideration 8f1f with the aim of establishing
sufficient conditions for solutions to exist and remain in certain closed convex subsets
of Y. The first result establishes that mild solutions exist and are, in fact, classical
solutions.

More preciselyu : [0, 7) — Y is a mild solution of 8.1) if it is continuous and
satisfies the following equation @0, 7):

t
ut) =Tt)¢ +/ Tt —s)g(u(s))ds (3.3)
0

Let A be a nonempty closed convex subseR@ndY, be the subset of consisting
of functions which take all their values if:

Yi={peY X A, xel0,1]}. (3.4)
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Sufficient conditions fory, to be positively invariant with respect to the semiflow
generated byd.1) are given below. The first is the well-known condition:

Jinc1)+h*1dist(A, v+hf(x,v)) =0, forall (x,v) €[0,1] x A, (3.5)
or
hIirrg)+ inf h~tdist(Y,, ¢ +hg(@)) =0, forallg e Y,, (3.6)

where(g(¢))(x) = f(x, ¢(x)).
The second condition requires that g semigroup{T (t)};-o generated by-H
leavesyY, positively invariant:

T®Yy CYy t=0 (3.7)
The third condition requires smoothnessfof
f(x, v) andaf (x, v)/dv : [0, 1] x R — R are continuous (F)

Together these conditions imply the following existence of a solution3df) @nd
positive invariance.

THEOREM 3.1. Leta(x) satisfy conditiongi)—(iv) in Sectionl and f (x, v) satisfy
condition(F). Suppose tha3.5 and (3.7) hold. Then for eacly € Y,, (3.1) has a
unigue noncontinuable mild solutiant) = u(t, ¢) € Y, defined on0, o), where
o =o(¢) < oco. Furthermore, the flowing properties hold
(@ if o < oo, then|u(t)| — oo, ast — o;

(b) if ¢ € D(—H), thenu(t) is a classical solution of the initial value problem, that
is, u(t) is continuous o010, o) andu(t) is continuously differentiable o0, o) and
u(t) satisfieq3.1).

Before we prove the theorem, we need the following fact.
PrOPOSITIONS.1. If (3.5 holds, so doeg3.6).
ProoF. If (3.5 holds, we will show that

hlirrg+ h™tdist(Y,, ¢ + hg(®)) =0 forallg € Y,, (3.8)

where(g(¢))(x) = f(x, ¢(x)).
If (3.8 doesn't hold, then there existg € Y4, 0 > Oandh, >0k =1,2,...),
such that O< hy < hyy4, lim_. . h, =0, and

hlzl diSt(YA, ¢)O + hk g(¢0)) > €, k = 1, 2, e
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Therefore, there exigh € Y, andx, € [0, 1] fork =1, 2, ..., such that

hi k() — [Po(X) + hic f (X, o)1 = €/2, k=1,2,.... (3.9)
Define
h=tdist(A, v + hf(x, v)),
F(h, x,v) = forh >0, (x,v) € [0, 1] x (A N [=llgoll, llgoll]),
0, forh=0.

Since 3.9 holds, F(h, x, v) is a continuous function irth, X, v) and there exists
0 < 8§ < 1/2 such that

F(h,x,v) <¢€/3, forO<h < §and(x,v) € [0,1] x (A N[—]oll, lIgollD).
For sufficiently large, there are
h () — [Po(X) + i F (X, po(X ]| < €/2.

This contradicts{.9) and shows that3(8) holds and the proof of the proposition is
completed.

PrROOF OFTHEOREM 3.1 The existence of a unique local mild solution &%)
and the fact that the solution can be continued to a maximal interval of existence
[0, 7), such that (a) holds, are a consequencelbf Chapter 6, Theorem 1.4], since
the hypothesis (F) orf implies thatg : Y — Y is locally Lipschitz continuous.
Theorem 1.5, of the same reference, shows that the mild soluttog) of (3.1) with
¢ € D(—H) is a classical solution of the initial value proble® ) and thus (b)
holds. This result requires thgt: Y — Y is continuously differentiable, which can
be guaranteed by (F).

The fact that the mild solution belongs ¥q is a consequence o018, Chapter 8,
Theorem 2.1] and the proof of Theoreé is completed.

The nonnegative functions ohare justY, whereA = Rt andR" is the set of all
nonnegative real numbers.

THEOREM 3.2. Suppose thaa(x) satisfies conditiongi)—(iv) in Sectionl. Let
A = R" and suppose that : [0, 1] x R — RsatisfieqF), f (x,0) > Ofor x € [0, 1]
and

f(x,v) <k +kw, forv=>0, (3.10)

wherek; andk, are positive constants. Th€®.5) and(3.7) hold forY, = Y,, so that
the conclusion of Theore1 holds. Moreover, the maximum interval of existence of
the solution ig0, co); the mild solution¥,(¢) = u(t, ¢) is a semiflow orY,.
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ProOOF. Equation 8.7) follows by Theoren®.2. For(x, v) € [0, 1] x R*,
v+hf(x,v) >0,

for all smallh > 0. So distR", v + h f(x,v)) = 0 for all smallh > 0. This
obviously implies that .5 holds. It follows that the conclusion of Theoresnl
holds.

Moreover, the maximum interval of existence of the solutiofOsoo). If the
maximum interval of existence of the solution@ t] for some¢ € Y, and we have
0 <ty < oo, then lim_4, [lu(t, ¢)|| = co. On the other hand

t
uct, o)l < [l +/ (ki + kelu(s, @) ds, forO=<t <t
0

and it follows from Gronwall’'s inequality that lim,, [u(t, ¢)|| < co. This contra-
diction shows, = oc.
In order to prove tha¥, (¢) is a semiflow orY,, takegq, ¢ € Y, and fixty ande,.
From @.10 for a givens > 0, there existM > 0 such that ifj¢ — ¢ < &, then

lgtucs, o)l <M fors e [0, to+ 1.

Therefore

lim (u(t, ¢) — u(b, ¢))

$—¢o

t
= lim ([T(t) ~Tto)lp + / T(t —s)gWu(s, ¢>)ds) 0. (3.11)
$—¢o

to

Noting thatg : Y — Y is locally Lipschitz continuous, we see thatjif — ¢o|| < 8
and¢ € Y,, then

to
lu(to, @) — u(to, Po)ll = ll¢ — ¢oll +/ lgu(s, ¢)) — g(u(s, ¢)) | ds
0

<ll¢ —¢oll +1L /Oto lu(s, ¢) —u(s, ¢o) |l ds, (3.12)
wherelL is a constant related tg ands. This implies, by Gronwall’'s inequality, that
d!ig;o [u(to, ¢) — u(to, go)ll = 0. (3.13)
It follows from (3.11) and @.13 that
O:R"x Y, — Y, (3.14)

is a continuous mapping. Itis easy to show tegt= id and thatd, o &, = &, for
t, s > 0. This completes the proof of Theorehi.
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REMARK 3.1. It follows from TheorenB.2that the solutionu(t, X) = u(t, ¢)(x) is
nonnegative it (x) > 0.

LetC.[0,1]={p €Y | ¢(X) > 0, x € [0, 1]}. From Theorems 3.1 and 3.2, we
have the following result:

COROLLARY 3.1. Leta(x) and f (x, v) satisfy the assumptions of Theorgra For
each¢ € C,[0, 1], Problem(3.1) has a unique mild solution of®, co), u(t, ¢) > 0.
For each¢ € (C,[0,1] N D(—H)), the problem(3.1) has a unique nonnegative
classical solutioru(t, ¢) on [0, co).

4. Invariance
Define ¥ (¢) = u(t,¢) and we seel : [0,00) x C,[0,1] — C,[0,1]is a
semiflow onC, [0, 1] by TheorenB.1and Corollary3.1 Let

U, =1{¢p €C,[0,1] | ¢(0) > 0O} (4.1)
and
Uo = {¢ € C.[0,1] | (0) = O}. (4.2)

The following result shows that the semiflqW, };-o splits the phase spa€x [0, 1]
into two disjoint invariant setsl, andU,.

THEOREMA4.1. Suppose thaa(x) and f (X, v) satisfy the assumptions of Theo-
rem 3.2 and there exists, > 0 such thatf(0,v) > Ofor 0 < v < v,. Then the
setU, is positively invariant undefW,},-,. The same property exists for déf if
f(0,0) = 0.

ProOF. We first prove thatv U, c Uy fort > 0. Giveng, € Uy, for everye > 0,
there existsp, > 0 such that

llén — [¢o +h9(@o)]ll < he/2, h>0.

Notice that(¢o + h 9(¢))(0) = 0 sincef (0, 0) = 0. We can choose#, € Uy, such
that

[¢n — ¥nll < he/2.
Hence||yy — [¢o + h 9(¢o)]ll < he, h > 0. It follows that

hlin3+ h=tdist(Up, ¢ + hg(¢)) =0, for¢ e Uy. (4.3)



372 Xinzhi Liu, S. Sivaloganathan and Shenghai Zhang [14]
Next, we show that
TMtUgCc Uy fort > 0. (4.4)

Let ¢, € Uy be fixed. For every > 0, it is easy to show that there exists-15, > 0
and¢, € C,[0, 1] such that

0 < ¢ (X) — do(X) < ¢, forx € [0, 1],
@L(X) exists on0, .1, (4.5)
¢.(X) =0, on|[0,s.].

For 0< x < §,, we have

(I +aH) P )(X) — ¢ (X) = e“s/“a@ O o paseangy b (X)

o a
= ledS/aa<s> / T9 O — o) o [ ds/eas) gt
a)
G,J dS/dii(S)/ ¢/(9)(t X) *f ds/oa(s) 4t <0,
a)

thatis,((I + o H) ¢ )(X) < ¢.(x) for0 < x < 6..
It is well known thatT (t)¢ = lim,_ (I + (t/n)H) "¢, fort > 0. Also when
0 < x <4, we see thalT (t)¢.)(X) < ¢.(X),t > 0, in particular,

(T(MP)(O0) = ¢ (0) =€

by (4.5. It follows that(T (t)¢e)(0) < (T (t)¢.)(0) < ¢, fort > 0. There must be
(T(t)¢o)(0) =0 fort > 0, so ¢.4) holds.

Equations 4.3) and @.4) imply thatW,(Ug) C Ug by TheorenB.1

We will prove that

W(U,) C U, (4.6)

If ¢ € Y and¢(x) > 0forx € [0, 1], then there exists & t; such that (¢)(x) > 0
for all x € [0, 1]. Otherwise, there exist & t, andx, € [0, 1] such that, — O,
X, — %o and

V(@) (%) =0, n=12...,

thus it follows that¥y(¢) (X)) = ¢ (%) = 0. Itis a contradiction.
Pick ¢, € U,, then there existg € C,[0, 1] such thaty(0) = ¢,(0), ¥ (X) > 0
andy (X) > ¢, (x) for x € [0, 1], and by 2.6) and @.4) we have

(T (O0) = (TM®Y)O) >0, fort=0. (4.7)
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Letty = sugs | Y (¢,)(0) > 0, 0 <t < s}. Itisclearthaty > 0. Ifty < oo then

to
f (T(to — ) g(u(s)))(0)ds < 0
0

therefore there must k& such that O< s* < ty andg(u(s))(0) = f (0, u(s, 0)) < 0.
We see thati(s*, 0) > v. Sinceu(ty, 0) = ¥, (¢,)(0) = 0 and (0, v) > O for
0 < v < vy, there exist$* such that O< t* < t; and

g(u(s))(0) = (0, u(s, 0)) = 0.
We have

to t*
/ (Tt —s)g(u(s)))(0)ds Z/ (Tt — ) g(u(s)))(0) ds,
0 0
sincef(:*(T(to —8)g(u(s)))(0)ds > 0. We get

U(to, 0) = T(to)9, (0) + /Ot* (T(to — ) g(u(s))(0)ds
= (Tt — [V (@)D (0. (4.8)
It follows from u(ty, 0) = 0, (4.7) and @.8) that
[V (¢:4)1(0) = 0.

On the other hand¥;-(¢,)(0) > 0 sincet* < t,. This contradiction shows thad.©)
is correct and completes the proof of Theorérh
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