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Abstract

This paper considers a cell population model with a general maturation rate. This model
is described by a nonlinear PDE. We use the theory of operator semigroups to study the
problem under simple hypotheses on the growth function and the nonlinear term. By
showing that a related operator generates a strongly continuous semigroup, we prove the
existence of a classical solution of the nonlinear problem and its positivity. It is also proved
that under simple hypotheses, the problem generates a semiflow. The invariance of the
semiflow is studied as well.

1. Introduction

The study of cell population growth models has greatly contributed to the development
of mathematical biology. See Metz and Diekmann [14] and Webb [18] for excellent
accounts of this subject. Recently, a maturity structured model of a blood cell pro-
duction system has been studied by Rey and Mackey [16]. The governing equation
is 


@

@ t
u.x; t/ + @

@x
.x u.x; t//

= ¼u.Þx; t − −/.1 − u.Þx; t − −//; t > 0;

u.x; t/ = �.x; t/; −− ≤ t ≤ 0; x ∈ [0;1]:
(1.1)

Hereu.x; t/ is the population density of cells with respect to maturityx at time t
and¼;Þ; − are parameters satisfying¼ ≥ 0, 0< Þ < 1, − > 0. If we assume that
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the maturity transport term in the model is of the form.@=@x/[g.x/u.x; t/] under
the assumption that all cells have general maturation rateg.x/, this gives rise to the
following model:


@u.x; t/

@ t
+ g.x/

@u.x; t/

@x
= F.ut /;

u.x; t/ = �.x; t/; −− ≤ t ≤ 0; x ∈ [0;1];
(1.2)

whereut denotes the derivative ofu with respect tot , g.x/ is nonnegative and satisfies
g.0/ = 0 and

∫ 1

0 dx=g.x/ = ∞.
The maturity structured model of a cell population system given by


@u.x; t/

@ t
+ @.a.x/u.x; t//

@x
= þu.x; t/;

u.x;0/ =  .x/; 0 ≤ x ≤ 1;
(1.3)

whereþ > 1 is a constant, was studied by Webb [19] for the special casea.x/ = x.
For a general maturation velocitya.x/, system (1.3) may be rewritten as


@u.x; t/

@ t
+ a.x/

@u.x; t/

@x
= f .x;u.x; t//;

u.x;0/ =  .x/; 0 ≤ x ≤ 1;
(1.4)

wherea.x/ is nonnegative,a.0/ = 0 and
∫ 1

0 dx=a.x/ = ∞.
The model studied by Gyllenberg and Heijmans [9] is described by

@n.x; t/

@ t
+ @.g.x/n.x; t//

@x
= −¼.x/n.x; t/ − b.x/n.x; t/

+ 2p.y−1.x//b.y−1.x//

y′.y−1.x//n.t − −; y−1.x//
; (1.5)

wheren.x; t/ is the size distribution of cells in the first phase at timet and sizex.
The functionsg, ¼ andb are the rates at which cells of sizex grow, die and transit
to the second phase respectively. Here− > 0 is the constant duration of the second
phase,y.x/ is the size of a new born cell whose mother entered the second phase with
sizex, andp.x/ is the fraction of cells who survive the second phase given that they
entered it with sizex. Under an appropriate substitution (see [9] and [20]) (1.5) can
be transformed into

@u.x; t/

@ t
+ g.x/

@u.x; t/

@x
= F.ut /; (1.6)

whereg.x/ is nonnegative and the same as in (1.5) but should also satisfy
∫ 1

0
dx

g.x/ = ∞.
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The model studied by Greiner and Nagel [8], and Metz and Diekmann [14], is
described by



@u.x; t/

@ t
+ @g.x/u.x; t/

@x
=−¼.x/u.x; t/−b.x/u.x; t/+4b.2x/u.2x; t/;

u.Þ=2; t/ = 0; u.x;0/ = u0.x/:
(1.7)

The growth functiong.x/ was taken to be 0< ž ≤ g.x/ ≤ Ž for all x ≥ 0. It is more
realistic in this case thatg.x/ be taken to beg.x/ ≥ 0 for x ≥ 0.

From the aforegoing review, we see that it is of interest to study Problem (1.4) in
the case wheref : [0;1] × R 7→ R is continuous anda.x/ satisfies the following
conditions:

.i/ a ∈ C[0;1] anda.x/ ≥ 0 for 0 ≤ x ≤ 1;
.ii/ a.0/ = 0, measure{x | a.x/ = 0} = 0;
.iii /

∫ 1

x ds=a.s/ < ∞, if 0 < x ≤ 1;

.iv/
∫ 1

0 ds=a.s/ = ∞.

A similar problem was studied in [4, 5, 10, 11], under stronger conditions ona.x/ and
f .x; v/ (that is,a.x/ > 0 (x > 0), a and f are continuously differentiable), using the
classical method of characteristics.

It is well known that issues concerning the smoothness of various coefficients and
terms appearing in differential equations greatly affect the existence, uniqueness and
regularity of solutions and this is especially so in the theory of partial differential
equations (see [17]). We will use the theory of operator semigroups to study problem
(1.4) under simple hypotheses ona.x/ (conditions (i)–(iv)) andf .x;u/ given above.

The only assumption made about the nonlinear term is thatf .x; v/ and fv.x; v/
are continuous. In fact, whena and f are continuously differentiable anda.x/ > 0
for x > 0, as mentioned earlier, the existence of the problem can be studied by the
classical theory of characteristics (see [10]). In our case, however, the classical theory
of characteristics cannot be applied. Thus the approach taken in this paper is totally
different from that in [10] and we not only obtain strong results on the existence and
positivity of a classical solution, but also establish a basis for analysing time-delay
cell populations with general maturation velocity, such as models (1.2) and (1.6). In
this paper, we will show that the related operator generates a strongly continuous
semigroup. By studying the properties of the semigroup, we prove the existence of a
classical solution of the nonlinear problem and the positivity of the solution. It is also
proved that the problem generates a semiflow. We will prove that the phase space,
that is, all nonnegatively continuous functions on[0;1], of the semiflow splits into
two disjoint invariant sets.

The paper is organized as follows: in Section2, we prove that the operator
a.x/.d=dx/ generates a strongly continuous semigroup of operators onC[0;1] and
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show that the semigroup is positive and contractive. Although an analytic semigroup
has many nice properties, it will be shown that our semigroup cannot be extended
to being an analytic semigroup. Next, in Section3, we consider the existence of a
classical solution of problem (1.4) and the positivity of the solution. We will show
that the mild solution of the problem generates a semiflow. We finally present one of
the properties of the semiflow—invariance (Section4).

2. Related semigroup of operators

Let Y = C[0;1] be the Banach space with norm‖�‖ = max0≤x≤1 |�.x/| for
� ∈ Y. Let a.x/ be a given continuous function on[0;1]. Similar to [12], we define
an operatorH on Y. Define the domain ofH to be:

D.H / = {� ∈ Y | �′.x/ exists and is continuous atx whena.x/ 6= 0;
limx→x0 a.x/�′.x/ exists whena.x0/ = 0 andx0 6= 0;
limx→0 �̃.x/ exists}

(2.1)

and for� ∈ D.H /

.H�/.x/ =




a.x/
d�.x/

dx
; if a.x/ 6= 0;

lim
x→x0

a.x/
d�.x/

dx
; if a.x0/ = 0 andx0 6= 0;

lim
x→0

�̃.x/; if x = 0;

(2.2)

where

�̃.x/ =




a.x/
d�.x/

dx
; if a.x/ 6= 0;

lim
y→x

a.y/
d�.y/

dy
; if a.x/ = 0 andx 6= 0:

REMARK 2.1. The operatorH has also been studied in many other places (see
[21, 6, 2, 1]). It is also related to the problem of characterizing all flows on[0;1] (see,
for example, [1]).

Using an idea developed in [12] and [21], we can prove the following theorem.

THEOREM 2.1. If a.x/ satisfies conditions(i)–(iii) in Section1, then the operator
−H defined by(2.1) and(2.2) generates a strongly continuous contraction semigroup
if and only if

∫ 1

0 dx=a.x/ = ∞.

PROOF. Let a.x/ satisfy conditions (i)–(iv) in Section1. We will show that−H
is an infinitesimal generator of a strongly continuous contraction semigroup. First,
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we note thatD.−H / is a dense subset ofY sinceC1[0;1] ⊂ D.−H /. We note also
that−H is a closed operator. In fact, if�n → � and−H�n →  in Y asn → ∞,
then limn→∞ �′

n.x/ = − .x/=a.x/ a.e. on[0;1] and |�′
n.x/| ≤ .| .x/| + 1/=a.x/

a.e. on[0;1] for sufficiently largen. Therefore�.x/ = �.1/ − ∫ 1

x  .s/=a.s/ ds for
0< x ≤ 1, and we see that� ∈ D.−H / and−H� =  .

We need to show that the imageR.½I + H / of operator½I + H is dense inY for
½ > 0. For a given ∈ Y, let∫ x

0

 .t/

a.t/
e− ∫ 1

t ½=a.s/ dsdt = lim
ž→0+

∫ x

ž

 .t/

a.t/
e− ∫ 1

t ½=a.s/ dsdt

for 0< x ≤ 1. It is clear that the limit exists. Define
�.x/ = e

∫ 1
x ½=a.s/ ds

∫ x

0

 .t/

a.t/
e− ∫ 1

t ½=a.s/ dsdt; 0< x ≤ 1;

�.0/ =  .0/=½; x = 0:
(2.3)

Since there exist¾1; ¾2 ∈ [0; x] such that

 .¾1/=½ ≤ �.t/ ≤  .¾2/=½; for t ∈ [0; x];
we see that limx→0+ �.x/ =  .0/=½. Therefore� ∈ Y and .½I + H /� =  . It
follows thatR.½I + H / = Y for ½ > 0. From (2.3) we also have

‖�‖ ≤ ‖ ‖=½; for ½ > 0: (2.4)

For a given½ > 0 if .½I + H /� = 0 then.e½
∫ x

1 ds=a.s/�.x//′ = 0 a.e. on[0;1].
In fact, according to condition (iv), there is an at most countable subset0 of [0;1]
such that.e½

∫ x
1 ds=a.s/�.x//′ = 0 for all x ∈ [0;1] − 0 (see [6]) and 0∈ 0 is the only

accumulation point of0.
We must have� ≡ 0, since limx→0+ e½

∫ x
1 ds=a.s/ = 0 and� is a continuous function.

So, .½I + H / is injective for½ > 0 and we have that.½I + H /−1 ∈ L.Y;Y/ with
‖.½I + H /−1‖ ≤ 1=½ for ½ > 0.

By the Hille-Yosida theorem (see [15, 7]), −H generates a strongly continuous
contraction semigroup onY. Conversely if−H generates aC0 contraction semigroup
onY, then there is a½ > 0 with ½ ∈ ².−H / such that for ≡ 1, there exists a unique
� ∈ D.−H / satisfying

.½I + H /� =  ≡ 1: (2.5)

If
∫ 1

0 dx=a.x/ < ∞, there are two different functions�1 and�2 that satisfy (2.5) and
are defined as follows:

�1.x/ = 1

½

(
1 − e− ∫ x

0 ½=a.s/ ds
)
; 0 ≤ x ≤ 1;
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and

�2.x/ = e
∫ 1

x ½=a.s/ ds

∫ x

0

1

a.t/
e− ∫ 1

t ½=a.s/ dsdt; 0 ≤ x ≤ 1:

This contradiction shows that we must have
∫ 1

0 dx=a.x/ = ∞ and the theorem is
proved.

We will show that the strongly continuous contraction semigroup{T.t/}t≥0 gener-
ated by−H is positive. In fact, the positivity of the resolvent operator of−H implies
the positivity of the semigroup. In order to explore further properties of the operator
−H , we give the following proof of positivity.

Let Y+ = {� ∈ Y | �.x/ ≥ 0 for x ∈ [0;1]} be a positive cone.Y can be ordered
by setting f ≥ g whenever the funtionf − g ∈ Y+. In such a setting, we see that
.Y;Y+; ‖ · ‖/ is a Banach lattice. Recall that{T.t/}t≥0 is positive ifT.t/Y+ ⊂ Y+ for
t > 0. For the reader’s convenience, we cite the following result.

LEMMA 2.1 (see [3]). Let .Y;Y+; ‖ · ‖/ be an ordered Banach space for which the
norm is monotone and the operator norm onL.Y;Y/ is positively attained. If−H
is a closed densely defined,N-dissipative operator, andR.I + ÞH / = Y for some
Þ > 0, then−H generates a positiveC0 semigroup of contraction.

We now prove the following result.

THEOREM 2.2. Leta.x/ satisfy(i)–(iv) in Section1, then the operator−H defined
by (2.1) and (2.2) generates a positiveC0 contraction semigroup.

PROOF. It follows from Theorem2.1that−H generatesaC0 contraction semigroup
andR.I + ÞH / = Y for Þ > 0.

It is easy to see thatY+ is generating, that is,Y = Y+ − Y+ and the norm is
monotone, that is,‖�‖ ≤ ‖ ‖ if 0 ≤ � ≤  .

We will show thatL.Y;Y/ is positively attained. The norm onY is a Riesz norm. In
fact, the‖·‖Y is absolutely monotone (− ≤ � ≤  always implies‖�‖ ≤ ‖ ‖) and
Y+ is approximately absolutely dominating (for each� ∈ Y there is a ≥ 0 such that
− ≤ � ≤  and‖ ‖ ≤ Þ‖�‖ for all Þ > 1). According to [3, Corollary 1.7.5], the
operator norm onL.Y;Y/ is absolutely monotone. Since intY+ 6= ∅ (int Y+ denotes
the set of interior points ofY+), we see that the operator norm is positively attained
(by [3, Theorem 1.7.9]).

It now follows from the arguments above and Lemma2.1 that −H generates a
positive semigroup if we can show thatH is N-dissipative, that is,

N..I + ÞH /�/ ≥ H .�/;
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for all (small)Þ > 0, and� ∈ D.H / (see [3, Theorem 2.1.1]), whereN. / = ‖ +‖
for  ∈ Y,  + = .| | +  /=2. From the proof of Theorem2.1, if .I + ÞH /� =  ,
then

�.x/ = 1

Þ
e

∫ 1
x ds=Þa.s/

∫ x

0

 .t/

a.t/
e− ∫ 1

t ds=Þa.s/ dt;

therefore

�+ ≤ .I + ÞH /−1 + and N.�/ = ‖�+‖ ≤ ‖ +‖ = N. /:

So, H is N-dissipative and we conclude the proof of the theorem.

It is interesting to note that positiveC0-semigroups automatically satisfy a stronger
positivity condition.

COROLLARY 2.1. Supposea.x/ satisfies conditions(i)–(iv) in Section1, then the
positiveC0 semigroup{T.t/}t≥0 generated by the operator−H satisfies

T.t/.int Y+/ ⊂ int Y+ (2.6)

for all t ≥ 0.

PROOF. This is an immediate consequence of [3, Proposition 2.2.9].

The following result is obvious.

COROLLARY 2.2. If a ≤ 0 ≤ b and

0 = {� ∈ Y | a ≤ �.x/ ≤ b; for all x ∈ [0;1]};

thenT.t/0 ⊂ 0, for t ≥ 0.

We are interested in the possibility of extending theC0 semigroup{T.t/}t≥0 to an
analytic semigroup. We first recall the following result.

LEMMA 2.2 (see [15]). Let {S.t/}t≥0 be a uniformly boundedC0 semigroup. Let
A be the infinitesimal generator of{S.t/}t≥0 and assume0 ∈ ².A/. The following
statements are equivalent:
.a/ {S.t/}t≥0 can be extended to an analytic semigroup in a sector1Ž={z | | argz|<Ž}

and‖S.z/‖ is uniformly bounded in every closed subsector1̄Ž′ , Ž′ < Ž, of1Ž .
.b/ There exists a constantC such that for every¦ > 0 and− 6= 0

‖R...¦ + i −/I − A/−1/‖ ≤ C=|− |:



366 Xinzhi Liu, S. Sivaloganathan and Shenghai Zhang [8]

It is well known that a semigroup which can be extended to an analytic semigroup
has many nice properties, but we have the following result for the semigroup{T.t/}t≥0.

THEOREM 2.3. Supposea.x/ satisfies(i)–(iv) in Section1. Let{T.t/}t≥0 be theC0

semigroup generated by the operator−H , then{T.t/}t≥0 cannot be extended to an
analytic semigroup.

PROOF. Since multiplication of aC0 semigroup byewt does not affect the pos-
sibility or impossibility of extending it to an analytic semigroup, we will consider
the uniformly bounded semigroupT.t/e−žt for somež > 0. Then−H − ž I is the
infinitesimal generator ofT.t/e−žt . According to the proof of Theorem2.1 we see
0 ∈ ².−H − ž I /.

Take¦ > 0, − 6= 0 and− 6= .¦ + ž/2. We also take 1;  2 ∈ C1[0;1] such that
 2

1.0/ +  2
2.0/ 6= 0 and define

�.x/=




e
∫ 1

x .¦+ž+i −/=a.s/ ds

∫ x

0

 1.t/+ i 2.t/

a.t/
e− ∫ 1

t .¦+ž+i −/=a.s/ dsdt; 0< x ≤1;

.¦ + ž/ 1.0/ + − 2.0/ − i − 1.0/ + i .¦ + ž/ 2.0/

.¦ + ž/2 + −
; x = 0:

(2.7)

When 0< x ≤ 1, we have

�.x/ =
∫ x

0

 1.t/

a.t/
e− ∫ x

t .¦+ž/=a.s/ ds cos
(∫ x

t

−

a.s/
ds

)
dt

+
∫ x

0

 2.t/

a.t/
e− ∫ x

t .¦+ž/=a.s/ ds sin

(∫ x

t

−

a.s/
ds

)
dt

− i
∫ x

0

 1.t/

a.t/
e− ∫ x

t .¦+ž/=a.s/ ds sin

(∫ x

t

−

a.s/
ds

)
dt

+ i
∫ x

0

 2.t/

a.t/
e− ∫ x

t .¦+ž/=a.s/ ds cos

(∫ x

t

−

a.s/
ds

)
dt: (2.8)

Since ∫ x

0

1

a.t/
e− ∫ x

t .¦+ž/=a.s/ ds cos

(∫ x

t

−

a.s/
ds

)
dt = ¦ + ž

.¦ + ž/2 + −

and ∫ x

0

1

a.t/
e− ∫ x

t .¦+ž/=a.s/ ds sin

(∫ x

t

−

a.s/
ds

)
dt = −

.¦ + ž/2 + −
;

we easily see that the function� defined by (2.7) is continuous atx = 0,� ∈ Y and

..¦ + ž + i −/I + H /� =  :
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We also get

|�.0/| =
(
.¦ + ž/2 + − 2

[.¦ + ž/2 + − ]2

)1=2 (
 2

1.0/ +  2
2.0/

)1=2
:

So

lim
−→+∞

|�.0/| = (
 2

1.0/ +  2
2.0/

)1=2 6= 0: (2.9)

If {T.t/}t≥0 can be extended to an analytic semigroup, there exists a constantC such
that for every− > .¦ + ž/2, the following inequality is valid:

|�.0/| ≤ ‖�‖ ≤ C=−;

and lim−→+∞ �.0/ = 0. This contradicts (2.9) and shows that{T.t/}t≥0 cannot be
extended to an analytic semigroup. This completes the proof.

3. Existence

We should notice that the problem (1.7) can be written as an abstract ODE in the
Banach spaceY: {

du.t/=dt + Hu.t/ = g.u.t//; t ≥ 0;

u.0/ = �;
(3.1)

whereu.t/ = u.·; t/, � ∈ Y, H is defined by (2.1)–(2.2) and

g.u.t//.x/ = f .x;u.x; t//: (3.2)

In this section, we return to the consideration of (3.1) with the aim of establishing
sufficient conditions for solutions to exist and remain in certain closed convex subsets
of Y. The first result establishes that mild solutions exist and are, in fact, classical
solutions.

More precisely,u : [0; − / → Y is a mild solution of (3.1) if it is continuous and
satisfies the following equation on[0; − /:

u.t/ = T.t/� +
∫ t

0

T.t − s/ g.u.s//ds: (3.3)

Let3 be a nonempty closed convex subset ofRandY3 be the subset ofY consisting
of functions which take all their values in3:

Y3 = {� ∈ Y | �.x/ ∈ 3; x ∈ [0;1]}: (3.4)
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Sufficient conditions forY3 to be positively invariant with respect to the semiflow
generated by (3.1) are given below. The first is the well-known condition:

lim
h→0+

h−1 dist.3; v + h f .x; v// = 0; for all .x; v/ ∈ [0;1] ×3; (3.5)

or

lim
h→0+

inf h−1 dist.Y3; � + h g.�// = 0; for all � ∈ Y3; (3.6)

where.g.�//.x/ = f .x; �.x//.
The second condition requires that theC0 semigroup{T.t/}t≥0 generated by−H

leavesY3 positively invariant:

T.t/Y3 ⊂ Y3; t ≥ 0: (3.7)

The third condition requires smoothness off :

f .x; v/ and@ f .x; v/=@v : [0;1] × R → R are continuous: (F)

Together these conditions imply the following existence of a solution of (3.1) and
positive invariance.

THEOREM 3.1. Let a.x/ satisfy conditions(i)–(iv) in Section1 and f .x; v/ satisfy
condition(F). Suppose that(3.5) and (3.7) hold. Then for each� ∈ Y3, (3.1) has a
unique noncontinuable mild solutionu.t/ = u.t; �/ ∈ Y3 defined on[0; ¦ /, where
¦ = ¦.�/ ≤ ∞. Furthermore, the flowing properties hold:

.a/ if ¦ < ∞, then‖u.t/‖ → ∞, ast → ¦ ;

.b/ if � ∈ D.−H /, thenu.t/ is a classical solution of the initial value problem, that
is, u.t/ is continuous on[0; ¦ / andu.t/ is continuously differentiable on.0; ¦ / and
u.t/ satisfies(3.1).

Before we prove the theorem, we need the following fact.

PROPOSITION3.1. If (3.5) holds, so does(3.6).

PROOF. If (3.5) holds, we will show that

lim
h→0+

h−1 dist.Y3; � + h g.�// = 0 for all � ∈ Y3; (3.8)

where.g.�//.x/ = f .x; �.x//.
If (3.8) doesn’t hold, then there exists�0 ∈ Y3, ž0 > 0 andhk > 0 (k = 1;2; : : : ),

such that 0< hk < hk+1, limk→∞ hk = 0, and

h−1
k dist.Y3; �0 + hk g.�0// ≥ ž0; k = 1;2; : : : :
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Therefore, there exist�k ∈ Y3 andxk ∈ [0;1] for k = 1;2; : : : , such that

h−1
k |�k.xk/− [�0.xk/ + hk f .xk; �0.xk//]| ≥ ž=2; k = 1;2; : : : : (3.9)

Define

F.h; x; v/ =




h−1 dist.3; v + h f .x; v//;

for h > 0; .x; v/ ∈ [0;1] × .3 ∩ [−‖�0‖; ‖�0‖]/;
0; for h = 0:

Since (3.5) holds, F.h; x; v/ is a continuous function in.h; x; v/ and there exists
0< Ž < 1=2 such that

F.h; x; v/ < ž=3; for 0 ≤ h < Ž and.x; v/ ∈ [0;1] × .3 ∩ [−‖�0‖; ‖�0‖]/:
For sufficiently largek, there are

h−1
k |�k.xk/− [�0.xk/+ hk f .xk; �0.xk//]| < ž=2:

This contradicts (3.9) and shows that (3.8) holds and the proof of the proposition is
completed.

PROOF OFTHEOREM 3.1. The existence of a unique local mild solution of (3.1)
and the fact that the solution can be continued to a maximal interval of existence
[0; − /, such that (a) holds, are a consequence of [15, Chapter 6, Theorem 1.4], since
the hypothesis (F) onf implies thatg : Y → Y is locally Lipschitz continuous.
Theorem 1.5, of the same reference, shows that the mild solutionu.t; �/ of (3.1) with
� ∈ D.−H / is a classical solution of the initial value problem (3.1) and thus (b)
holds. This result requires thatg : Y → Y is continuously differentiable, which can
be guaranteed by (F).

The fact that the mild solution belongs toY3 is a consequence of [13, Chapter 8,
Theorem 2.1] and the proof of Theorem3.1 is completed.

The nonnegative functions onY are justY3 where3 = R+ andR+ is the set of all
nonnegative real numbers.

THEOREM 3.2. Suppose thata.x/ satisfies conditions(i)–(iv) in Section1. Let
3 = R+ and suppose thatf : [0;1]× R → Rsatisfies(F), f .x;0/ ≥ 0 for x ∈ [0;1]
and

f .x; v/ ≤ k1 + k2v; for v ≥ 0; (3.10)

wherek1 andk2 are positive constants. Then(3.5) and(3.7) hold forY3 = Y+, so that
the conclusion of Theorem3.1holds. Moreover, the maximum interval of existence of
the solution is[0;∞/; the mild solution9t.�/ = u.t; �/ is a semiflow onY+.
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PROOF. Equation (3.7) follows by Theorem2.2. For .x; v/ ∈ [0;1] × R+,

v + h f .x; v/ ≥ 0;

for all small h > 0. So dist.R+; v + h f .x; v// = 0 for all small h > 0. This
obviously implies that (3.5) holds. It follows that the conclusion of Theorem3.1
holds.

Moreover, the maximum interval of existence of the solution is[0;∞/. If the
maximum interval of existence of the solution is[0; t0] for some� ∈ Y+ and we have
0< t0 < ∞, then limt→t0 ‖u.t; �/‖ = ∞. On the other hand

‖u.t; �/‖ ≤ ‖�‖ +
∫ t

0

.k1 + k2‖u.s; �/‖/ds; for 0 ≤ t < t0;

and it follows from Gronwall’s inequality that limt→t0 ‖u.t; �/‖ < ∞. This contra-
diction showst0 = ∞.

In order to prove that9t.�/ is a semiflow onY3, take�0; � ∈ Y3 and fixt0 and�0.
From (3.10) for a givenŽ > 0, there existsM > 0 such that if‖� − �0‖ < Ž, then

‖g.u.s; �//‖ ≤ M for s ∈ [0; t0 + 1]:
Therefore

lim
t→t0
�→�0

.u.t; �/ − u.t0; �//

= lim
t→t0
�→�0

(
[T.t/ − T.t0/]� +

∫ t

t0

T.t − s/g.u.s; �//ds

)
= 0: (3.11)

Noting thatg : Y → Y is locally Lipschitz continuous, we see that if‖�−�0‖ < Ž

and� ∈ Y3, then

‖u.t0; �/ − u.t0; �0/‖ = ‖� − �0‖ +
∫ t0

0

‖g.u.s; �// − g.u.s; �0//‖ ds

≤ ‖� − �0‖ + L
∫ t0

0

‖u.s; �/ − u.s; �0/‖ ds; (3.12)

whereL is a constant related tot0 andŽ. This implies, by Gronwall’s inequality, that

lim
�→�0

‖u.t0; �/ − u.t0; �0/‖ = 0: (3.13)

It follows from (3.11) and (3.13) that

8 : R+ × Y3 → Y3 (3.14)

is a continuous mapping. It is easy to show that80 = id and that8t ◦8s = 8t+s for
t; s ≥ 0. This completes the proof of Theorem3.1.
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REMARK 3.1. It follows from Theorem3.2that the solutionu.t; x/ = u.t; �/.x/ is
nonnegative if�.x/ ≥ 0.

Let C+[0;1] = {� ∈ Y | �.x/ ≥ 0; x ∈ [0;1]}. From Theorems 3.1 and 3.2, we
have the following result:

COROLLARY 3.1. Leta.x/ and f .x; v/ satisfy the assumptions of Theorem3.2. For
each� ∈ C+[0;1], Problem(3.1) has a unique mild solution on[0;∞/, u.t; �/ ≥ 0.
For each� ∈ .C+[0;1] ∩ D.−H //, the problem(3.1) has a unique nonnegative
classical solutionu.t; �/ on [0;∞/.

4. Invariance

Define9t.�/ = u.t; �/ and we see9 : [0;∞/ × C+[0;1] → C+[0;1] is a
semiflow onC+[0;1] by Theorem3.1and Corollary3.1. Let

U+ = {� ∈ C+[0;1] | �.0/ > 0} (4.1)

and

U0 = {� ∈ C+[0;1] | �.0/ = 0}: (4.2)

The following result shows that the semiflow{9t }t≥0 splits the phase spaceC+[0;1]
into two disjoint invariant setsU+ andU0.

THEOREM 4.1. Suppose thata.x/ and f .x; v/ satisfy the assumptions of Theo-
rem 3.2 and there existsv0 > 0 such that f .0; v/ ≥ 0 for 0 ≤ v ≤ v0. Then the
setU+ is positively invariant under{9t}t≥0. The same property exists for setU0 if
f .0;0/ = 0.

PROOF. We first prove that9tU0 ⊂ U0 for t ≥ 0. Given�0 ∈ U0, for everyž > 0,
there exists�h ≥ 0 such that

‖�h − [�0 + hg.�0/]‖ ≤ hž=2; h > 0:

Notice that.�0 + h g.�0//.0/ = 0 since f .0;0/ = 0. We can choose a h ∈ U0, such
that

‖�h −  h‖ < hž=2:

Hence‖ h − [�0 + h g.�0/]‖ < hž, h > 0. It follows that

lim
h→0+

h−1 dist.U0; � + h g.�// = 0; for � ∈ U0: (4.3)
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Next, we show that

T.t/U0 ⊂ U0 for t ≥ 0: (4.4)

Let �0 ∈ U0 be fixed. For everyž > 0, it is easy to show that there exists 1> Žž > 0
and�ž ∈ C+[0;1] such that


0 ≤ �ž.x/− �0.x/ ≤ ž; for x ∈ [0;1];
�′
ž.x/ exists on[0; Žž];
�′
ž.x/ ≥ 0; on [0; Žž]:

(4.5)

For 0≤ x ≤ Žž, we have

..I + ÞH /−1�ž/.x/ − �ž.x/ = 1

Þ
e

∫ 1
x ds=Þa.s/

∫ x

0

�ž.t/

a.t/
e− ∫ 1

t ds=Þa.s/dt − �ž.x/

≤ 1

Þ
e

∫ 1
x ds=Þa.s/

∫ x

0

�ž.t/ − �ž.x/

a.t/
e− ∫ 1

t ds=Þa.s/dt

= 1

Þ
e

∫ 1
x ds=Þa.s/

∫ x

0

�′
ž.�/.t − x/

a.t/
e− ∫ 1

t ds=Þa.s/dt ≤ 0;

that is,..I + Þ H /−1�ž/.x/ ≤ �ž.x/ for 0 ≤ x ≤ Žž.
It is well known thatT.t/� = limn→∞.I + .t=n/H /−n�, for t ≥ 0. Also when

0 ≤ x ≤ Žž , we see that.T.t/�ž/.x/ ≤ �ž.x/, t ≥ 0, in particular,

.T.t/�ž/.0/ ≤ �ž.0/ ≤ ž

by (4.5). It follows that.T.t/�0/.0/ ≤ .T.t/�ž/.0/ ≤ ž, for t ≥ 0. There must be
.T.t/�0/.0/ = 0 for t ≥ 0, so (4.4) holds.

Equations (4.3) and (4.4) imply that9t.U0/ ⊂ U0 by Theorem3.1.
We will prove that

9t .U+/ ⊂ U+: (4.6)

If � ∈ Y and�.x/ > 0 for x ∈ [0;1], then there exists 0< t0 such that9t0.�/.x/ > 0
for all x ∈ [0;1]. Otherwise, there exist 0< tn andxn ∈ [0;1] such thattn → 0,
xn → x0 and

9tn
.�/.xn/ = 0; n = 1;2; : : : ;

thus it follows that90.�/.x0/ = �.x0/ = 0. It is a contradiction.
Pick�+ ∈ U+, then there exists ∈ C+[0;1] such that .0/ = �+.0/,  .x/ > 0

and .x/ ≥ �+.x/ for x ∈ [0;1], and by (2.6) and (4.4) we have

.T.t/�+/.0/ = .T.t/ /.0/ > 0; for t ≥ 0: (4.7)
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Let t0 = sup{s | 9t.�+/.0/ > 0; 0 ≤ t ≤ s}. It is clear thatt0 > 0. If t0 < ∞ then∫ t0

0

.T.t0 − s/ g.u.s///.0/ ds < 0

therefore there must bes∗ such that 0< s∗ < t0 andg.u.s//.0/ = f .0;u.s;0// < 0.
We see thatu.s∗;0/ > v0. Sinceu.t0;0/ ≡ 9t0.�+/.0/ = 0 and f .0; v/ ≥ 0 for
0 ≤ v ≤ v0, there existst∗ such that 0< t∗ < t0 and

g.u.s//.0/ = f .0;u.s;0// ≥ 0:

We have ∫ t0

0

.T.t0 − s/ g.u.s///.0/ ds ≥
∫ t ∗

0

.T.t0 − s/ g.u.s///.0/ds;

since
∫ t ∗

0 .T.t0 − s/ g.u.s///.0/ ds ≥ 0. We get

u.t0;0/ ≥ T.t0/�+.0/+
∫ t ∗

0

.T.t0 − s/ g.u.s///.0/ds

= .T.t0 − t∗/[9t ∗.�/]/.0/: (4.8)

It follows from u.t0;0/ = 0, (4.7) and (4.8) that

[9t ∗.�+/].0/ = 0:

On the other hand,9t ∗.�+/.0/ > 0 sincet∗ < t0. This contradiction shows that (4.6)
is correct and completes the proof of Theorem4.1.
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