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Abstract

In this article, we use the method of Foias and Temam to show that the strong solutions of
the time-dependent magnetohydrodynamics equations in a periodic domain are analytic in
time with values in a Gevrey class of functions. As immediate corollaries we find that the
solutions are analytic ifl"-norms and that the solutions become smooth immediately after
the initial time.

1. Introduction

The non-dimensional form of the magnetohydrodynamics (MHD) equations is

2 V)U— —Au+ SV Ez)—SB V)B = f (1.1)
atu+(u~ )u—Re u-+ (2 (B-V)B = f, .
0 1
aB +Uu-V)B—-(B-V)u+ E curl(curl B) = 0, (1.2)

divu =divB =0, (1.3)

whereu = (uy(X, t), Ux(X, t), us(x, t)) is the velocity of the particle of fluid which is
at pointx attimet, B = (By(X, t), Bx(Xx, t), Bs(x, t)) is the magnetic field at point
attimet, f = f(x,t) is avolume density forcdy, is the Reynolds numbeR,, is the
magnetic Reynolds number agd= M?/(R.R,), whereM is the Hartan number.

These equations are important in the physics of plasma. The existence of weak
and strong solutions and some regularities have been established by Sermange ar
Temam B.

In this paper, we will consider the Gevrey class regularity of MHD equations in
a periodic domain irRN with N = 2 or 3 following the method used by Foias and
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Temam [l]. In that paper Foias and Temam showed that the strong solutions of the
Navier-Stokes equations in a periodic domain are analytic in time with the values in
a Gevrey class of functions. We will prove a similar result for the MHD equations
using a similar method.

The organization of this paper is as follows. In Sectihrwe introduce some
function spaces. In Secti@we introduce known results about existence, uniqueness
and regularity. In Sectiod, we prove the main theorem, namely we establish Gevrey
class regularity and derive some related regularity properties.

2. Function spaces

We supplement the systemi.()—(1.3) with the following initial and boundary
conditions:

u(x, 0) = ug(x), B(x, 0) = By(x), (2.1)
uix +Le,t) =ux,t), B(x + Le,t) = B(x, 1), (2.2)

forall x € RN andt > 0, whereL is the period ande }., is an orthonormal basis of
the space. Butwe will regaildto be 2r for notational simplicity. When the dimension
of the space ifN = 2, we classically define the operators augk du,/dx; — Uy /3%,
for every vector functioru = (u;, U,) andcurlg = (3¢ /3%, —d¢/dx,) for every
scalar functionp. We recall the two-dimensional formula

curlcurlu = grad divu — Au, (2.3)
which corresponds to the three-dimensional formula
curlcurlu = grad divu — Au. (2.4)

The two-dimensional MHD equations are.1)—(1.3) with the termcurl(curl B) re-
placing cur{curl B). Thus if divu = 0, then curlcurl = —Au.

LetT > 0 and letX be a Banach space. We shall consid&¢, T; X), 1<p=<oo,
which is the space of functions frof, T] into X, which areLP for the Lebesgue
measurelt. This is a Banach space for the norm

T 1/p
(/ lu)|% dt) forl<p<oo, esssugu(t)|x forp=oo.
0 0<t<T

We denote byL2(2) the space ofRN-valued functions on2 which are square
integrable for the Lebesgue measdre= dx, - - - dxy. This is a Hilbert space for the
scalar product

(U, v) =/ u(x) - v(x) dx.
2
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Using Fourier series expressions we can identfg2) with the space of functions
u satisfying

u= Y ume™, ujt)ec u;=a fortef0T] (2.5)

jezN
Form e N, we also introduce
H™(2) = {uel*2) ‘ @M Y 11Uy f? < 00, Ug =0
jezN
andH ™(2), the dual space dfi™(£2). Also

V={ueH(2)|j -u =0forallj ez},
H={ueH%2)|j -u =0foralljez"}

andV' is the dual space of . We equipV with the scalar product
ZN u v 3

= _— = 2 N1il2u -V

((u’ U)) =1 (an’ an> jEZN( n) |J| UJ vJ

which is a scalar product oA (2).
We also introduce the spac€sandH:

V={uB)|uBeV}, H={u,B)|u BeH]}
We equipH with the scalar products
(®,¥) = (u,v) +(B,C) forall &= (u,B), ¥=(w,C)ecH
providing a norm orH, |®| = {(®, ®)}¥2. We also equipy with the scalar products
(P, ¥)) = ((u,v)) + ((B,C))

providing a norm orv, ||®| = {((®, ®))}Y2.
We define an operatey € £ (V, V') to be such that

(u,v) = ((u,v)) forall u,veV.
We also considet/ as an unbounded operator bnwhose domain is

() ={ueV,dueH}=H2NV.
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Since we consider divergence-free functions on a periodic domais,actually—A.
And since« is a nonnegative symmetric functional, we can defiffeand the domain
of &/* is the set of functions such that

@M Y i1y = o ul® < oo. (2.6)

jezN

For ¢ > O given, we consider also the Gevrey clagg "), that is, the set of
functionsu satisfying

@M Y el = 1" uf? < oo (2.7)

jezN

with inner product

v, =oN Y ey - o,

jezN

with norm|ul, = {(2m)" Y, ;v €11y |2}1/2. And for 7 («/Y2e"*), we equip the
inner product

(U v), = @0 Y |j1Pe ;- 5

jezN
with the normjjufl, = {(22)" 3=, n |] |262”“|uj|2}1/2.

LEMMA 2.1. Supposgu|? = (2m)" 3~ ,x €|uj|? < oo for somer > 0. Then
ues™.

PrROOF. Since(27|j|)*/k! < e*lilforall j € ZN andk € N,

N 12k 2 2
@MY 1P u;? = ulf < o
jezN

Thusu € (N,-, H*. By Sobolev imbedding, we gete 4.
We define now a trilinear form oh!(2) x W*(2) x L(2) by setting

N
b(u, v, w) = U Djv;w; dx (whereD; = 9/3%;),
P 177

ij=1

whenever the integrals make sense. We know the trilinear fisncontinuous on
(H1(£2))3 [4]. Thus we can define a continuous bilinear operagdromV x V into
V' with (Z(u, v), w) = b(u, v, w).
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3. Known results
Let T > O be given and let us assume that, u, B) is a smooth solution of

(1.)—(2.2. Multiplying (1.1) by a test functionv € V and integrating ovei?, we
obtain

1
%(u, v) + E((u, v)) + b(u, u,v) — SK(B, B, v) = (f, v). (3.2)
We also multiply (.2) by a test functiorC € V and integrate ovef, then
1
%(B, C)+§((B,C))+b(u, B,C) — b(B,u,C) = 0. (3.2)

Thus we define a strong solution of the MHD equations.

DEFINITION 3.1 (Strong solution)AssumeN = 2 or 3, f € L2(0,T;H) and
®y = (Ug, Bp) is given in¥Y. Then® = (u, B) is a strong solution of the MHD
equations ifu, B € L%(0, T; 2(«/)) NL>(0, T; V) and® satisfies 8.1), (3.2) for all
v =(C)eV.

Using operators/ and#, the previous equations3.() and @3.2), may be written as

ou 1 _
St RYut AU - SA(B.B) =, (3-3)
3B 1 _
yraa — @B+ #(U,B) - #(B,u) =0. (3.4)

The following result about existence and uniqueness is knGjvn [

THEOREM 3.2. Let f, ug, By be given withf € L>(0, T; H), ®q= (Up, By) € V.
(1) If N = 2, the strong solutior® = (u, B) of the MHD equations uniquely exists
and satisfies

® e L300, T; 2(«/)) N L0, T;V). (3.5)
(2) If N = 3, there existd, > 0 (depending orf2, f, ||®]) such that there exists a
unique strong solutiod® on [0, T.], which satisfie$3.5 with T replaced byT..

4. Gevrey class regularity

LEMMA 4.1. Letu, v, w be given inZ(«e“"), t > 0. Then the following
inequalities hold in space dimensidh= 2 or 3:

2
a2 / 2
e AU, v) L < cllufl.[</ul (v,
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a/\? 7 T V? 1/2) ,.7y111/2 )
(€ AU, v), 77 w) 2| < cllull?lFul? v | S wl.,
wherec > Ois independent af, v, w, t.

PROOF. We setl = ), ,n Uil ™, u* = 3, v urel™, u = ellu; and use similar
notation forv andw. We have(%(u, v), w) = (2r)Ni 2 ik Uj - K) (v - wy). Also

(B, v), e w) = @M Y U)K w)ll e

j+k=I
= (2m)Ni Z CESICRET] 2er(M1=1i1=1kD)
j+k=I
Now since|l| — |j| — |kl =|j + K| —|j] — |K] <0, we have
7" A, v),,a/ef”“zw)‘ < @ON Y usliKI vl w112, (4.1)

j+k=I

Then the right-hand side ofi(1) is equal to the integrajg EX) Y (X)0(x) dx, where

EO) = 20 n IUTIETX, (%) = 3oy IKITEIER, 0(%) = 30w 12wy e
AssumeN = 3. Then by the Nirenberg inequality,

|&|~ < c|DE|FID%|%

1/4 1/4
<c| > e’ dooMfuP| = cllulY?leult?,
jezN jezN
Wit =Y @OMKP P = vIZ 101k =Y oM w P = o wl.
kezN lezZN

Thus

‘(e”””i@(u,v),,q/ef””zw)‘ < / £00¥ (X)0(X) dx
2

1/2) 1/2 y
< [El~l¥ 12101z < cllull®lul2(lvll |« wl..

AssumeN = 2. Then by the Nirenberg inequality,

1/2 12
€]~ < c|DE&|2 = c|ull, < cllully*|</ul

Thus
\( e’ B, v), & ”“w \s /s(x)wme(x)dx
2

1/2) 1/2 y
< [El=l¥ 1Bl < cllully?lul2 (vl w],.




[7] Gevrey class regularity of the MHD equations 403

And by similar calculation we obtain

(e 2w v, e 2w, v))|

= Z (U - K) (v - o) (U - mygrikiFEmD
j+k=I+m
j 11K+
< 37l lunl K] oy
j+k=I+m

< cllull [ ul.[lv]?.
Now we obtain the following theorem.

THEOREM4.2. Assume thafiWoll < M and f € L>(0, T; Z(e™“"")) for some
o1 > 0. Then there exist3; that depends orf and M such that the following
holds

(1) The strong solution¥ of the MHD equations satisfy that—> ./1/2e70< "Wy (t)
is L2(2)-continuous fott € [0, T,], wheren(t) = min(t, oy).

(2) If the strong solutional of the MHD equations satisfjdl (t)|| < M on [0, To],
thenW is analytic on(o, T, + T;) with respect to the norm afZ («/%/2e“"*))? for
sufficiently smalb > 0.

ProOOF. Let C denote the complex plane and- the complexified space dfl,
whose elements are denoted by iv, whereu,v € H; similarly V¢, V/ are the
complexifiedV, V'. Letws, w,, ... be orthonormal eigenvectorsVhwith respect to
</, whose eigenvalues are nondecreasing.F.die the projection ont@o, ... , wm).

Consider now the complexified form of the Galerkin approximation of the MHD
equations, that is, the complex differential systenifigHc)?:

dup, 1

%(§)+E%Um(§)+ P (Un(8), Un($)) — SBZ(Bu(£), Bn(¢) =Pn f, (4.2)
d 1

;.m(&) + =& Bn(§) + Pn#(Bn(£), Um(§)) — PaZ(Un($), Bn(£)) =0, (4.3)

d¢ Rn
Um(O) = Pm(Uo), Bm(o) = m(BO)’ (4-4)

where¢ € C andug, B, mapsC (or an open subset df) into P,He = Cw; +

.-+ + Cwy,. The complex differential systerd )—(4.4) possesses a unique analytic
solution uy,, By, defined in some neighborhood of the origin. It is clear that the
restrictionu,,, B, to some interval0, T,,) of the real axis coincides with the Galerkin
approximatioru,(t), B, (t) defined in the real field.
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We now get some estimates ap, B,,. Let|9] < /4, andn(t) = min(t, oy),
¢ =séd’ Then

1d 2
Ed—SHUm(é')”n(scosH)

d o ((duy
= Re| —n(SCOSH) (& Un (&), & *Un (&) yscosn) + €7 (— ﬂ/um>
dS dé‘ 1(SCosv)

< |/ Un (&) |y scosn) 1Um(E) s coss) + Re[em( — (1/Ro) &/ Un (&)
— PaZ(Un(©). Un(©)) + SRaB(Bn(@). Bn(©)) + P f, S Un(©)), o0
cosd

Re |~Q/um(§) |$(50059)

< L Un(E) | yscosn) Um (&) | scossy —

3/2 y 3/2
+ C||um(§) ”n(scosﬁ) |~Q/um(§) |n(scosﬁ)

+ S B 2208 |9 B0 1acoss) |9 Um (&) |ycscosn)
+ | T 1,scos) |49/ Um (&) (s coss) -

We have

d
> d_S” Bm(¢) ||$(scosﬁ)

d
= RE|:d_S7’I(S COS@)(JZL/ Bm(é‘)v ﬁ/l/zBm(é‘))n(scosH)
. d
+ e|9 <_ Bm( )v Q/Bm( )) ]
dg ‘ ‘ 1n(scosh)
< |9 B (&) | scoso) | Bm(&) lln(scoso) + Re[em( — (1/Rn) </ Bn(2)
— PaB(Un(©). Bu(©) + PuB(Bn(@). Un(@)), & Bu(©)), ccom ]

cosf
=< |Q/Bm(§)|n(scosﬁ)” Bm(§)||n(scosﬁ) - ﬁlﬁ/Bm(é‘)ﬁ(scosg)
1/2 1/2

+ C||um(§) ”n(scosﬁ) |~Q/um(§) |n(scos6>) ” Bm(é‘) ”n(scosﬁ) |~Q/Bm(§) |n(scosﬁ)
+ €l Bmn(@) 1 cos) |9 Bm(&) [2lacossy 1Um(@) s coss) -

We introduce some norms fdr = (u, B) as follows:
(12 = llulZ + IBIZ, [®IZ = |ulZ+ B
Let R = min{l/R,, 1/Ry}, ®m = (Um, By). Then we can rewrite the above inequali-

ties as

1d

E d_s[[d)m]]i(scosﬁ) + R Cose[ﬁ/cbm]i(scosﬁ)
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< CB+ [Pl ecow [ Prl e

(scosh) n(scosb)

+ 2[[<Dm]]n(scosﬁ)[ﬁ/d)m]n(scose) + | f |n(scosﬁ)[d¢m]n(scose)

Rcoso
= 2 [ﬁ/d)m]n(scosﬁ) + [[d)m]]n(scosﬁ)

2
C S@ n(scos@) +— OS@ | f |n(scosﬁ)

wherec,, ¢;, ¢, depend orR andc.
Since| f|,scose) < | fls,, there existes which is dependent oR, ¢ and| f|,, such
that

[[ém]]n(scosg)+Rcose[ﬁf¢m] ([Pl scossy +1)° (4.5)

1(SCosh) S 0§9
Lety(s) = [[®m(SE")]gcos, + L. Thenfors < T/([|boll) = 3v/2/(32c5(L + [|do12)),
L+ [Pm(SE)] scoss) < 21+ [[Pomll?) < 2(1 + [[Doll?). (4.6)

This shows that the solution oft)—(4.4), which was defined and analytic in a
neighbourhood of = 0, actually extends to an analytic solution of this equation in
an open set containing

I(M) ={t =s€”,0<s<T/(M),|0] <m/4}. 4.7
The above estimates show that
sup I|<I>m(§)||,,(scosg) <21+ [|Dol?). (4.8)
€9 (M)

The analyticity of (,, By,) and Cauchy’s integral formula allow us to deduce
estimates on the derivatives af{, B.,) (with respect ta;) on a compact subset of
% (M) from (4.8). For 0 < o < oy, we denoteZ,(M) = {z € C,z € 9(M),

T, > Rez > o}, whereT, is derived from Theorer8.2 Then for 0< o < T;(M),
Z,(M) is notempty. Let € .Z,(M) andk € N. Then

dfu,, k! Un(2)

Y 4.9
dgk ©= 2ri /|z;—d/2 (z—)kt (4.9)
d“By, k! Bn(2)

Y 4.10
ace € =2 /M_d/z Z-i ot (410

whered = d(g, 9.%,(M)) is the distance of to the boundary.Z,(M). Therefore

_—k' sup [um(@ll,

H '
m
ze %, (M) é‘k

2¢k!
= S5 sup [By@ll-
o zeF,(M)

=0
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Thus for any compadf c .Z, (M),

K 21K

d n1/2

ngp @um(ﬁ) ) < [d(K,ay,,(M))]k(H [ Doll®)™", (4.11)
dX 2<+1k! N1/2

SUP| 55 B @) = {q o, v (L 190l (#.12)

On the other hand,

1
Elﬁ/luml(z7 = (f’ ﬁ/um)a + S(ngg(Bm’ Bm), JZL/Um),,

- (ngg(um, Um)’ ,Q/Um),, - (d Um/dé', ,Q/Um)a
< | {1619 Unls + SAIBnl Y% Bl Unl
+ CllUnllY? Ul ¥? + |dUn/dE |4 ] Ul

1
_va/Bml(zy = (ngg(Bm, Um)’ ,Q/Bm),, - (ngg(um’ Bm), ,Q/Bm),,

R
— (dBy/dz, &/ Bp),
< ¢||BullY?|-< Bl | Unll |47 Brol
+ Cllumll 2?9/ Un| Y2 Bull, | Bl + |d B/ [, |7 Byl

Thus

1
Qdump < | flo +C(S+H DO DplY?+[[d Dy /dE 1],
1
<|fly+RCASHDA[Pn]]? + E[dcbm]a +[[dPn/ds]],, (4.13)

1
aldBmla <2c[[Pl])?[</ 1% + (A By/dE ||

1
<4c*Ry[[@]]] + ﬁ[ﬂﬂb]a + [1[dBrn/dS ||, (4.14)

Thus by .13 and @.14),
[/ ®], < | Unl, + |/ Bnl,
1
< R[], + REC(S+ D[Pl + Z[Cbm]a + Re[[d®p/d¢ ],

1
+ 4P RE[[ @] + 21 @nly + Rulld®n/dz 1],

Therefore

sude ®(5)], < Cs(K) < o0, (4.15)

reK -
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Again using Cauchy’s formula and.(L5 we obtain also for every € K andk € N

24| /
‘ﬂ/dgk“m@) ) < [AK 37, (M) Zsetiplﬁ/um(Z)la,
73 2kk! B
‘ ax @) = K a7,y sl B @l
Thus
dk 7 2k+l )
fl’Kp[ @] =K ez, e

whereK’ = {z € Z,(M), d(z, ay,,(M)) > (1/2d(K, 0.Z,(M)}.

We now pass to the limin — oo. For every compact subset &, (M), @,
is uniformly bounded inZ(«/ e ") andd®,,/dz is also bounded % (o’ e "*).
Since (&/¥?)~1 is a compact operator, we can use the vector version of Montel's
theorem, that is, there is a subsequefizg } which converges to a analytic function
® in 2(/Y?e ") on Z,(M).

Since the restriction dfi.,,, By, to the real axis coincides with the Galerkin approx-
imation in R, of the MHD equations, it is clear that the restriction®to the same
interval (0, T, = min{T,, T.}) of the real axis coincides with the unique solution of
the MHD equations given by Theoredi2. Thus we obtain the real analyticity df
on the intervalo, Ty). Since||®| < M on[0, Tl, ® is analytic inZ («//2e°***) for
t € (o, To+ To).

Now we prove part (1) of Theorerh2.

By (4.5), /€99 ® ¢ L2(0, Ty; H). Thus

GO e 20, Ty V). (4.16)

By (4.16), &/%¥2e"®¥* @ e L2(0, Ty; V'). Andif vy, v, areu or B, then by Lemma.1
and @.5), we obtain that

@O B(vy, vy) € LXO, Tis H)  and /267 "B vy, vp) € L20, Ty; V).

And sincef € L>(0, T; Z(e"+“"?)), we obtain/2es?"* f ¢ L2(0, T;; V).
Thus we obtain

d 1/2 d 1/2
d_s(dl/zen(s)ﬂ/ u)’ d_s(dl/ze’l(s)ﬂ/ B) c LZ(O, T]_,V/) (417)
By (4.16), (4.17) we obtaine 210%™y, o7112e199™* B ¢ ([0, T1]; L?) [5, Ch. Ill,
§ 1.4].

COROLLARY 4.3. Underthe same conditions as those of TheotelnW, the strong
solution of the MHD equations, is analytic 6 T,+ T;) with respectto théd"-norm
forr > 0.
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PROOF. Letty € (0, To + Ty). Then there is such that O< o < t,. Thus

(20)* W (1) =W (o) — (t —to) § W (o) [Fs _ [ () —W(to) — (t—to) & ¥ (1o)]12
(2Nt —tof? B It —1to]? '

By the above theorem, the right-hand side of the above inequality goes to zero. Thus
the left-hand side of the above inequality also goes to zero. WThisanalytic in
H**1-norms. And¥ is analytic inL2-norms by similar reasoning.

COROLLARY 4.4. Under the same assumptions as those of Thedr@nd(t) €
%> (£2) with eventual modification on a set measure zerg®i, + T;).

PrOOF. If t € (0, Tp + Ty), then[®(1)], is bounded for some by the above
theorem. Thusb(t) is smooth inRN by Lemma2.1.

CoROLLARY 4.5. If N = 2, the strong solution is analytic o, T) with respectto
the norm of Z(«/2e7**))? for sufficiently smalb > 0.

PrROOF. || @]l is bounded ori0, T) by TheorenB.2. Thus we are done by the above
theorem.
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