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Abstract

In this article, we use the method of Foias and Temam to show that the strong solutions of
the time-dependent magnetohydrodynamics equations in a periodic domain are analytic in
time with values in a Gevrey class of functions. As immediate corollaries we find that the
solutions are analytic inH r -norms and that the solutions become smooth immediately after
the initial time.

1. Introduction

The non-dimensional form of the magnetohydrodynamics (MHD) equations is

@

@ t
u + .u · ∇/u − 1

Re
1u + S∇

(
B2

2

)
− S.B · ∇/B = f; (1.1)

@

@ t
B + .u · ∇/B − .B · ∇/u + 1

Rm

curl.curl B/ = 0; (1.2)

div u = div B = 0; (1.3)

whereu = .u1.x; t/;u2.x; t/;u3.x; t// is the velocity of the particle of fluid which is
at pointx at timet , B = .B1.x; t/; B2.x; t/; B3.x; t// is the magnetic field at pointx
at timet , f = f .x; t/ is a volume density force,Re is the Reynolds number,Rm is the
magnetic Reynolds number andS = M 2=.ReRm/, whereM is the Hartan number.

These equations are important in the physics of plasma. The existence of weak
and strong solutions and some regularities have been established by Sermange and
Temam [3].

In this paper, we will consider the Gevrey class regularity of MHD equations in
a periodic domain inRN with N = 2 or 3 following the method used by Foias and
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Temam [1]. In that paper Foias and Temam showed that the strong solutions of the
Navier-Stokes equations in a periodic domain are analytic in time with the values in
a Gevrey class of functions. We will prove a similar result for the MHD equations
using a similar method.

The organization of this paper is as follows. In Section2, we introduce some
function spaces. In Section3, we introduce known results about existence, uniqueness
and regularity. In Section4, we prove the main theorem, namely we establish Gevrey
class regularity and derive some related regularity properties.

2. Function spaces

We supplement the system (1.1)–(1.3) with the following initial and boundary
conditions:

u.x;0/ = u0.x/; B.x;0/ = B0.x/; (2.1)

u.x + Lei ; t/ = u.x; t/; B.x + Lei ; t/ = B.x; t/; (2.2)

for all x ∈ RN andt > 0, whereL is the period and{ei }N
i =1 is an orthonormal basis of

the space. But we will regardL to be 2³ for notational simplicity. When the dimension
of the space isN = 2, we classically define the operators curlu = @u2=@x1−@u1=@x2

for every vector functionu = .u1;u2/ andc̃url� = .@�=@x2;−@�=@x1/ for every
scalar function�. We recall the two-dimensional formula

c̃url curlu = graddivu −1u; (2.3)

which corresponds to the three-dimensional formula

curl curlu = graddivu −1u: (2.4)

The two-dimensional MHD equations are (1.1)–(1.3) with the termc̃url.curl B/ re-
placing curl.curl B/. Thus if divu = 0, then curl curlu = −1u.

Let T > 0 and letX be a Banach space. We shall considerL p.0;T ; X/, 1≤p≤∞,
which is the space of functions from[0;T] into X, which areL p for the Lebesgue
measuredt. This is a Banach space for the norm(∫ T

0

‖u.t/‖p
X dt

)1=p

for 1 ≤ p < ∞; ess sup
0≤t≤T

‖u.t/‖X for p = ∞:

We denote byL2.Q/ the space ofRN-valued functions onQ which are square
integrable for the Lebesgue measuredx = dx1 · · · dxN . This is a Hilbert space for the
scalar product

.u; v/ =
∫
Q

u.x/ · v.x/dx:
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Using Fourier series expressions we can identifyL2.Q/ with the space of functions
u satisfying

u =
∑
j ∈ZN

u j .t/e
i j ·x; u j .t/ ∈ CN; u− j = ū j for t ∈ [0;T]: (2.5)

For m ∈ N, we also introduce

H m.Q/ =
u ∈ L2.Q/

∣∣∣∣ .2³/N
∑
j ∈ZN

| j |2m|uj |2 < ∞; u0 = 0


andH−m.Q/, the dual space ofHm.Q/. Also

V = {u ∈ H 1.Q/ | j · uj = 0 for all j ∈ ZN};
H = {u ∈ H0.Q/ | j · uj = 0 for all j ∈ ZN}

andV ′ is the dual space ofV . We equipV with the scalar product

..u; v// =
N∑

k=1

(
@u

@xk
;
@v

@xk

)
=

∑
j ∈ZN

.2³/N | j |2uj · v̄ j

which is a scalar product onH 1.Q/.
We also introduce the spacesV andH:

V = {.u; B/ | u; B ∈ V}; H = {.u; B/ | u; B ∈ H }:

We equipH with the scalar products

.8;9/ = .u; v/ + .B;C/ for all 8 = .u; B/; 9 = .v;C/ ∈ H

providing a norm onH, |8| = {.8;8/}1=2. We also equipV with the scalar products

..8;9// = ..u; v// + ..B;C//

providing a norm onV, ‖8‖ = {..8;8//}1=2.
We define an operatorA ∈ L .V;V ′/ to be such that

〈A u; v〉 = ..u; v// for all u; v ∈ V:

We also considerA as an unbounded operator onH whose domain is

D.A / = {u ∈ V;A u ∈ H } = H2 ∩ V:
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Since we consider divergence-free functions on a periodic domain,A is actually−1.
And sinceA is a nonnegative symmetric functional, we can defineA Þ and the domain
of A Þ is the set of functionsu such that

.2³/N
∑
j ∈ZN

| j |4Þ|uj |2 = |A Þu|2 < ∞: (2.6)

For − > 0 given, we consider also the Gevrey classD.e−A
1=2
/, that is, the set of

functionsu satisfying

.2³/N
∑
j ∈ZN

e2− | j ||uj |2 = |e−A 1=2

u|2 < ∞ (2.7)

with inner product

.u; v/− = .2³/N
∑
j ∈ZN

e2− | j |uj · v̄ j ;

with norm|u|− = {
.2³/N

∑
j ∈ZN e2− | j ||uj |2

}1=2
. And forD.A 1=2e−A

1=2
/, we equip the

inner product

..u; v//− = .2³/N
∑
j ∈ZN

| j |2e2− | j |uj · v̄ j

with the norm‖u‖− = {
.2³/N

∑
j ∈ZN | j |2e2− | j ||uj |2

}1=2
.

LEMMA 2.1. Suppose|u|2− = .2³/N
∑

j ∈ZN e2− | j ||uj |2 < ∞ for some− > 0. Then
u ∈ C∞.

PROOF. Since.2− | j |/k=k! < e2− | j | for all j ∈ ZN andk ∈ N,

.2³/N
∑
j ∈ZN

| j |2k|uj |2 = ‖u‖2
H k < ∞:

Thusu ∈ ⋂∞
k=1 H k. By Sobolev imbedding, we getu ∈ C∞.

We define now a trilinear form onL1.Q/ × W1;1.Q/ × L1.Q/ by setting

b.u; v;w/ =
N∑

i; j =1

∫
Q

ui Div jw j dx .whereDi = @=@xi /;

whenever the integrals make sense. We know the trilinear formb is continuous on
.H1.Q//3 [4]. Thus we can define a continuous bilinear operatorB from V × V into
V ′ with 〈B.u; v/;w〉 = b.u; v;w/.
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3. Known results

Let T > 0 be given and let us assume that.p;u; B/ is a smooth solution of
(1.1)–(2.2). Multiplying (1.1) by a test functionv ∈ V and integrating overQ, we
obtain

@

@ t
.u; v/ + 1

Re
..u; v// + b.u;u; v/ − Sb.B; B; v/ = . f; v/: (3.1)

We also multiply (1.2) by a test functionC ∈ V and integrate overQ, then

@

@ t
.B;C/+ 1

Rm
..B;C//+ b.u; B;C/− b.B;u;C/ = 0: (3.2)

Thus we define a strong solution of the MHD equations.

DEFINITION 3.1 (Strong solution).AssumeN = 2 or 3, f ∈ L2.0;T ; H / and
80 = .u0; B0/ is given inV. Then8 = .u; B/ is a strong solution of the MHD
equations ifu; B ∈ L2.0;T ;D.A // ∩ L∞.0;T ; V/ and8 satisfies (3.1), (3.2) for all
9 = .v;C/ ∈ V.

Using operatorsA andB, the previous equations, (3.1) and (3.2), may be written as

@u

@ t
+ 1

Re
A u +B.u;u/ − SB.B; B/ = f; (3.3)

@B

@ t
+ 1

Rm

A B +B.u; B/ −B.B;u/ = 0: (3.4)

The following result about existence and uniqueness is known [3].

THEOREM 3.2. Let f , u0, B0 be given withf ∈ L∞.0;T ; H /, 80 = .u0; B0/∈V.
(1) If N = 2, the strong solution8 = .u; B/ of the MHD equations uniquely exists
and satisfies

8 ∈ L2.0;T ;D.A // ∩ L∞.0;T ;V/: (3.5)

(2) If N = 3, there existsT∗ > 0 (depending on�, f , ‖8‖) such that there exists a
unique strong solution8 on [0;T∗], which satisfies(3.5) with T replaced byT∗.

4. Gevrey class regularity

LEMMA 4.1. Let u, v, w be given inD.A e−A
1=2
/, − > 0. Then the following

inequalities hold in space dimensionN = 2 or 3:∣∣∣e−A 1=2

B.u; v/
∣∣∣2

L2
≤ c‖u‖− |A u|−‖v‖2

− ;
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B.u; v/;A e−A
1=2

w/L2

∣∣∣ ≤ c‖u‖1=2
− |A u|1=2− ‖v‖− |A w|− ;

wherec > 0 is independent ofu, v, w, − .

PROOF. We setu = ∑
j ∈ZN u j ei j ·x, u∗ = ∑

j ∈ZN u∗
j e

i j ·x, u∗
j = e− | j |uj and use similar

notation forv andw. We have.B.u; v/;w/ = .2³/N i
∑

j +k=l .uj · k/.vk · w̄l /. Also(
e−A

1=2

B.u; v/;A e−A
1=2

w
)

= .2³/N i
∑
j +k=l

.uj · k/.vk · w̄l /|l |2e2− |l |

= .2³/N i
∑
j +k=l

.u∗
j · k/.v∗

k · w̄l
∗/|l |2e−.|l |−| j |−|k|/:

Now since|l | − | j | − |k| = | j + k| − | j | − |k| ≤ 0, we have∣∣∣.e−A 1=2

B.u; v/;A e−A
1=2

w/

∣∣∣ ≤ .2³/N
∑
j +k=l

|u∗
j ||k||v∗

k||w∗
l ||l |2: (4.1)

Then the right-hand side of (4.1) is equal to the integral
∫
Q
¾.x/ .x/�.x/dx, where

¾.x/ = ∑
j ∈ZN |u∗

j |ei j ·x,  .x/ = ∑
k∈ZN |k||v∗

k |eik·x, �.x/ = ∑
l∈ZN |l |2|w∗

l |e−i l ·x.
AssumeN = 3. Then by the Nirenberg inequality,

|¾ |L∞ ≤ c|D¾ |1=2
L2 |D2¾ |1=2L2

≤ c

∑
j ∈ZN

.2³/N | j |2|u∗
j |2

1=4 ∑
j ∈ZN

.2³/N | j |4|u∗
j |2

1=4

= c‖u‖1=2
− |A u|1=2− ;

| |2L2 =
∑
k∈ZN

.2³/N |k|2|v∗
k |2 = ‖v‖2

− ; |� |2L2 =
∑
l∈ZN

.2³/N |l |4|w∗
l |2 = |A w|2− :

Thus∣∣∣(e−A
1=2

B.u; v/;A e−A
1=2

w
)∣∣∣ ≤

∣∣∣∣∫
Q

¾.x/ .x/�.x/dx

∣∣∣∣
≤ |¾ |L∞| |L2|� |L2 ≤ c‖u‖1=2

− |A u|1=2− ‖v‖− |A w|− :
AssumeN = 2. Then by the Nirenberg inequality,

|¾ |L∞ ≤ c|D¾ |L2 = c‖u‖− ≤ c‖u‖1=2
− |A u|1=2− :

Thus∣∣∣(e−A
1=2

B.u; v/;A e−A
1=2

w
)∣∣∣ ≤

∣∣∣∣∫
Q

¾.x/ .x/�.x/dx

∣∣∣∣
≤ |¾ |L∞| |L2|� |L2 ≤ c‖u‖1=2

− |A u|1=2− ‖v‖|A w|− :
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And by similar calculation we obtain∣∣∣(e−A
1=2

B.u; v/;e−A
1=2

B.u; v/
)∣∣∣

≤
∣∣∣∣∣ ∑

j +k=l+m

.uj · k/.vk · vm/.ul · m/e−.| j +k|+|l+m|/
∣∣∣∣∣

≤
∑

j +k=l+m

|uj ||ul ||k||m||vk||vm|e−.| j |+|k|+|l |+|m|/

≤ c‖u‖− |A u|−‖v‖2
− :

Now we obtain the following theorem.

THEOREM 4.2. Assume that‖90‖ ≤ M and f ∈ L∞(
0;T ;D.e¦1A

1=2
/
)

for some
¦1 > 0. Then there existsT1 that depends onf and M such that the following
holds:

.1/ The strong solutions9 of the MHD equations satisfy thatt 7→ A 1=2e�.t/A
1=2
9.t/

is L2.Q/-continuous fort ∈ [0;T1], where�.t/ = min.t; ¦1/.
.2/ If the strong solutions9 of the MHD equations satisfy‖9.t/‖ ≤ M on [0;T0],
then9 is analytic on.¦;T0 + T1/ with respect to the norm of.D.A 1=2e¦A

1=2
//2 for

sufficiently small¦ > 0.

PROOF. Let C denote the complex plane andHC the complexified space ofH ,
whose elements are denoted byu + i v, whereu; v ∈ H ; similarly VC, V ′

C
are the

complexifiedV, V ′. Let!1; !2; : : : be orthonormal eigenvectors inV with respect to
A , whose eigenvaluesare nondecreasing. LetPm be the projection onto〈!1; : : : ; !m〉.

Consider now the complexified form of the Galerkin approximation of the MHD
equations, that is, the complex differential system in.PmHC/

2:

dum

d�
.� /+ 1

Re
A um.� /+ PmB.um.� /;um.� //−S PmB.Bm.� /; Bm.� //= Pm f; (4.2)

d Bm

d�
.� / + 1

Rm

A Bm.� / + PmB.Bm.� /;um.� // − PmB.um.� /; Bm.� // = 0; (4.3)

um.0/ = Pm.u0/; Bm.0/ = Pm.B0/; (4.4)

where� ∈ C andum; Bm mapsC (or an open subset ofC) into PmHC = Cw1 +
· · · + Cwm. The complex differential system (4.2)–(4.4) possesses a unique analytic
solution um; Bm defined in some neighborhood of the origin. It is clear that the
restrictionum; Bm to some interval.0;Tm/ of the real axis coincides with the Galerkin
approximationum.t/; Bm.t/ defined in the real field.
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We now get some estimates onum; Bm. Let |� | ≤ ³=4, and�.t/ = min.t; ¦1/,
� = sei �. Then

1

2

d

ds
‖um.� /‖2

�.s cos�/

= Re

[
d

ds
�.s cos�/.A um.� /;A

1=2um.� //�.s cos�/ + ei �

(
dum

d�
;A um

)
�.s cos�/

]
≤ |A um.� /|�.scos�/‖um.� /‖�.scos�/ + Re

[
ei �

( − .1=Re/A um.� /

− PmB.um.� /;um.� //+ S PmB.Bm.� /; Bm.� // + Pm f;A um.� /
)
�.scos�/

]
≤ |A um.� /|�.scos�/‖um.� /‖�.scos�/ − cos�

Re
|A um.� /|2�.scos�/

+ c‖um.� /‖3=2
�.scos�/|A um.� /|3=2�.scos�/

+ Sc‖Bm.� /‖3=2
�.scos�/|A Bm.� /|1=2�.scos�/|A um.� /|�.scos�/

+ | f |�.scos�/|A um.� /|�.scos�/:

We have

1

2

d

ds
‖Bm.� /‖2

�.scos�/

= Re

[
d

ds
�.s cos�/.A Bm.� /;A

1=2Bm.� //�.s cos�/

+ ei �

(
d

d�
Bm.� /;A Bm.� /

)
�.scos�/

]
≤ |A Bm.� /|�.scos�/‖Bm.� /‖�.scos�/ + Re

[
ei �

( − .1=Rm/A Bm.� /

− PmB.um.� /; Bm.� // + PmB.Bm.� /;um.� //;A Bm.� /
)
�.scos�/

]
≤ |A Bm.� /|�.scos�/‖Bm.� /‖�.scos�/ − cos�

Rm
|A Bm.� /|2�.scos�/

+ c‖um.� /‖1=2
�.scos�/|A um.� /|1=2�.scos�/‖Bm.� /‖�.scos�/|A Bm.� /|�.scos�/

+ c‖Bm.� /‖1=2
�.s cos�/|A Bm.� /|3=2�.scos�/‖um.� /‖�.s cos�/:

We introduce some norms for8 = .u; B/ as follows:

[[8]]2
Þ = ‖u‖2

Þ + ‖B‖2
Þ; [8]2

Þ = |u|2Þ + |B|2Þ:
Let R = min{1=Re;1=Rm},8m = .um; Bm/. Then we can rewrite the above inequali-
ties as

1

2

d

ds
[[8m]]2

�.scos�/ + Rcos�[A 8m]2
�.scos�/
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≤ c.3 + S/[[8m]]3=2
�.scos�/[A8m]3=2

�.scos�/

+ 2[[8m]]�.scos�/[A8m]�.scos�/ + | f |�.scos�/[A8m]�.scos�/

≤ Rcos�

2
[A8m]2

�.scos�/ +
c2

cos3 �
[[8m]]6

�.scos�/

+ c3

cos�
[[8m]]2

�.scos�/ +
c4

cos�
| f |2

�.scos�/

wherec2, c3, c4 depend onR andc.
Since| f |�.scos�/ ≤ | f |¦1, there existsc5 which is dependent onR, c and| f |¦1 such

that

d

ds
[[8m]]2

�.scos�/ + Rcos�[A 8m]2
�.scos�/ ≤ c5

cos3 �

([[8m]]2
�.scos�/ + 1

)3
: (4.5)

Let y.s/= [[8m.sei �/]]2
�.scos�/+1. Then fors≤ T ′

1.‖80‖/= 3
√

2=.32c5.1+ ‖80‖2//,

1 + [[8m.sei �/]]2
�.scos�/ ≤ 2.1 + ‖80m‖2/ ≤ 2.1 + ‖80‖2/: (4.6)

This shows that the solution of (4.2)–(4.4), which was defined and analytic in a
neighbourhood of� = 0, actually extends to an analytic solution of this equation in
an open set containing

G .M/ = {� = sei � ;0< s< T ′
1.M/; |� | < ³=4}: (4.7)

The above estimates show that

sup
�∈G .M/

‖8m.� /‖2
�.s cos�/ ≤ 2.1 + ‖80‖2/: (4.8)

The analyticity of (um; Bm) and Cauchy’s integral formula allow us to deduce
estimates on the derivatives of (um; Bm) (with respect to� ) on a compact subset of
G .M/ from (4.8). For 0 < ¦ < ¦1, we denoteF¦ .M/ = {z ∈ C; z ∈ G .M/;
T∗ > Rez > ¦ }, whereT∗ is derived from Theorem3.2. Then for 0< ¦ < T ′

1.M/,
F¦ .M/ is not empty. Let� ∈F¦ .M/ andk ∈ N. Then

dkum

d� k
.� / = k!

2³ i

∫
|z−� |=d=2

um.z/

.z − � /k+1
dz; (4.9)

dk Bm

d� k
.� / = k!

2³ i

∫
|z−� |=d=2

Bm.z/

.z − � /k+1
dz; (4.10)

whered = d.�; @F¦ .M// is the distance of� to the boundary@F¦ .M/. Therefore∥∥∥∥ dk

d� k
um

∥∥∥∥
¦

≤ 2kk!
dk

sup
z∈F¦ .M/

‖um.z/‖¦ ;
∥∥∥∥ dk

d� k
Bm

∥∥∥∥
¦

≤ 2kk!
dk

sup
z∈F¦ .M/

‖Bm.z/‖¦ :
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Thus for any compactK ⊂F¦ .M/,

sup
�∈K

∥∥∥∥ dk

d� k
um.� /

∥∥∥∥
¦

≤ 2k+1k!
[d.K ; @F¦ .M//]k

(
1 + ‖80‖2

)1=2
; (4.11)

sup
�∈K

∥∥∥∥ dk

d� k
Bm.� /

∥∥∥∥
¦

≤ 2k+1k!
[d.K ; @F¦ .M//]k

(
1 + ‖80‖2

)1=2
: (4.12)

On the other hand,

1

Re
|A um|2¦ = . f;A um/¦ + S.PmB.Bm; Bm/;A um/¦

− .PmB.um;um/;A um/¦ − .dum=d� ;A um/¦

≤ | f |¦ |A um|¦ + Sc‖Bm‖3=2
¦ |A Bm|1=2¦ |A um|¦

+ c‖um‖3=2
¦ |A um|3=2¦ + |dum=d� |¦ |A um|¦ ;

1

Rm
|A Bm|2¦ = .PmB.Bm;um/;A Bm/¦ − .PmB.um; Bm/;A Bm/¦

− .d Bm=d� ;A Bm/¦

≤ c‖Bm‖1=2
¦ |A Bm|1=2¦ ‖um‖¦ |A Bm|¦

+ c‖um‖1=2
¦ |A um|1=2¦ ‖Bm‖¦ |A Bm|¦ + |d Bm=d� |¦ |A Bm|¦ :

Thus

1

Re

|A um|¦ ≤| f |¦ +c.S+1/[[8m]]3=2
¦ [A8m]1=2

¦ +[[d8m=d� ]]¦

≤| f |¦ + Rec
2.S+1/2[[8m]]3

¦ + 1

4Re
[A8m]¦ +[[d8m=d� ]]¦ ; (4.13)

1

Rm
|A Bm|¦ ≤2c[[8m]]3=2

¦ [A8]1=2
¦ + ‖d Bm=d�‖¦

≤4c2Rm[[8]]3
¦ + 1

4Rm
[A8]¦ + ‖d Bm=d�‖¦ : (4.14)

Thus by (4.13) and (4.14),

[A8]¦ ≤ |A um|¦ + |A Bm|¦
≤ Re| f |¦ + R2

ec2.S+ 1/2[[8m]]3
¦ + 1

4
[8m]¦ + Re[[d8m=d� ]]¦

+ 4c2R2
m[[8m]]3

¦ + 1

4
[A8m]¦ + Rm[[d8m=d� ]]¦ :

Therefore

sup
�∈K

[A8m.� /]¦ ≤ c6.K / < ∞: (4.15)
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Again using Cauchy’s formula and (4.15) we obtain also for every� ∈ K andk ∈ N∣∣∣∣A dk

d� k
um.� /

∣∣∣∣
¦

≤ 2kk!
[d.K ; @F¦ .M//]k

sup
z∈K ′

|A um.z/|¦ ;∣∣∣∣A dk

d� k
Bm.� /

∣∣∣∣
¦

≤ 2kk!
[d.K ; @F¦ .M//]k

sup
z∈K ′

|A Bm.z/|¦ :
Thus

sup
�∈K

[
A

dk

d� k
8m.� /

]
¦

≤ 2k+1

[d.K ; @F¦ .M//]k
c6.K

′/;

whereK ′ = {z ∈ F¦ .M/;d.z; @F¦ .M// ≥ .1=2/d.K ; @F¦ .M/}.
We now pass to the limitm → ∞. For every compact subset ofF¦ .M/, 8m

is uniformly bounded inD.A e¦A
1=2
/ andd8m=d� is also bounded inD.A e¦A

1=2
/.

Since .A 1=2/−1 is a compact operator, we can use the vector version of Montel’s
theorem, that is, there is a subsequence{8mj

} which converges to a analytic function
8 in D.A 1=2e¦A

1=2
/ onF¦ .M/.

Since the restriction ofum, Bm to the real axis coincides with the Galerkin approx-
imation in R+ of the MHD equations, it is clear that the restriction of8 to the same
interval .0;T1 = min{T ′

1;T∗}/ of the real axis coincides with the unique solution of
the MHD equations given by Theorem3.2. Thus we obtain the real analyticity of8
on the interval.¦;T1/. Since‖8‖ ≤ M on [0;T0],8 is analytic inD.A 1=2e¦A

1=2
/ for

t ∈ .¦;T0 + T1/.
Now we prove part (1) of Theorem4.2.
By (4.5),A e�.s/A

1=2
8 ∈ L2.0;T1;H/. Thus

A
1=2e�.s/A

1=2

8 ∈ L2.0;T1;V/: (4.16)

By (4.16),A 3=2e�.s/A
1=2
8 ∈ L2.0;T1;V′/. And if v1, v2 areu or B, then by Lemma4.1

and (4.5), we obtain that

e�.s/A
1=2

B.v1; v2/ ∈ L2.0;T1; H / and A
1=2esA 1=2

B.v1; v2/ ∈ L2.0;T1; V ′/:

And since f ∈ L∞.0;T ;D.e¦1A
1=2
//, we obtainA 1=2esA 1=2

f ∈ L2.0;T1; V ′/.
Thus we obtain

d

ds

(
A

1=2e�.s/A
1=2

u
)
;

d

ds

(
A

1=2e�.s/A
1=2

B
) ∈ L2.0;T1; V ′/: (4.17)

By (4.16), (4.17) we obtainA 1=2e�.s/A
1=2

u,A 1=2e�.s/A
1=2

B ∈ C .[0;T1]; L2/ [5, Ch. III,
x 1.4].

COROLLARY 4.3. Under the same conditions as those of Theorem4.2,9, the strong
solution of the MHD equations, is analytic on.0;T0+T1/ with respect to theHr -norm
for r ≥ 0.
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PROOF. Let t0 ∈ .0;T0 + T1/. Then there is¦ such that 0< ¦ < t0. Thus

.2¦/2k|9.t/−9.t0/−.t−t0/
d
dt
9.t0/|2H k+1

.2k/!|t − t0|2 ≤ [[9.t/−9.t0/−.t−t0/
d
dt
9.t0/]]2

¦

|t − t0|2 :

By the above theorem, the right-hand side of the above inequality goes to zero. Thus
the left-hand side of the above inequality also goes to zero. Thus9 is analytic in
H k+1-norms. And9 is analytic inL2-norms by similar reasoning.

COROLLARY 4.4. Under the same assumptions as those of Theorem4.2, 8.t/ ∈
C∞.Q/ with eventual modification on a set measure zero on.0;T0 + T1/.

PROOF. If t ∈ .0;T0 + T1/, then [8.t/]¦ is bounded for some¦ by the above
theorem. Thus8.t/ is smooth inRN by Lemma2.1.

COROLLARY 4.5. If N = 2, the strong solution is analytic on.¦;T/ with respect to
the norm of.D.A 1=2e¦A

1=2
//2 for sufficiently small¦ > 0.

PROOF. ‖8‖ is bounded on.0;T/ by Theorem3.2. Thus we are done by the above
theorem.
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