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Abstract

Boundary value problems where resonance phenomena are studied are most often trans-
formable to parameter dependent Sturm-Liouville (SL) eigenproblems with interior sin-
gularities. The parameter dependent Sturm-Liouville eigenproblem with interior poles is
examined. Asymptotic approximations to the solutions are obtained using an extended
Langer’s method to take care of the resulting complex eigenvalues and eigenfunctions.

1. Introduction

We consider the self-adjoint Sturm-Liouville (SL) eigenproblem with a parameter:

d2u

dx 2
+ ½2[r.x/E − q.x/]u = 0; I = [a; b]; a < 0< b; (1)

u.a/ = u.b/ = 0; (2)

whereq.x/ has a simple or double pole in the interior ofI , ½ is a real parameter and
E is the eigenvalue parameter. Standard SL theory permits singularities only at the
end points, and forr.x/ andq.x/ real and continuous on[a; b]. Real eigenvalues
and eigenfunctions exist even if eitherr.x/ or q.x/ has a pole ata or b; and in this
case Langer’s asymptotic method has been shown [3, 4, 8] to provide a uniformly
approximate solution. However, such an asymptotic solution has not been obtained
for (1)–(2) with interior poles. For the parameterless counterpart of (1), the existence
of complex eigenvalues and eigenfunctions has been proved in [6] for the simple pole
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case and in [2] for the double pole case. Asymptotic solutions have been obtained
using a direct sum approach [7], and by employing Titchmarsh-Weylm-function
theory [2]; for the parameterless problem. It is the purpose of the present article to
provide an extension of Langer’s method to the simple or double pole case with a
parameter, that is, (1)–(2).

The importance of studying our system cannot be overemphasized as evidenced
by an ever increasing occurrence of problems with interior singularities in fluid wave
theory ([2, 6, 7, 10] for example) and mathematical physics [9], where resonance
phenomena are studied using WKB analysis to obtain asymptotic solutions over split
intervals. We note that the equation studied in [9] may be transformed into the
parameter dependent interior double pole SL problem, whence our method is also
applicable to the study of Schr¨odinger resonances. To exploit available literature, we
shall assume the specific form for our BVP is of the type

d2u

dx 2
+ ½2

[
f .x/

x n
− E

]
u = 0; I = [a; b]; n = 1;2; (3)

u.a/ = u.b/ = 0; a < 0< b: (4)

We may re-write (3) as

d2

dx 2
+ ½2F .x; ½/u = 0; I = [a; b];

whereF .x; ½/ = [f .x/=x n − E].
Then from [5] or [8] we obtain the expansion of the solution for (3) in the form

u = B.x; ½/w.¾; 
 / + ½−.¼+¹/=.¼+¹+2/C.x; ½/w ′.¾; 
 /; (5)

where¼ is the sum of the orders of zeros and¹ is the sum of the orders of poles,
w.¾; 
 / is the solution to the corresponding comparison equation, and the functions
B andC are to be determined. Following [3] and [8], we further assume thatF , B, ¾
and
k have the large½ asymptotic expansions

F .x; ½/ ∼ r.x/
∞∑

p=0

½−p Fp .x/ (6)

whereF0 = −E, F p = f .x/=x p , p > 0,

B.x; ½/ ∼
∞∑

p=0

½−p Bp .x/; C.x; ½/ ∼
∑
p=0

½−p Cp .x/ (7)



[3] Parameter dependent Sturm-Liouville eigenproblems 481

and

¾.x; ½/ = ½2=.¼+¹+2/�.x/; 
k = ½.¼+¹+2/=3
∞∑

p=0

½−p
kp : (8)

Thus we require
kp for k ≤ 1 in (8). From [3, 4] we have


00 = �′.b0/; 
0p = [�.b0/]−1{Fp .b0/+ rp .b0/}; 
1p = 0; p = 1;2; : : : ;

whereF .x; ½/has a pole of ordern j atx = bj , j = 0; : : : ;N , andr.x/ =
N∏

j=0
.x−b/nj .

The main object of the paper then becomes the determination of the function
�.x/. This paper is organized as follows. In the next section we obtain the form of the
solution in terms of parameters�m andE m for the simple pole case. The corresponding
solution for the double pole case is obtained in Section3. In Section4 we present
a determination of the parameters�m for both cases while Section5 presents the
computation of the eigenvaluesE m . We finally present, in Section6, the leading order
asymptotic solutions for the simple and double pole cases.

2. The simple pole case

The comparison equation for (3) whenn = 1 is

d2w

d¾ 2
+ 
0 + ¾
1

¾
w = 0; I = [a; b] (9)

w.a; 
1/ = w.b; 
1/ = 0; a < 0< b: (10)

The eigenproblem (9) with (10), using analysis similar to that in [6], has large½
solutions

w.¾; 
1/ ∼ .2
0/
1=4



1=3
1

√
³

(

0 + 
1¾

¾

)−1=4

× cos

[
2k sin

(

1¾


0

)1=2

+
(

1¾


0

)1=2 (
1 + 
1¾


0

)1=2

− k³ + ³

4

]
(11)

and the eigenrelation would be

2k

[
arcsin

(−
1b


0

)1=2

+
(−
1b


0

)1=2(
1+ 
1b


0

)1=2
]

−k³+ ³

4
=

(
n− 1

2

)
³; (12)
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wherek = −
0=.2

1=2
1 /. The asymptotic solution (5) also becomes

u = B.x; ½/w.¾; 
 1/+ ½−1=2C.x; ½/w ′.¾; 
1/: (13)

On substitution of (13) into (3), employing (9) and subsequently (6)–(8), we have on
equating powers of½−p for +p ≤ −2 that

[�′]2
1[�.x/ − �.Þ/]
�.x/

= f .x/ − Ex

x
; (14)

wherex = Þ is the turning point of (3), that is, the zero off .x/− Ex for the simple
pole case. Thus∫ �.0−/

�.−x/

.s − Þ∗/1=2

s
ds +

∫ �.x/

�.0+/

s − Þ∗

s1=2
ds

= 

−1=2
1

∫ 0−

−x

[
f .s/− Es

s

]1=2

ds + 

−1=2
1

∫ x

0+

[
f .s/− Es

s

]1=2

ds; (15)

whereÞ∗ = �.Þ/ and similarly hereafter. The split interval of integration in (15)
conforms with the Direct Sum Method [7], if Þ∗ and
1 are real so that the eigenvalues
E m of (3) are real. An application of Langer’s method in this case is straightforward.
If however,Þ∗; 
1 and consequentlyE are complex as would be the case when the
whole intervalI is considered, then a suitable transformation is needed so that�.x/
still retains its properties as in [3, 4, 5] and [8]. We may re-write (3) for n = 1 as

d2u

dx 2
+ ½2

[
f .x/ − Ex

x

]
u = 0; I = [a; b] (16)

u.a/ = u.b/ = 0; a < 0< b:

Now suppose the turning point− (and subsequently the complex eigenvalueE m) of
(3) lies at the indicated position on the complexx-plane, see Figure1.

In order to apply Langer’smethod a suitable path of integration would be thes-axis,
obtained by rotating the realx-axis through�m . The transformation employed would
then be

x = .cos�m/s; �m = tan−1

[
Im E m

ReE m

]
; (17)

where Im denotes the imaginary part and Re denotes the real part ofthe eigenvalue.
Thus (16) transforms to

d2um

ds2
+ ½2

[
f .s cos� m/− |E m|.cos�m/s

s

]
.cos�m/um = 0; (18)

I = [a sec�m; b sec�m];
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�m

Simple pole

Re x

Im x

−.E m/

s-axis

FIGURE 1.

provided E m is not pure imaginary. The zero of f .s cos � m/ − |E m|.cos �m/s is real
on the s-axis, so that �.x/ may be obtained from

[�′.s/]2
1
�.s/ − �.Þ sec �m/

�.s/
= f .s cos �/ − .s cos � m/|E m |

s
cos �m; (19)

where s is as defined in (17). That is,

∫ �.0−/

�.−s/

.t − Þ̃/1=2

t1=2
dt +

∫ �.s/

�.0+/

.t − Þ̃/1=2

t1=2
dt

=
∫ s

−s

[f .t cos � m/− |E m|.t cos �m/]1=2

t1=2
cos1=2 �m dt; (20)

where �.x sec �m/ = x̃ and similarly hereafter, and
∫ s

−s G dt = ∫ 0−

−s G dt + ∫ s

0+ G dt .
Evaluating the integral on the right-hand side of (20) we then have

[�.−s/.�.−s/−Þ̃ /]1=2 −[�.s/.�.s/−Þ̃/]1=2 +Þ̃ log

∣∣∣∣ [�.−s/]1=2 +.�.−s/−Þ/1=2
�.s/1=2 +.�.s/−Þ/1=2

∣∣∣∣
= 


1=2
1

∫ s

−s

[
f .t cos � m/− |E m|.t cos �m/

t

]1=2

cos1=2 �m dt : (21)

With �.s/ as obtained in (21) and the functions Bp and Cp determined as in [3, 4, 5]
and [8], a substitution into (13) then gives the required solution to the BVP (3) with
(4) for n = 1.
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3. The double pole case

When n = 2 in (3) the asymptotic expansion of the solution of this eigenproblem
becomes

u = B.x; ½/w.¾; 
 2/+ ½−1=3C.x; ½/w ′.¾; 
2/; (22)

where w.¾; 
2/ is the solution to the comparison equation

d2w

d¾ 2
+

(

0 + 
1¾ + 
2¾

2

¾ 2

)
w = 0; [a; b]; (23)

with boundary conditions

w.a; 
2/ = w.b; 
2/ = 0; a < 0 < b: (24)

The solution w.¾; 
2/ is as obtained in [2]. The split interval consideration enables
us to apply Langer’s method as employed in the first part of Section 2, above. That is,
�.x/ may be obtained from

.�′/2
2
[�.x/− �.−1/][�.x/− �.−2/]

.�.x//2
= f .x/− Ex 2

x 2
; (25)

so that ∫ �.x/

�.−x/

[.t − −∗
1 /.t − −∗

2 /]1=2

t
dt = 


−1=2
2

∫ x

−x

[f .t/ − Et 2]1=2

t
dt; (26)

from which�.x/may be obtained by a direct application of Langer’s method, provided
the eigenvalues and turning points are real. However, if a second solution other than
the ‘distinguished’ solution (see [7]) is considered (which is normally the case when
the whole interval is relevant), the eigenvalues, the turning points and �.x/ are all
complex. In this context we need to use a transformation similar to (17). The presence
of two turning points which may be separated or may lie on the same half plane (as in
Tables 1 and 2 of [2]) gives rise to two transformations.

The turning points lie in the first and third quadrants (refer to Figure 2) but a similar
transformation would be obtained if they lie on any part of the complex x-plane.

A rotation of the positive real x-axis through � +
m gives the transformation

x = .cos �+
m /s; �+

m = tan−1

[
Im E +

m

Re E +
m

]
;

and similarly the negative real x-axis through � −
m gives the transformation

−x = .cos �−
m /s; �−

m = tan−1

[
Im E −

m

Re E −
m

]
:
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�+
m

Double pole

Re x

Im x

−1.E +
m /

s-axis

−2.E −
m /

�−
m

FIGURE 2.

These then transform (3) to

d2um

dx 2
+ ½2

[
f .s cos � ±

m /− |E m|.s cos �±
m /

s2

]
um = 0 (27)

I = [a sec � −
m ; b sec �+

m ];
where either only the upper signs or only the lower signs are chosen. The differential
equation from which we may compute �.x/ will then be


2
[�′.±s/]2

[�.±s/]2
[�.s/ − �.−1 sec �±

m /][�.s/ − �.−2 sec �±
m /]

= [f .±s cos � ±
m /− |E m|.±s cos �±

m /]
s2

:

That is, ∫ �.0−/

�.−s/

[.t − −̃1/.t − −̃2/]1=2

t
dt +

∫ �.s/

�.0+/

[.t − −̃1/.t − −̃2/]1=2

t
dt

= 

−1=2

2

∫ 0−

−s

[f .−t cos � −
m / − |E m|.t cos �−

m /
2]1=2

t
dt

+ 

−1=2

2

∫ s

0+

[f .t cos � +
m /+ |E m|.t cos �+

m /
2]1=2

t
dt : (28)

The determination of B p and Cp as in [3, 4] and [8], with �.s/ as obtained in (28)
completes the asymptotic approximation to the solution of (3) for the double pole case
as presented in (22).
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�m

Re x

Im x

−.E m/

s-axis�-axis
.90 + �m/

◦

.90 − �m/
◦

FIGURE 3.

4. Determination of �m

At this point we need an additional equation in each case for the determination of
�m , since the equations (21) and (28) for the computation of �.x/ contain unknowns
E m and �m . The unknown E m will be determined in the next section, once �m is
computed. We shall tackle this problem by constructing an �-axis perpendicular to
the s-axis. Along this axis, there are no turning points since −j lies on the s-axis (see
Figure 3).

Under this transformation, namely x = [± sin �m]� and �m = arg.E m/, the BVP
(3) with (4) devoid of E m is

d2um

d�2
+ ½2

[
f .±� sin � m/

.±� sin �m/
n

]
.± sin �m/

2um = 0; I = [−a csc �m; b csc �m]; (29)

um.−a csc �m/ = um.b csc �m/ = 0: (30)

4.1. Determining �m for the simple pole eigenproblem Now for n = 1, that is,
the simple pole case, (29) becomes

d2um

d�2
+ ½2

[
f .±� sin � m/

�

]
.± sin �m/um = 0: (31)

The comparison equation to (31) is

w′′
m + 
0¾

−1wm = 0: (32)
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The solutions are cylindrical functions of order 1, that is,

wm.¾/ = ¾ 1=2
[
ÞmJ1

(
2
 1=2

0 ¾ 1=2
)

+ þmY1

(
2
 1=2

0 ¾ 1=2
)]

where Þm; þm are constants, and ¾ is defined as ¾ = ½2=3�.�/ and


0 = ½4=3
∞∑

p=0

½−p
0p

with 
00 arbitrary. The absence of turning points in (32) enables us to invoke Theorem 3
of [7] without the ‘ full interval’ analysis of the earlier sections. The distinguished
solution of this case would be the Bessel function J 1, so that

wm.�/ =
{
½1=3�m.�/Þm J1.2


1=2
0 ½1=3�m/; 2.
0½/

1=2�m ∈ [0; b csc �m]
0; 2.
0½/

1=2�m ∈ [−a csc �m; 0]:

In order to satisfy the boundary conditions on [0; b csc �m], we require that along the
�-axis J1

[
2
 1=2

0 ½1=2�m.b csc �m/
] = 0.

Since �m and 
0 are real, the m th positive zero of J 1; Z m, may be computed ([1, 11])
as follows:

2
 1=2
0 ½1=2�m.b csc �m/ = Z m

so that

�m = csc−1

[
1

b
�∗

m

(
Z m

2



1=2
0 ½1=2

)]
; (33)

where �∗
m is the inverse function of �m . Thus �m would be finally obtained if �∗

m

appearing in (33) is computed.
We now apply Langer’s method to the transformed BVP (29) with (30) along the

�-axis. Namely, �.x/ may then be obtained from the differential equation

.�′/2

0

�
= f .±� sin � m/

�
.± sin �m/; � = �.�/; (34)

that is, ∫ �.�/

�.0/

dt

t
= 1



1=2

0

[∫ �

0

(
f .t sin � m/

t
sin �m

)1=2

dt

]
:

For a specific f .x/, ( 33) and (34) may be solved simultaneously for �m and �m . This
completes the determination of �m for the simple pole case.
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4.2. Determining �m for the double pole eigenproblem When n = 2, the trans-
formed BVP (29) becomes

d2um

d�2
+ ½2

[
f .±� sin � m/

�2

]
um = 0; (35)

um.−a csc �m/ = um.b csc �m/ = 0:

The comparison equation to (35) is

w′′
m + 
0¾

−2wm = 0;

which has a solution wm.¾/ = Þm¾
1=2.1+√

1−4
0/ + þm¾
1=2.1−√

1−4
0/, where Þm , þm are
constants. In this case

¾ = ½1=2�.�/; 
0 ∼ ½2
∞∑

p=0

½−p
0p : (36)

As usual we appeal to Theorem 3 of [7] and choose the distinguished solution as
wm.¾/ = Þm¾

1=2.1+√
1−4
0/ so that, on using (36),

wm.�/ =
{
Þm[½1=2�.�/]1=2.1+√

1−4
0/ on I = [0; b csc �m ];
0 on I = [−a csc �m; 0]:

On application of the boundary condition at b we get

�m = csc−1

[
�∗.o/

b

]
:

Going by Langer’s method, along the �-axis, �.�/ may be obtained from

.�′.�//2
.
0 + 
1�.�//

.�.�//2
= f .±� sin � m/

�2
(37)

so that ∫ �m .�/

�.0/

.
0 + 
1t/1=2

t
dt =

∫ �

0

[f .t sin � m/]1=2

t
dt : (38)

The integration on the left-hand side would be done in the limit just as it should be
on the right-hand side. Thus we obtain �m and �m from (37) and (38). This completes
the determination of �m for the double pole case.
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5. Eigenvalues En

We recall (18):

d2um

ds2
+ ½2

[
f .s cos � m/− s|E m| cos �m

s

]
cos �mum = 0:

Comparing this with (1.1) of [4] we have

u.z; ½/ → um.s; ½/ = −f .s cos � m/

s
cos �m;

E → −|E m|.cos2 �m/: (39)

And going by [8] we have

Fo.z/ →
[

f .s cos � m/ cos �m

s
− |E m| cos2 �m

]
:

Thus with analysis similar to that in [5]; if 
0 is an eigenvalue of (9) then for the n-th
eigenvalue


1 = gm.
0; 
2; : : : ; 
n/: (40)

Using the expansion of 
k.½/, (40) becomes

½

∞∑
t=0


0t |E m|½−t = gm

[
½

∑

1t |E m|½−t

]
:

The solution for |E m| in (39) gives the m-th eigenvalue |E m.½/| for (18). With 
0t as
obtained in [8], and −1 being the turning point in the right half plane say (that is, the
zero of f .s cos � m/ − s.|Em| cos2 �m/) then from [4] we may write

½

³

∫ −1.|Em |/

0

[
f .s cos � m/

s
cos �m − |E m| cos2 �m

]
ds + O.½−1/ = gm:

If we set |E m | = |E 0
m.½/| + ½−1|E 1

m.½/| + O.½−1/ as in [5] and expand the left-hand
side of (40) in powers of ½−1 and equate coefficients of like powers of ½−1, we have

½

³

∫ −1|Em |

0

[f .s cos � m/ cos �m − |E m| cos2 �m] ds = gm;

where gm = O.½−1/ .
This gives the first two terms in the asymptotic expansions for |E m| from which

we may then obtain |E m| as E m = |E m | cos �m + i|E m| sin �m . This completes the
determination of E m .

The procedure for the double pole is very much the same except that ( 27) will be
used in place of (18) and gm would be such that 
2 = gm.
0; 
1; 
3; : : : ; 
m/ in place
of (40).
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6. The asymptotic solutions

6.1. First order pole case Employing the method for the determination of the
functions Bp and Cp as in [4, 5] and [8], we obtain B0 = .�′.s//−1=2 and C0 = 0,
where �.s/ would be as in (21). From [8], .�′.s//−1=2 = ½1=4[¾ ′.s; ½/]−1=2. For (11)
and (13), the asymptotic expansions of the solution to the BVP (3) with (4) for n = 1
may then be written as

u ∼ .� ′.s//−1=2

[
.2
0/

1=4



1=3

1

√
³

(

0 + 
1¾

¾

)−1=4

× cos

[
2k sin−1

(

1¾


0

)
+

(−
1¾


0

)1=2(

0+
1¾


0

)1=2

−k³+ ³

4

]]
+O.½−3=4/;

where 
1 is as obtained in (12), and s = .sec �m/x as in (17).
For the split interval, in which case the eigenvalues are real and only the distin-

guished solution is considered, with �.x/ as in (15) we find that

u ∼ Þm.�
′.x//−1=2Mk;¼.¾.x; 
1// + O

(
½−3=4

)
;

where wm = ÞmMk;¼.¾.x; 

.m/

1 // as in [2] and 
 .m/1 is obtained from the mth positive
zero of the Whittaker function M k;¼.·/. It is worth noting that in computing the integral

for �.x/ from (15), for this case
∫ 0−

−x ds = 0 as a result of the application of Theorem 3
of [7].

6.2. Second order pole case With similar calculations we find that for the double
pole case

B0 = .�′.s//−1=2 and C0 = 0; (41)

where �.s/ is as obtained in (28).
A substitution of the solution to the comparison equation (23) with (24), and (41)

into (22) gives the asymptotic solution for the BVP (3) with (4) for n = 2 (the double
pole case). That is,

u ∼ .� ′.s//−1=2

[
 +.¾; 
2/; ¾ ∈ [a; 0/;

 −.¾; 
2/; ¾ ∈ [0; b];
where  +.·/ and  −.·/ are as obtained in [2] and ¾ takes the form ¾ = ½1=3�.x/. For
the split interval consideration �.x/ would be obtained from (26) and the asymptotic
solution will take the form

u ∼ Þm.�
′.x//−1=2Mk;¼.¾.x; 
2// + O

(
½−5=6

)
;

where M k;¼.¾.x; 
2// is as defined in [2] and 
2 here will be obtained from the zeros
of the Whittaker function M k;¼.·/.
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7. Concluding remarks

The split interval analysis for both cases (simple pole and double pole) is similar
though the eigenrelations are different as is evident in [2]. The similarity in the
analysis of the comparison equations is principally because one half of the complex
plane is considered and the connection formula for both cases would be the same if
the turning points in the double pole case coalesce.

It is obvious from the analysis that except for the split interval consideration, where
the only difference in the asymptotic solutions would be in the variable parameter ¼
(of the Whittaker function for the double pole case and the resulting eigenrelations),
the asymptotic solutions would be very different in both cases. An important feature
of these solutions as presented in Section 6 is that the solution for the double pole case
has two asymptotic representations for the two arms of the real x-axis, whereas the
simple pole case has a single asymptotic representation. Also, for large ½, we see that
the first term for the double pole case would be a better asymptotic approximation to
its solution than would be the first term of the simple pole case.
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