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THE PARAMETER DEPENDENT STURM-LIOUVILLE
EIGENPROBLEM WITH AN INTERIOR
SIMPLE OR DOUBLE POLE
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Abstract

Boundary value problems where resonance phenomena are studied are most often trans-
formable to parameter dependent Sturm-Liouville (SL) eigenproblems with interior sin-
gularities. The parameter dependent Sturm-Liouville eigenproblem with interior poles is
examined. Asymptotic approximations to the solutions are obtained using an extended
Langer's method to take care of the resulting complex eigenvalues and eigenfunctions.

1. Introduction

We consider the self-adjoint Sturm-Liouville (SL) eigenproblem with a parameter:

2
% + 2 [rE—q)Ju=0, | =[abl, a<0<h, (1)
u(@) = u(b) =0, @)

whereq(x) has a simple or double pole in the interiorloh is a real parameter and

E is the eigenvalue parameter. Standard SL theory permits singularities only at the
end points, and for(x) andq(x) real and continuous ofa, b]. Real eigenvalues

and eigenfunctions exist even if eithgix) or q(x) has a pole aa or b; and in this

case Langer's asymptotic method has been sh@®y#,[8] to provide a uniformly
approximate solution. However, such an asymptotic solution has not been obtained
for (1)—(2) with interior poles. For the parameterless counterparipfthe existence

of complex eigenvalues and eigenfunctions has been proves] far[the simple pole
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case and inJ] for the double pole case. Asymptotic solutions have been obtained
using a direct sum approach][ and by employing Titchmarsh-Weyh-function
theory [2]; for the parameterless problem. It is the purpose of the present article to
provide an extension of Langer’s method to the simple or double pole case with a
parameter, that is,1j—(2).

The importance of studying our system cannot be overemphasized as evidencec
by an ever increasing occurrence of problems with interior singularities in fluid wave
theory (|2, 6, 7, 10] for example) and mathematical physicg],[ where resonance
phenomena are studied using WKB analysis to obtain asymptotic solutions over split
intervals. We note that the equation studied ¢ fnay be transformed into the
parameter dependent interior double pole SL problem, whence our method is also
applicable to the study of Sabdinger resonances. To exploit available literature, we
shall assume the specific form for our BVP is of the type

du L [f(x) B B B
@4—)\. [F—E}u_o, | =[a,b], n=1,2, 3)
u@ =ub) =0, a<O0<h. 4

We may re-write 8) as

2

d 2
@JFA Fx,VDu=0, | =][a,b],

whereF (x, A) = [f(xX)/x " — E].
Then from ] or [8] we obtain the expansion of the solution f@&) {n the form

U=BX, Mw(E,y) + 1 #HIACK, ', ), (5)

wherepu is the sum of the orders of zeros ands the sum of the orders of poles,
w(€, y) is the solution to the corresponding comparison equation, and the functions
B andC are to be determined. Following] and [8], we further assume thé&t, B, &

andy, have the large. asymptotic expansions

FG ) ~ 1) > A PR (%) (6)

p=0

whereF, = —-E, F, =f(X)/x ?,p > 0,

B(X.2) ~ > APBy(x). Cx.A)~ > APC(x) @)
p=0 p=0
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and

o0
E(X,A) = AZ/(’H"J’Z)(;&(X), Vi = )»(“+“+2)/3Z)fp)/m- (8)
p=0

Thus we requirey, for k < 1in (8). From [3, 4] we have

Yoo = ¢'(bo),  vop = [d (b)) H{Fp(bo) +1p(00)}, y1p =0, p=12...,

N
whereF (x, 1) hasapole oforder; atx = b;,j =0,... ,N,andr (x) = [[(x—b)".
j=0

The main object of the paper then becomes the determinatio:1 of the function
¢ (X). This paper is organized as follows. In the next section we obtain the form of the
solution in terms of parametetg andE ,, for the simple pole case. The corresponding
solution for the double pole case is obtained in SecHorn Section4 we present
a determination of the parametetg for both cases while Sectioh presents the
computation of the eigenvalugs,. We finally present, in Sectiof, the leading order
asymptotic solutions for the simple and double pole cases.

2. Thesimple pole case

The comparison equation foBwhenn = 1 is

dPw  w+én _
d_fz Tw =0, | =[ab] (9)
w(@, ) =wb,y) =0, a<0<hb. (10)

The eigenproblem9) with (10), using analysis similar to that ir6], has largexi
solutions

2 )14 -1/4
w@’yl)”(li?) (J/o#;/l%‘)

V1 «/7?
1/2 1/2 1/2
x cos|:2ksin <@> + <@> <1+ @> — kot + Z} (11)
Yo Yo Yo 4

and the eigenrelation would be

. 1/2 . 1/2 1/2
2k arcsin( ylb) + ( ylb) <1+ yib) —km + r_ (n— }> w, (12)
Yo Yo Yo 4 2
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wherek = —y0/(2y,"?). The asymptotic solutiorb also becomes
u=BX MwE, y1) + A1 72CX, Mw'(E, ). (13)

On substitution of 13) into (3), employing @) and subsequenth6]—(8), we have on

equating powers of P for +p < —2 that

2 YilP(X) — ()] _ f(x) — Ex
d(X) X

wherex = « is the turning point of ), that is, the zero df(x) — Ex for the simple
pole case. Thus

¢(07) (S _ a*)l/Z ¢ (X) s — ot
/ - ds+/ 7 ds
$(—x) S g S

o _ 172 X B 172
g2 / [—f(s) ES} ds + y; 2 / [—f(s) ES} ds,  (15)

[¢]

: (14)

y s o s

wherea* = ¢ () and similarly hereafter. The split interval of integration itb)
conforms with the Direct Sum Method]} if «* andy; are real so that the eigenvalues
E., of (3) are real. An application of Langer’s method in this case is straightforward.
If however,a*, y; and consequentliz are complex as would be the case when the
whole intervall is considered, then a suitable transformation is needed s¢ that

still retains its properties as i3[4, 5] and [8]. We may re-write 8) forn = 1 as

du  ,[f(x) —Ex B B
@+A [T}u_o, | =[a,b] (16)
u@ =ub) =0, a<O0<h.

Now suppose the turning point (and subsequently the complex eigenvaijg of
(3) lies at the indicated position on the compleplane, see Figuré.

In orderto apply Langer's method a suitable path of integration would ke dles,
obtained by rotating the reataxis throught,,. The transformation employed would
then be

(17)

ImE
X = (COS0,)S, O = tan? [ m} ,

ReE,,

where Im denotes the imaginary part and Re denotes the real pha @fenvalue.
Thus (L6) transforms to

d?up, a2 f(scost m) — |Eml(COSOm)S
ds? s
| = [ased,, bsed,],

i| (COSOm)Um = 0, (18)
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Imx .
s-axis

T(Em)

Om

\ Rex

Simple pole

FIGURE 1.

provided E, is not pure imaginary. The zero of f (scosé ) — |En|(COSOy,)S is real
on the s-axis, so that ¢ (x) may be obtained from

¢(S) — ¢(a sechy) _ f(scosf) — (scosb ) |Enl
o (s) B s

wheres isasdefinedin (17). Thatis,

¢(07) t _ & 1/2 ¢ (s) t _ & 1/2
/ Co9 g+ / 9w
sy L s T

_ [°If(tcosh ) — |Enl(t C0SO;y) Y2
- s t1/2

[¢'(9) P

C0S6, (29

cos? 6y, dt, (20)

where ¢ (x sec6,,) = % and similarly hereafter, and [ Gdt = [°, Gdt + [ Gdt.
Evaluating the integral on the right-hand side of (20) we then have

- - - [¢(=9)]"*+(p(=S) —a)*?
_ Q) 1/2 _ 1/2
[¢(=9)(@ (=) —a)["“—[¢(s)(¢(S) —a)["“+alog 21 (p(5) —a)?

STf(tcosh ) — |Enl(t cosdy,) ]2
=y11/2/ [ (t cos ) tl |(t cos )] cos2 6, dt. 21)
—-S

With ¢ (s) asobtained in (21) and the functions B, and C, determined asin [3, 4, 5]
and [8], a substitution into (13) then gives the required solution to the BVP (3) with
(4) forn=1.

483
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3. Thedouble pole case

When n = 2in (3) the asymptotic expansion of the solution of this eigenproblem
becomes

u= B(Xv )\.)U)(g, yZ) + )"71/3C(X1 )")w/(§7 )’2), (22)

where w(€, y») isthe solution to the comparison equation

d?w Yo + vi€ + yok?
= 23
ae +< e )w 0, [a bl (23)
with boundary conditions

w@ ) =wb, ) =0, a<0<h. (24)

Thesolution w(é&, y»,) isasobtainedin [2]. The split interval consideration enables
usto apply Langer’smethod as employed in thefirst part of Section 2, above. Thatis,
¢ (X) may be obtained from

[P0 — ¢ (@) — p(r)] _ T —Ex ?
(9 (x))? X2

¢ (X) % _ +%\11/2 X _ 211/2
/ [(t fl)(: ;)] dt=y21/2/ [f(t) — Et °] dt. (26)
® _

(=X) v t

@)?7s

, (25)
S0 that

fromwhich ¢ (x) may beobtained by adirect application of Langer’ smethod, provided
the eigenvalues and turning points are real. However, if a second solution other than
the ‘distinguished’ solution (see[7]) is considered (which is normally the case when
the whole interval is relevant), the eigenvalues, the turning points and ¢ (x) are all
complex. Inthiscontext weneedto useatransformationsimilar to (17). The presence
of two turning points which may be separated or may lie on the same half plane (asin
Tables 1 and 2 of [2]) gives rise to two transformations.

Theturning pointsliein thefirst and third quadrants (refer to Figure 2) but asimilar
transformation would be obtained if they lie on any part of the complex x-plane.

A rotation of the positive real x-axisthrough 6, gives the transformation

ImE*
X = (cosft)s, 6F =tan? [ ’“} ,
m m ReE

and similarly the negative real x-axisthrough 6 . gives the transformation

ImE
—X = (cosbr)s, 6~ =tant mf,
( m) m [ReEm}
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Imx

s-axis

tl(E;Z)

Rex

Double pole

FIGURE 2.

These then transform (3) to
d2u,, a2 f(scosh ) — |Enl(scosbi) U =0
dx2 s2

= [asecH,,,bsech ],

(27)

where either only the upper signs or only the lower signs are chosen. The differential
equation from which we may compute ¢ (x) will then be

=+ 2
[[(Z((iz))]]z [p(S) — ¢ (rseCO[H(S) — b (72 SeCHy)]

_ [f(£scosh ;) — |Ep|(£scC0SH,)]
= 3 )

That is,

dt

/M” (N Gl /W [t — )t — B)]"?
$(=9) t (00 !
1 /0 [f(—tcosh ;) — |Enl(t coso,, )22

- dt
2 t

V2 S [f(tcosd ) + |Enyl(t coso, )12
t
The determination of B, and C, asin [3, 4] and [8], with ¢ (s) as obtained in (28)

compl etes the asymptotic approximation to the solution of (3) for the double pole case
as presented in (22).

dt. (29)
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Imx
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§-axis (90 + 6)°

7(Em)

Rex
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FIGURE 3.

4. Determination of 6,,

At this point we need an additional equation in each case for the determination of
Om, Since the equations (21) and (28) for the computation of ¢ (x) contain unknowns
E. and 6,,. The unknown E ., will be determined in the next section, once 6,, is
computed. We shall tackle this problem by constructing an Q2-axis perpendicular to
the s-axis. Along this axis, there are no turning points since t; lies on the s-axis (see
Figure 3).

Under this transformation, namely x = [+sin6,,]Q2 and 6,, = arg(E,,), the BVP
(3) with (4) devoid of E,, is

d?uy L [F(EQSN6 ) .
T~ = A ~n m m = El I =1— mos mls 2
TeE A [(:tszsinem)"](ism@ )°u 0 [—acschHy,, beschy], (29)
Un(—acschn,) = unp(beschd,) = 0. (30)

4.1. Determining 6,, for the simple pole eigenproblem Now for n = 1, that is,
the simple pole case, (29) becomes

, .
dun 2 [m] (4 SN By)Upy = O. (31)

dQ?
The comparison equation to (31) is

w4+ vof wy = 0. (32)
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The solutions are cylindrical functions of order 1, that is,

s =8 [ '47) s o o)

where a,,, Bm are constants, and £ is defined as& = 1?39 () and

o0
Yo=AY? Z 2P vop
p=0

with yq arbitrary. Theabsenceof turning pointsin (32) enablesustoinvoke Theorem 3
of [7] without the ‘full interval’ analysis of the earlier sections. The distinguished
solution of this case would be the Bessel function J,, so that

Ao ( ) amd1 (v 2 A3 ¢m),  2(voh)Y2¢m € [0, beschy]

m Q) =
(<D {o, 2(yoM) V2P € [—acsch, 0.
In order to satisfy the boundary conditions on [0, b cscé,,], we require that along the
Q-axis J1[ 2y, * A2 (b csc )| = O.

Since ¢, and y, arereal, them'" positive zero of J;, Z,,, may becomputed ([ 1, 11])
asfollows;

2y Y2 pm(bescOy) = Zin
s0 that

1 Zmn
O = CSCfl |:B¢r>:1 (7)/01/2)‘1/2>i| , (33)

where ¢/, is the inverse function of ¢,,. Thus 6,, would be finaly obtained if ¢}
appearing in (33) is computed.

We now apply Langer’s method to the transformed BV P (29) with (30) along the
Q-axis. Namely, ¢ (X) may then be obtained from the differential equation

f(£Q2sno, .
(W% - %(isnemx 6= (), (34)

$(Q) dt 1 Q f(t S-nem) . 1/2
/ T=T|:/ <fsn9m> dt|.
#(0) Yo 0

For a specific f (x), ( 33) and (34) may be solved simultaneously for ¢, and 6,,,. This
completes the determination of 6, for the simple pole case.

that is,
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4.2. Determining 6,, for the double pole eigenproblem  When n = 2, the trans-
formed BV P (29) becomes

, .
d?u,, L2 [m] Uy, = 0, (35)

daQ? Q2
Un(—acschn) = up(bcschd,) = 0.

The comparison equation to (35) is
w;r/] + yogizwm = 07

which has a solution wy(§) = apéE Y2V 4 g &1/20-vV1-40) where ay,, B are
constants. In this case
oo
§=120(Q). n~ A7) A Py (36)

p=0

As usual we appeal to Theorem 3 of [ 7] and choose the distinguished solution as
W (&) = a&Y2LHVI=%0) g that, on using (36),

am[AY2 (Q) V240 on | = [0, beschy],
0 on | =[—acschy, 0].

wm($2) = {

On application of the boundary condition at b we get

i [¢©
e [£2)]

Going by Langer’s method, along the Q-axis, ¢ (€2) may be obtained from

2 (o +1p(Q) _ f(ER28n0m)
(P ())? Q?

(¢' () (37)

S0 that

m(£2) 1/2 Q i 1/2
/ o+ O™ / f(esnon) ™ )
® 0

© t

The integration on the |eft-hand side would be done in the limit just asit should be
on the right-hand side. Thuswe obtain 6, and ¢, from (37) and (38). This completes
the determination of 6,,, for the double pole case.
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5. EigenvaluesE,

We recall (18):
d?u, , [f(scosé ) — S|En| COSO,
+ A
ds? S
Comparing this with (1.1) of [4] we have

] cosf,uU, = 0.

—f(scosf )
Uz, A) = Up(s,A) = — C0S6,

E — —|E ml(cos?6,,). (39)
And going by [8] we have

Fo(2) —

f(scosé ,) cosf
[ ( S’“) dl —|Em|cos29m].

Thus with analysissimilar to that in [5]; if y, is an eigenvalue of (9) then for the n-th
eigenvalue

Y1 = gm(VO’ Y2,y Vn) (40)

Using the expansion of y, (1), (40) becomes

Y valEnlr " = gn [ Y vulEnlr .

t=0
The solution for |E | in (39) gives the m-th eigenvalue |E .,(1)] for (18). With yq as
obtained in [8], and 7, being the turning point in the right half plane say (that is, the
zero of f(scosf ) — S(|Enm| cos?6,,)) then from [4] we may write

A 71(|Eml) f m
= / [w c0S6, — |E | cOS Gm] ds+ 0™ = gn.
T Jo S

If weset |[En,| = |[E2(L)| + A7YEL(W)| + O™ asin [5] and expand the left-hand
side of (40) in powers of A~ and equate coefficients of like powers of 1 1, we have

71 |Eml
- / [f (5C0SO 1) COSOy — |E | COS? O] AS = O,
0

whereg, = O(L7Y) .

This gives the first two terms in the asymptotic expansions for |E,,| from which
we may then obtain |[E.| as E,, = |E.| cos6, + i|En| Siné,. This completes the
determination of E .

The procedure for the double pole is very much the same except that (27) will be
used in place of (18) and g, would be such that v> = gn(yo, V1, V3, - - - » ¥Ym) in place
of (40).
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6. Theasymptotic solutions

6.1. First order pole case Employing the method for the determination of the
functions B, and C, asin [4, 5] and [8], we obtain B, = (¢'(s))"*? and C, = 0,
where ¢ (s) would be asin (21). From [8], (¢'(S))"Y? = AY4[£/(s, A)]"Y2. For (11)
and (13), the asymptotic expansions of the solution to the BVP (3) with (4) forn=1
may then be written as

(2y)™* (Vo +wnié ) v
Vll/sﬁ §

. 1/2 1/2
x cos[2k3in1<yi€>+< yﬁ;‘) <y0+y1§> —kn+zﬂ+0(k3/4),
Yo Yo Yo 4

where y; isasobtained in (12), and s = (sec6,)x asin (17).
For the split interval, in which case the eigenvalues are real and only the distin-
guished solution is considered, with ¢ (x) asin (15) wefind that

U~ am(@ (%)) "V My (5 (X, 1) + O (A 7%%)

where wy, = anMy . (E(X, y,™)) asin[2] and y,™ is obtained from the mt" positive
zero of theWhittaker function M, (-). Itisworthnoting that in computing theintegral
for ¢ (x) from (15), for this case ff; ds = O asaresult of the application of Theorem 3

of [7].

6.2. Second order polecase With similar calculations we find that for the double
pole case

u~ (¢'(s) [

Bo= (¢'(s))¥* and Cy=0, (41)

where ¢ (S) isas obtained in (28).

A substitution of the solution to the comparison equation (23) with (24), and (41)
into (22) gives the asymptotic solution for the BV P (3) with (4) for n = 2 (the double
polecase). That is,

¢+(§7 )/2)’ é € [av O)v
v_(§,y2), §€l0,b],
where v, (-) and v_(-) areasobtained in [2] and & takestheform & = AY3¢ (x). For
the split interval consideration ¢ (X) would be obtained from (26) and the asymptotic
solution will takethe form

U~ am(@ ()72 Myu (6 (X, v2)) + 0 (A7°),

where My, (§ (X, y2)) is asdefined in [2] and y, here will be obtained from the zeros
of the Whittaker function M, (-).

u~ (¢'(s) 2 [
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7. Concluding remarks

The split interval analysis for both cases (simple pole and double pole) is similar
though the eigenrelations are different as is evident in [2]. The similarity in the
analysis of the comparison equationsis principally because one half of the complex
plane is considered and the connection formula for both cases would be the same if
the turning points in the double pole case coal esce.

Itisobviousfrom the analysisthat except for the split interval consideration, where
the only differencein the asymptotic solutions would be in the variable parameter n
(of the Whittaker function for the double pole case and the resulting eigenrelations),
the asymptotic solutions would be very different in both cases. An important feature
of these solutions as presented in Section 6 isthat the solution for the double pole case
has two asymptotic representations for the two arms of the real x-axis, whereas the
simple pole case has a single asymptotic representation. Also, for large A, we see that
thefirst term for the double pole case would be a better asymptotic approximation to
its solution than would be thefirst term of the simple pole case.
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