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Abstract

It is shown that an integrable class of helicoidal surfaces in Euclidean &pacgoverned

by the Painleg V equation with four arbitrary parameters. A connection with sphere
congruences is exploited to construct in a purely geometric manner an associekduhl
transformation.

1. Introduction

It has been demonstrated i8] that the integrable generalized Ernst equatiril]

1 pZEz + szZ _ EZEZ

74 2 m(p) - Eﬁ(E) ’ Pz = 0’ (1)

which governs the interaction of ‘neutrino’ and gravitational fields in axially symmetric
spacetimes of general relativity, admits Lie-point symmetry reductions to the Panlev”
I1l, V and VI equations with arbitrary parameters. The above ‘Ernst-Weyl’ equation
has also been identified][as a canonical 2+0-dimensional reduction of the 2+1-
dimensional Loewner-Konopelchenko-Rogers (LKR) integrable syst@m This
connection has been exploited #] fo construct a Laplace-Darboux-type invariance
of thenonlinearErnst-Weyl equation. Indeed,(E, p) is a solution of the Ernst-Weyl
equation {) then the Laplace-Darboux-type transforms

E.:=2.(B), p.=2.(p)
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defined by

ER(E)p, + N(P)EE,

_ =p-—2i
T NE)P, - RPE, PrepoA @)
ER(E)p, + R(p)EE, .
_ —p+2
NEp, _NpE, P PTE
with
v, =ipy; Vi=—ip; p=RP) 3)

constitute another two solutions of the Ernst-Weyl equation. In particulagpif = O

mod 2 then the Ernst-Weyl equation may be reduced to the Ernst equation corre-
sponding to3(p) = 0 by means of iterative application of the Laplace-Darboux-type
transformation?, orits inverse?_ = £ *.

The Ernst-Weyl equationl] may be shown to appear in connection with a novel
class of integrable surfaces (‘generalized Weingarten surfaces’) in Minkowski
spaceM?® which was introduced inf]. The solutions of the Ernst-Weyl equation
in terms of the Painlexlll, V and VI transcendents may therefore be interpreted
geometrically. Furthermore, the above Laplace-Darboux-type transformations admit
a simple geometric interpretation in terms of sphere congruences so that their actior
on the Painleg’equations may also be placed on a geometric basis.

For brevity and simplicity, we here focus on tl&3) analogue of the Ernst-Weyl
equation which is descriptive of the spherical representation of generalized Weingarter
surfaces of Class 2 in Euclidean spd&eand show how the Painlew equation is
obtained as a particular reduction by consideration of helicoidal surfaces. Itis demon-
strated that the Laplace-Darboux-type transformation for generalized Weingarten sur-
faces of Class 2 set down i6][is compatible with the reduction to the PaingeV’
equation and therefore induces an associatezkBind transformation.

2. Generalized Weingarten surfaces

In the following, we are concerned with the geometry of surfaces in Euclidean
spacel®. Thus if the position vector of a surfagis denoted by then the surface
is determined up to its position in space by the fundamental foins [

| =dr-dr, Il =—dr-dN,
whereN designates the unit normal to the surface. The third fundamental form

Il =dN -dN,
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which constitutes the quadric form of the spherical representatiah & related to
the first and second fundamental forms by

KN =l 1 +111 = 0. 4)

Here.z” and.# denote the GauRian and mean curvatures respectively. The class of
integrable surfaces which is relevantin the present context has been introdugled in [

DEFINITION 2.1 (Generalized Weingarten surfaces of Class®¥urfacex c [E3
is said to be generalized Weingarten surface of Clasg there exist two functions
w andp which are harmonic with respect to the quadratic form

TSl (5)
and the relation
(W= p>H +ud +1=0

is satisfied.

Since the functiongt and p are harmonic, it is natural to introduce conformal
coordinates with respect t8)( that is, complex coordinatesz are chosen such that

I+l ~ dzdz

Hence, generalized Weingarten surfaces of Class 2 admit the following canonical
parametrizationd]:

THEOREM 2.2 (Parametrized generalized Weingarten surfaces of Clas$a8ne-
ralized Weingarten surfaces of Clagsnay be parametrized in such a way that the
generalized Lelieuvre formulae

r,=ipN,x N+ uN, r;=ipN x N;+ uN; (6)
hold and

If the functionsu andp are constant then Definitidh 1reduces to that for ‘linear’
Weingarten surfaces]. If u = 0 thenp is harmonic with respect to the second
fundamental form andl/+/.%"),, = 0 so that Bianchi surfaces of positive GauRian
curvature are obtaine@]. In the caseu = +p, p is harmonic with respect to the
first fundamental form by virtue of4§ and (1/.#),, = 0. This corresponds to the
definition of harmonic inverse mean curvature aggs P].

The compatibility conditiorr , = r,, for the generalized Lelieuvre formula6)(
can be conveniently expressed in terms of a complex fun@i¢irnst potential’)
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which labels the complex plane onto which the unit norfNals stereographically
projectedvia

E+E
N = —i(E—E)|. @)
|E|2+1 |E|2_1

Thus, if one introduces a complex harmonic functioaiccording to
p=p+|0, O'Z:_iMZ’ 02=iM2, (8)

then any generalized Weingarten surface of Class 2 gives rise to a solution of the
Ernst-type equation

1 ZEZ ZEZ EZEZ =
] A Tl S S E. pn=0. 9)
2 R(p) [El?+1

Conversely, any solution of this Ernst-type equation defines uniqi@tire general-
ized Lelieuvre formulaeq) a generalized Weingarten surface of Class 2.

Itis evident that the Ernst-type equatidr) (nay be derived in a similar manner by
considering generalized Weingarten surfaces in Minkowski spicerhe geometric
results obtained in the following therefore hattitatis mutandigor the Ernst-Weyl
equation.

3. Helicoids and the Painlee V equation

In [6], it has been shown that the Ernst-type equati®rafimits special solutions
in terms of particular Painlevll transcendents which are associated with generalized
Weingarten surfaces of revolution. It may be verified that the underlying particular
Painle\ 11l equation constitutes a degenerate case of the PaiMequation. From
a geometric point of view, this is seen as follows.

Itis natural to regard helicoids as canonical generalizations of surfaces of revolution.
These are generated by (twisted) curves which are simultaneously rotated about an
translated along a fixed axis at constant sped Here we consider generators of
the formI" : r = r(Xx, y = cons}, where the coordinatesandy are given by the
decompositiorz = x + iy, so that the generalized Lelieuvre formul&glfecome

ry=pNyx N+ uN,, ry=pNx N+ uN,. (20)
Thus, if we choose the parametrization

F(x)cody + G(X)]
r=| Fx)sinly + G(x)] (11)
cy+ H(x)
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of a helicoidZ, where the constatis called theparameterof the helicoidal motion,
then it is readily verified that the unit normal ®assumes the form

sing cosw
N = | singsine |, ¢=¢X), o=Yy+yX). (12)
COSp

It is noted that the case= 0 corresponds to surfaces of revolution.

It turns out that generalized Weingarten surfaces of Class 2 which admit spherical
representations of the formZ#) are not necessarily helicoidal. Accordingly, we relax
the above restriction oR and demand that the ‘offset surface® defined by

r°=r—uN

be helicoidal. Ifu is constant ther> and X° constitute parallel suaces. The
generalized Lelieuvre formulae for the offset surface read

rg=pNy x N —uN, rj=pNxN,—pu,N,

whereN is notnormal to the offset surface® unlessu is constant. However, if we
choose the harmonic functiopsandu to be

p =CoX+C1, pu=ax+by+c,
with arbitrary constants; anda, b, then the relations
re-N=-a, ry-N=-b

imply that if £° is helicoidal with an associated position veatbof the form (L1) then
the unit normaN is still given by (L2) for appropriate functiong andy,. Conversely,
it is shown below that if the spherical representation of a generalized Weingarten
surfaceX of Class 2 is given by12) then the corresponding offset surfagé is
helicoidal.

Insertion of the parametrizatiofi?) into the generalized Lelieuvre formula&dj
now produces the relations

COSp COSw —sinw
re=(psing + ue") | cospsinw | + uy'sing | cosw |,
—sing 0
—sinw COSyp COSw

ry=(p¢ + using) | cosw | — py'sing | cospsinw |,
0 —sing
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where the prime denotes differentiation with respeckt@nd cross-differentiation
yields

(p¢') = p(1+ ¥?) singcosp + (by’ — a) sing

/ 1 / r_! / (13)
(oY’ sing) + pyr'y’ cosp + by’ = 0.
The latter differential equation admits the first integral
bcosy + ¢
= 14
o Si @ (14)
so that ((3); may be written as
N . . (b? + ¢?) cosyp + bc(1+ cog ¢)

(p¢") = psingcosp —asing + . (15)

pSin g

Finally, the position vector of the generalized Weingarten surfacereadily shown
to be

f cosw — gsinw
r=|fsinw+gcosw | +uN, (16)
cy+h

where the functiond, g andh are given by

f=p¢', g=(b+ py¥'cosp)sing, h= —/(psin2<p+acos<p)dx. a7)

We therefore conclude that the offset surfa®as indeed helicoidal and the parameter
c of the helicoidal motion is identified as the constant of integration in the first
integral (L4).

The parametrizatiorl@) shows that ifo = 0 then the surfac® is also helicoidal.
If, in addition, c = 0 thenX is a surface of revolution, in which case the differential
equation {5) reduces to the stationary double sine-Gordon equation or a particular
Painle\g 11l equation in trigonometric form depending on whethpée= 0 or p’ # 0
[6]. Here, we focus on the generic case# 0 and therefore setp = x without loss
of generality. Remarkably, in this case, the integia){ may be evaluated explicitly
to obtain

1
h= Exz[dz + (Y% — 1) sirf ] — axcosy.

1In the context of general relativity, the case= 0 is non-physical.
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Now, on settingp = 2arctan/—w, the differential equationl®) reduces to the
Painle V equation

1 1 ! —1)? 1

2w w—1 X2 X w—1

with parameters = —(b — ¢)?/8, 8 = (b + ¢)?/8,y = —2a, § = —2. Itis evident
that the coordinate may be scaled in such a way thiatakes any negative value.
Thus, up to complexification, the PainkV equation with four arbitrary parameters
has been derived in a purely geometric manner.

4. Sphere congruences and a&klund transformation

Generalized Weingarten surfaces of Class 2 have been shown to come naturally
in pairs []. Thus, if X is a generalized Weingarten surface of Class 2 then one
may associate with each poift on  a sphere of radiup — u which touche$
¥ at P so thatZ constitutes one sheet of the envelope of a two-parameter family of
spheres (sphere congruence). The second &heteirns out to be another generalized
Weingarten surface of Class 2 with position vector

r-=r+((p-wN-N).
In terms of the Ernst potenti, the unit normaN_ is given by

_ E(EP + Dp; + 2%(p)E;
"~ (IE2+1p, — 2R(P)EE,’

p7=p+2il), (19)

where the harmonic functionis defined as inJ). The transformationl(9) which, by
construction, leaves invariant the Ernst-type equat®rrépresents the analogue of
the Laplace-Darboux-type transformatiéh for the Ernst-Weyl equatiorct. (2)).

Inspection of the transformation formulad) now shows that the above Laplace-
Darboux-type transformatio®” maps within the class of helicoidal offset surfaces
¥°. Indeed, it is seen that the specializatibix, y) = E(x)e€¥, which corresponds to
the ansatzX2), is preserved byZ_. Specifically, comparison of the parametrizations
(7) and (12 yields E(x) = € cot(¢/2) so that evaluation of1Q); results in the
Backlund transformation

, (@—1)[2xw' +4xw+ (a—1)(w? —1)]+bc(w —1)?
Axw' +2Xw+(@a—1)(w—1 P+ (b—c)2(w—1)*

ww_ =1+4w—-1) (20)

2If p — u is positive then the centre of the sphere is assumed to be on the same Sids tife unit
normalN.
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for the Painlee’V equation {8). The remaining relationl@), implies that

n-=pn—2p

by virtue of (3) and @). Moreover, it may be directly verified that the constant of
integration in the first integralld) remains unchanged. Thus, as a consequence of the
transformation laws

a=a—-2, b =b, c =c
we obtain the new parameters

o_=a, PB_=p, y_-=y+4, 6_=6.

It would be of interest to investigate whether thadRlund transformation2() may
be decomposed into known elementacRlund transformations for the PainéeV’
equation f].
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