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Abstract

It is shown that an integrable class of helicoidal surfaces in Euclidean spaceE
3 is governed

by the Painlev́e V equation with four arbitrary parameters. A connection with sphere
congruences is exploited to construct in a purely geometric manner an associated Bäcklund
transformation.

1. Introduction

It has been demonstrated in [8] that the integrable generalized Ernst equation [1, 10]

Ezz̄ + 1

2

pz̄Ez + pzEz̄

<.p/ = EzEz̄

<.E/ ; pzz̄ = 0; (1)

which governs the interaction of ‘neutrino’ and gravitational fields in axially symmetric
space-times of general relativity, admits Lie-point symmetry reductions to the Painlev´e
III, V and VI equations with arbitrary parameters. The above ‘Ernst-Weyl’ equation
has also been identified [7] as a canonical 2+0-dimensional reduction of the 2+1-
dimensional Loewner-Konopelchenko-Rogers (LKR) integrable system [5]. This
connection has been exploited in [9] to construct a Laplace-Darboux-type invariance
of thenonlinearErnst-Weyl equation. Indeed, if.E;p/ is a solution of the Ernst-Weyl
equation (1) then the Laplace-Darboux-type transforms

E± = L±.E/; p± = L±.p/
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defined by

E+ = E<.E/pz + <.p/ĒEz

<.E/pz − <.p/Ez
; p+ = p − 2 i ¹;

E− = E<.E/pz̄ + <.p/ĒEz̄

<.E/pz̄ − <.p/Ez̄
; p− = p + 2 i ¹;

(2)

with

¹z = i ²z; ¹z̄ = − i ²z̄; ² = <.p/ (3)

constitute another two solutions of the Ernst-Weyl equation. In particular, if=.p/ = 0
mod 2¹ then the Ernst-Weyl equation may be reduced to the Ernst equation corre-
sponding to=.p/ = 0 by means of iterative application of the Laplace-Darboux-type
transformationL+ or its inverseL− = L −1

+ .
The Ernst-Weyl equation (1) may be shown to appear in connection with a novel

class of integrable surfaces (‘generalized Weingarten surfaces’) in Minkowski
spaceM3 which was introduced in [6]. The solutions of the Ernst-Weyl equation
in terms of the Painlev´e III, V and VI transcendents may therefore be interpreted
geometrically. Furthermore, the above Laplace-Darboux-type transformations admit
a simple geometric interpretation in terms of sphere congruences so that their action
on the Painlev´e equations may also be placed on a geometric basis.

For brevity and simplicity, we here focus on theO.3/ analogue of the Ernst-Weyl
equation which is descriptive of the spherical representationof generalizedWeingarten
surfaces of Class 2 in Euclidean spaceE3 and show how the Painlev´e V equation is
obtained as a particular reduction by consideration of helicoidal surfaces. It is demon-
strated that the Laplace-Darboux-type transformation for generalized Weingarten sur-
faces of Class 2 set down in [6] is compatible with the reduction to the Painlev´e V
equation and therefore induces an associated B¨acklund transformation.

2. Generalized Weingarten surfaces

In the following, we are concerned with the geometry of surfaces in Euclidean
spaceE3. Thus if the position vector of a surface6 is denoted byr then the surface
is determined up to its position in space by the fundamental forms [3]

I = dr · dr ; II = −dr · dN;

whereN designates the unit normal to the surface. The third fundamental form

III = dN · dN;
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which constitutes the quadric form of the spherical representation of6, is related to
the first and second fundamental forms by

K I −M II + III = 0: (4)

HereK andM denote the Gaußian and mean curvatures respectively. The class of
integrable surfaces which is relevant in the present context has been introduced in [6].

DEFINITION 2.1 (Generalized Weingarten surfaces of Class 2).A surface6 ⊂ E
3

is said to be ageneralized Weingarten surface of Class2 if there exist two functions
¼ and² which are harmonic with respect to the quadratic form

II +¼ III (5)

and the relation

.¼2 − ²2/K + ¼M + 1 = 0

is satisfied.

Since the functions¼ and² are harmonic, it is natural to introduce conformal
coordinates with respect to (5), that is, complex coordinatesz; z̄ are chosen such that

II +¼ III ∼ dzd̄z:

Hence, generalized Weingarten surfaces of Class 2 admit the following canonical
parametrization [6]:

THEOREM 2.2 (Parametrized generalized Weingarten surfaces of Class 2).Gene-
ralized Weingarten surfaces of Class2 may be parametrized in such a way that the
generalized Lelieuvre formulae

r z = i ²N z × N + ¼N z; r z̄ = i ²N × N z̄ + ¼N z̄ (6)

hold and

²zz̄ = 0; ¼zz̄ = 0:

If the functions¼ and² are constant then Definition2.1reduces to that for ‘linear’
Weingarten surfaces [3]. If ¼ = 0 then² is harmonic with respect to the second
fundamental form and.1=

√
K /zz̄ = 0 so that Bianchi surfaces of positive Gaußian

curvature are obtained [2]. In the case¼ = ±², ² is harmonic with respect to the
first fundamental form by virtue of (4) and.1=M /zz̄ = 0. This corresponds to the
definition of harmonic inverse mean curvature surfaces [2].

The compatibility conditionr zz̄ = r z̄z for the generalized Lelieuvre formulae (6)
can be conveniently expressed in terms of a complex functionE (‘Ernst potential’)
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which labels the complex plane onto which the unit normalN is stereographically
projectedvia

N = 1

|E|2 + 1


 E + Ē

− i.E − Ē/
|E|2 − 1


 : (7)

Thus, if one introduces a complex harmonic functionp according to

p = ² + i ¦; ¦z = − i ¼z; ¦z̄ = i ¼z̄; (8)

then any generalized Weingarten surface of Class 2 gives rise to a solution of the
Ernst-type equation

Ezz̄ + 1

2

pz̄Ez + pzEz̄

<.p/ = 2
EzEz̄

|E|2 + 1
Ē; pzz̄ = 0: (9)

Conversely, any solution of this Ernst-type equation defines uniquelyvia the general-
ized Lelieuvre formulae (6) a generalized Weingarten surface of Class 2.

It is evident that the Ernst-type equation (1) may be derived in a similar manner by
considering generalized Weingarten surfaces in Minkowski spaceM

3. The geometric
results obtained in the following therefore holdmutatis mutandisfor the Ernst-Weyl
equation.

3. Helicoids and the Painlevé V equation

In [6], it has been shown that the Ernst-type equation (9) admits special solutions
in terms of particular Painlev´e III transcendents which are associated with generalized
Weingarten surfaces of revolution. It may be verified that the underlying particular
Painlevé III equation constitutes a degenerate case of the Painlev´e V equation. From
a geometric point of view, this is seen as follows.

It is natural to regard helicoids as canonical generalizations of surfaces of revolution.
These are generated by (twisted) curves which are simultaneously rotated about and
translated along a fixed axis at constant speed [3]. Here we consider generators of
the form0 : r = r .x; y = const/, where the coordinatesx and y are given by the
decompositionz = x + i y, so that the generalized Lelieuvre formulae (6) become

r x = ²N y × N + ¼N x; r y = ²N × Nx + ¼N y: (10)

Thus, if we choose the parametrization

r =

F.x/ cos[y + G.x/]

F.x/ sin[y + G.x/]
cy + H .x/


 (11)
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of a helicoid6, where the constantc is called theparameterof the helicoidal motion,
then it is readily verified that the unit normal to6 assumes the form

N =

sin' cos!

sin' sin!
cos'


 ; ' = '.x/; ! = y +  .x/: (12)

It is noted that the casec = 0 corresponds to surfaces of revolution.
It turns out that generalized Weingarten surfaces of Class 2 which admit spherical

representations of the form (12) are not necessarily helicoidal. Accordingly, we relax
the above restriction on6 and demand that the ‘offset surface’6o defined by

r o = r − ¼N

be helicoidal. If¼ is constant then6 and6o constitute parallel surfaces. The
generalized Lelieuvre formulae for the offset surface read

r o
x = ²N y × N − ¼x N; r o

y = ²N × N x − ¼y N;

whereN is not normal to the offset surface6o unless¼ is constant. However, if we
choose the harmonic functions² and¼ to be

² = c0x + c1; ¼ = ax + by + c2;

with arbitrary constantsci anda, b, then the relations

r o
x · N = −a; r o

y · N = −b

imply that if6o is helicoidal with an associated position vectorr o of the form (11) then
the unit normalN is still given by (12) for appropriate functions' and . Conversely,
it is shown below that if the spherical representation of a generalized Weingarten
surface6 of Class 2 is given by (12) then the corresponding offset surface6o is
helicoidal.

Insertion of the parametrization (12) into the generalized Lelieuvre formulae (10)
now produces the relations

r x = .² sin' + ¼'′/


cos' cos!

cos' sin!
− sin'


 + ¼ ′ sin'


− sin!

cos!
0


 ;

r y = .²'′ + ¼ sin'/


− sin!

cos!
0


 − ² ′ sin'


cos' cos!

cos' sin!
− sin'


 ;
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where the prime denotes differentiation with respect tox, and cross-differentiation
yields

.²'′/′ = ².1 +  ′2/ sin' cos' + .b ′ − a/ sin'

.² ′ sin'/′ + ² ′' ′ cos' + b' ′ = 0:
(13)

The latter differential equation admits the first integral

 ′ = b cos' + c

² sin2 '
(14)

so that (13)1 may be written as

.²'′/′ = ² sin' cos' − a sin' + .b2 + c2/ cos' + bc.1+ cos2 '/

² sin3 '
: (15)

Finally, the position vector of the generalized Weingarten surface6 is readily shown
to be

r =

 f cos!− g sin!

f sin! + g cos!
cy + h


 + ¼N; (16)

where the functionsf; g andh are given by

f = ²' ′; g = .b + ² ′ cos'/ sin'; h = −
∫
.² sin2 ' + a cos'/dx: (17)

We therefore conclude that the offset surface6o is indeed helicoidal and the parameter
c of the helicoidal motion is identified as the constant of integration in the first
integral (14).

The parametrization (16) shows that ifb = 0 then the surface6 is also helicoidal.
If, in addition,c = 0 then6 is a surface of revolution, in which case the differential
equation (15) reduces to the stationary double sine-Gordon equation or a particular
Painlevé III equation in trigonometric form depending on whether² ′ = 0 or ² ′ 6= 0
[6]. Here, we focus on the generic case² ′ 6= 0 and therefore set1 ² = x without loss
of generality. Remarkably, in this case, the integral (17)3 may be evaluated explicitly
to obtain

h = 1

2
x2[' ′2 + . ′2 − 1/ sin2 '] − ax cos':

1In the context of general relativity, the case² ′ = 0 is non-physical.
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Now, on setting' = 2 arctan
√−w, the differential equation (15) reduces to the

Painlevé V equation

w′′ =
(

1

2w
+ 1

w−1

)
w′2−w′

x
+ .w−1/2

x2

(
Þw+ þ

w

)
+ w

x
+ Žw.w+1/

w−1
(18)

with parametersÞ = −.b − c/2=8, þ = .b + c/2=8,  = −2a, Ž = −2. It is evident
that the coordinatex may be scaled in such a way thatŽ takes any negative value.
Thus, up to complexification, the Painlev´e V equation with four arbitrary parameters
has been derived in a purely geometric manner.

4. Sphere congruences and a B¨acklund transformation

Generalized Weingarten surfaces of Class 2 have been shown to come naturally
in pairs [6]. Thus, if 6 is a generalized Weingarten surface of Class 2 then one
may associate with each pointP on 6 a sphere of radius² − ¼ which touches2

6 at P so that6 constitutes one sheet of the envelope of a two-parameter family of
spheres (sphere congruence). The second sheet6− turns out to be another generalized
Weingarten surface of Class 2 with position vector

r− = r + .² − ¼/.N − N−/:

In terms of the Ernst potentialE, the unit normalN− is given by

E− = E.|E|2 + 1/pz̄ + 2<.p/Ez̄

.|E|2 + 1/pz̄ − 2<.p/ĒEz̄

; p− = p + 2 i ¹; (19)

where the harmonic function¹ is defined as in (3). The transformation (19) which, by
construction, leaves invariant the Ernst-type equation (9) represents the analogue of
the Laplace-Darboux-type transformationL− for the Ernst-Weyl equation (cf. (2)).

Inspection of the transformation formula (19) now shows that the above Laplace-
Darboux-type transformationL− maps within the class of helicoidal offset surfaces
6o. Indeed, it is seen that the specializationE.x; y/ = E.x/ei y, which corresponds to
the ansatz (12), is preserved byL−. Specifically, comparison of the parametrizations
(7) and (12) yields E.x/ = ei cot.'=2/ so that evaluation of (19)1 results in the
Bäcklund transformation

ww− =1+4.w−1/2
.a−1/[2xw′ +4xw+.a−1/.w2 −1/]+bc.w−1/2

4[xw′+2xw+.a−1/.w−1/]2 +.b−c/2.w−1/4
(20)

2If ² − ¼ is positive then the centre of the sphere is assumed to be on the same side of6 as the unit
normalN.
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for the Painlev´e V equation (18). The remaining relation (19)2 implies that3

¼− = ¼− 2²

by virtue of (3) and (8). Moreover, it may be directly verified that the constant of
integration in the first integral (14) remains unchanged. Thus, as a consequence of the
transformation laws

a− = a − 2; b− = b; c− = c;

we obtain the new parameters

Þ− = Þ; þ− = þ; − =  + 4; Ž− = Ž:

It would be of interest to investigate whether the B¨acklund transformation (20) may
be decomposed into known elementary B¨acklund transformations for the Painlev´e V
equation [4].
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