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INVERSE SCATTERING FOR THE MATRIX SCHR ÖDINGER
OPERATOR AND SCHRÖDINGER OPERATOR ON GRAPHS
WITH GENERAL SELF-ADJOINT BOUNDARY CONDITIONS

M. S. HARMER1

(Received 22 March, 2000)

Abstract

Using a parameterisation of general self-adjoint boundary conditions in terms of Lagrange
planes we propose a scheme for factorising the matrix Schrödinger operator and hence con-
struct a Darboux transformation, an interesting feature of which is that the matrix potential
andboundary conditions are altered under the transformation. We present a solution of the
inverse problem in the case of general boundary conditions using a Marchenko equation
and discuss the specialisation to the case of a graph with trivial compact part, that is, with
diagonal matrix potential.

1. The matrix Schrödinger operator on the semi-axis

We consider here the matrix Schr¨odinger operator on the semi-axis, that is,

L ≡ − d2

dx2
+ Q.x/

on L2.R+;Cn/ whereR+ ≡ [0;∞/. The potential matrixQ.x/ is assumed to be
hermitian, absolutely integrable with absolutely integrable first moment and contin-
uous on the open semi-axis [1]. The matrix Schr¨odinger operator,L0, defined on
smooth functions vanishing at the origin and with compact support, is a symmetric
operator with deficiency indices.n;n/. Using von Neumann extension theory [2]
we may parameterise all self-adjoint extensions of this operator by unitary mappings
between the deficiency subspaces, that is,U ∈ U.n/. For practical purposes, however,
it is more convenient to describe the self-adjoint extensions in terms of self-adjoint
boundary conditionsat the origin.
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It is well known that the construction of self-adjoint extensions is analogous to
the description of Lagrange planes in a hermitian symplectic space [4]. In [4] these
Lagrange planes are parameterised in terms of twon × n matrices such that their
product is hermitian. Really, in the case of a hermitian symplectic space which admits
a canonical basis,1 the Lagrange Grassmannian is isomorphic to the unitary group
U.n/ and we are able to explicitly parameterise the Lagrange planes, and hence self-
adjoint boundary conditions, in terms of a unitary matrix—for details see [3]. In the
case of the matrix Schr¨odinger operator on the semi-axis the self-adjoint boundary
conditions at the origin are given by

i

2
.U ? − I/ 

∣∣
0
+ 1

2
.U ? + I/ x

∣∣
0
= 0: (1)

Then the solution of the matrix Schr¨odinger equationL4 = ½4 with boundary
values

4|0 = 1

2
.U + I/ ≡ A; 4x|0 = i

2
.U − I/ ≡ B (2)

satisfies these boundary conditions. Using the Jost solutions,F±, solutions of the
homogeneous equationL F± = ½F±, with asymptotic behaviour

lim
x→∞

F±.x; k/ ∼ e±i kx
I; k = √

½

and no prescribed behaviour at the origin, can be written as

4.x; k/ = F−.x; k/M−.k/ + F+.x; k/M+.k/: (3)

We define the scattering wave solution

9.x; k/ ≡ 4.x; k/M−1
− = F− + F+S.k/;

whereS.k/ is known as the scattering matrix. The coefficientsM± can be evaluated
by taking the Wronskian of4 andF+ or F− [3]

M± = ± 1

2ik

[
F†

± B − F†
±;x A

]
; (4)

whereF±.k/ ≡ F±.0; k/ are known as the Jost functions and† is the involution
Y†.x; k/ ≡ Y?.x; k̄/. The Wronskian of4† and4

W{4†;4} = [
4†4x − 4†

x4
]∣∣

0
= A?B − B?A = 0;

1By our definition, a hermitian symplectic space for a symmetric operator with non-equal deficiency
indices does not admit a canonical basis or Lagrange planes [3].
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is always zero. Moreover, if we write4 in terms of the scattering wave solutions

W{4†;4} = M †
−W{F†

− + S†F†
+; F− + F+S}M−

= 2ik M†
−

[−I+ S†S
]

M− = 0

we see, sinceS† = S? for k ∈ R, that the scattering matrix is unitary for realk.
If we diagonaliseU , and use the well known asymptotics of the Jost functions [1, 3]

in the above expression forM±, we see that the scattering matrix has the following
asymptotic behaviour.

LEMMA 1.1. Given the self-adjoint operatorL , with associated unitary matrixU
defining the boundary conditions ofL , the scattering matrix ofL has the asymptotics

lim
k→∞

S.k/ ∼ Û

whereÛ is a unitaryhermitianmatrix Û = Û ? derived fromU by applying the map

z 7→
{

1 : z ∈ T \ {−1};
−1 : z = −1

to the spectrum ofU .

HereT is the unit circle inC. The matrixÛ , since it is hermitian, defines projections

P ≡ 1

2
.I+ Û /; P⊥ ≡ 1

2
.I − Û /;

which may be used to define a factorisation of the original operatorL .

THEOREM 1.2. Given the self-adjoint operatorL we can formally factorise it as

L = D?D

where

D = i

[
d

dx
− V

]

and the functions in the domain ofD satisfy the following boundary conditions at the
origin:

P⊥  |0 = 0:

Furthermore,V is a hermitian matrix which satisfies the Riccati equation with the
potentialQ.x/ on the right-hand side and has initial value satisfying

P V|0 = −P H (5)

whereH is a bounded hermitian matrix specified by the boundary conditions ofL .
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PROOF. The fact thatV.x/ satisfies the Riccati equation is well known. We diago-
nalise the matrixU . Suppose thatl of the eigenvalues ofU are−1, then we choose
the firstl elements of the basis used in the diagonalisation to be the eigenvectors with
eigenvalue−1. In this basis the boundary conditions ofL can be written[−i I.l / 0

0 − tan.'̄=2/

]
 |0 +

[
0 0
0 I.n−l /

]
 x|0 = 0

where is the boundary value (under the change of basis) and' is the.n− l /×.n− l /
diagonal matrix with entries which are the eigenvalues ofU excluding the eigenvalues
−1. This means that we can write the boundary conditions forL as

P⊥  |0 = 0;

P  x|0 + P H  |0 = 0;
(6)

where H is the hermitian matrix depending on the original boundary conditions.
Consider the operatorD?D. FromD we get the boundary condition

P⊥  |0 = 0

and fromD? we get the boundary condition

P [D ]|0 = 0

which is

P  x|0 − P V|0  |0 = 0:

So we see that as long as the initial value ofV satisfies (5), D?D has the required
boundary conditions.

It is well known that the Riccati equation can be linearised to the Schr¨odinger
equation at zero energy; let us denote by40 these zero-energy solutions. Then it is
natural to ask how we can express the coefficientV.x/ in terms of40. The following
theorem is proved in [3], we merely quote it here.

THEOREM 1.3. The hermitian matrixV can be writtenV.x/ = 40;x.x/4
−1
0 .x/

where40.x/ is the matrix of solutions of the Schrödinger equation at zero energy
satisfying the boundary values of(2) specified by the unitary matrixU0 and subject
to:

.1/ The matrixU0 satisfies

PU0 = PU: (7)

.2/ The potentialQ.x/ is continuous in some neighbourhood containing the origin.
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The inverse problem for the matrix Schr¨odinger operator on the semi-axis with
Dirichlet boundary conditions (that is, vanishing of the functions at the origin) is
described in Agranovich and Marchenko [1]. In [3] the author extends Agranovich
and Marchenko’s result to arbitrary self-adjoint boundary conditions at the origin; the
inverse problem may be reduced to a Marchenko equation2

G.x + y/+ K .x; y/+
∫ ∞

x

K .x; t/G.t + y/dt = 0; x < y; (8)

where

G.t/ =
N∑

l=1

C2
l e−�l t + 1

2³

∫ ∞

−∞
.S.k/− Û /eikt dk:

Here½l = −�2
l are the discrete eigenvalues and theCl are non-negative hermitian

matrices known as the normalisation matrices. The set{S.k/; �l ; Cl ; l = 1; : : : ; N}
is known as the scattering data. As this is a lengthy derivation we will not repeat it
here. If we are able to solve (8) for the kernel of the transformation operatorK .x; y/
we can recover the potential matrix from the well known identity [1]

−2
d K.x; x/

dx
= Q.x/:

We can also recover the self-adjoint boundary conditions at the origin from the inverse
problemvia

U = [
9|0 − i9x|0

] [
9|0 + i9x|0

]−1
;

which follows from the definition of the scattering wave solution plus (2). Conse-
quently, the solution of the inverse problem allows us to recover not only the potential
but also the self-adjoint boundary conditions at the origin.

2. The Schrödinger operator on the graph with trivial compact part

The motivation for studying the matrix Schr¨odinger operator is that,in the case
of diagonal potential, it may be identified with the Schr¨odinger operator on the non-
compact graph with trivial compact part—here we mean the graph consisting ofn
semi-infinite rays with the origin of each ray identified with the single vertex of the
graph. Although these are really two different operators, for the purposes of the
inverse problem they may be identified: each component of the vector fuction on
which the matrix Schr¨odinger operator acts is identified with the value of the function
on one of the rays of the graph.

2It is also possible to reformulate it as a Riemann-Hilbert problem [3].
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In this case the self-adjoint boundary conditions at the origin play a crucial rˆole; for
instance if we have Neumann or Dirichlet3 boundary conditions there is no interaction
between the rays and the graph decomposes inton semi-axes for which the solution of
the inverse problem is well known. The self-adjoint boundary conditions at the origin
describe the interaction between the rays and they may also be thought of as inducing
a ‘zero-range’ potential at the origin [3]. It is for these reasons that we consider the
matrix problem with general boundary conditions above.

For the problem on the graph—the diagonal matrix potential—the matrix of Jost
solutions is clearly a diagonal matrix and so too is the kernelK .x; y/. As a result
the Marchenko equation (8) has along the diagonaln scalar, independent (in the
sense that each diagonal entry ofK .x; y/ appears only once) Marchenko equations.
Consequently, the inverse problem on the graph decouples ton scalar inverse problems
which can always be solved using only then diagonal entries of the scattering data4 .
Using this scattering data we can recover the potential on the rays plus the self-adjoint
boundary conditions/zero-range potential at the origin.

If the self-adoint boundary conditions at the origin are specified it may be possible
to recover the potential on the rays using a smaller set of scattering data. For Dirichlet
or Neumann boundary conditions there is no interaction between the rays and we need
all n elements of the scattering data in order to recover the potential. On the other
hand, if there is an even number of raysn = 2m and we have boundary conditions
at the origin so that the graph decomposes intom copies of the whole real axis it is
well known that we can recover the potential using onlym reflection coefficients and
normalisation constants [5].

Let us consider flux-conservedboundary conditions which are defined by continuity
at the origin

�1|0 = �2|0 = · · · = �n|0 ;
n∑

i =1

�′
i

∣∣
0
= 0 (9)

plus conservation of flux. These are self-adjoint and we provide a brief proof that in
this case we need onlyn − 1 of the diagonal elements of the scattering data in order
to recover the potential (for details see [3]). We are able to show that the dispersion
function is equal to [3]

det.2ik M−.k// ≡ M.k/ = i n−1

n
f+;1f+;2 · · · f+;n

n∑
i =1

f′+;i
f+;i
;

3Agranovich and Marchenko [1] consider the inverse problem for the matrix operator on the semi-axis,
however, they only consider Dirichlet boundary conditions which are not interesting in the case of
diagonal potential.
4Actually, from (8) we need the diagonal entries ofS.k/ andC2

l .
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where f±;i denotes the Jost function for thei -th ray of the graph andf′+;i .k/ =
limx→0 d f+;i .x; k/=dx. The scattering matrix has entries [3]

Si j .k/ = 2i nk f+;1f+;2 · · · f+;n
n f+;i f+; j M.k/

− Ži j
f−;i
f+;i
: (10)

Suppose we are given the firstn − 1 diagonal entries of the scattering matrix for real
k, the reflection coefficients,Rj .k/ ≡ Sj j .k/, plus the discrete eigenvalueskl = i �l

and the firstn − 1 diagonal entries of the squares of the normalisation matrices,
denotedbl ; j , for each eigenvalue. Since the Marchenko equation degenerates inton
independent scalar equations on the rays we can use this data to recover the potential
and Jost solutions on the firstn − 1 rays. Equation (10) implies

Si j =
[

Ri + f−;i
f+;i

]
f+;i
f+; j

; for i 6= j :

Consequently, we have enough information to recover the.n − 1/× .n − 1/ minor of
the scattering matrix formed by deleting the last column and row. SinceS.k/ is unitary
for k ∈ R we can recover the magnitudes of the remaining entries of the scattering
matrix. Let us consider any entry in the last column not on the diagonal

|Sin| =
∣∣∣∣2i nk f+;1f+;2 · · · f+;n−1

n f+;i M.k/

∣∣∣∣ ; i 6= n:

As we have the Jost functions fori = 1; : : : ;n−1 we can solve this for the magnitude
of the dispersion function on the real axis. NowM.k/ is analytic in the upper half-
plane [3], has known magnitude on the real axis and known zeroes—the discrete
eigenvalues—and so we can recoverM.k/ in the upper half-plane. To do this we
consider the ‘normalised’ dispersion function

M̂.k/ = M.k/
1

i n.k + i /

N∏
l=1

[
k + i �l

k − i �l

]ml

:

Herei �l are the zeroes andml the orders of the zeroes ofM.k/. In [3] we describe in
detail how, using thebl ;i , to find the ordersml and also show there that, subject to the
absence of vitual levels,̂M.k/ is bounded and non-zero on the closed real axis with
asymptotic

lim
|k|→∞

M̂.k/ = 1:

Furthermore, by definitionM̂.k/ is analytic in the upper half-plane with no zeroes
there. By a simple application of the Cauchy integral formula and the Plemelje formula
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(see [5] for a similar calculation in the scalar case)

argM.k/ = 1

i

[
ln i n.k + i /+

N∑
l=1

ml ln
k − i �l

k + i �l

]
−

− 1

³

∫ ∞

−∞

ln [|M.k′/|=|k′ + i |]
k′ − k

dk′

where we take the principal value of the integral. Consequently we recoverM.k/.
FromM.k/we can use (10) to recoverSin for i 6= n. We now have enough information
to recover the potential on the last ray: from the scattering matrix we can findf+;n and
from M.k/ we can findf′+;n. These two functions are enough to recover the potential
on the ray as they provide the scattering data for the Schr¨odinger operator on the
semi-axis [1] (with Dirichlet boundary conditions in the cited text).
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