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INVERSE SCATTERING FOR THE MATRIX SCHR ODINGER
OPERATOR AND SCHRODINGER OPERATOR ON GRAPHS
WITH GENERAL SELF-ADJOINT BOUNDARY CONDITIONS
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Abstract

Using a parameterisation of general self-adjoint boundary conditions in terms of Lagrange
planes we propose a scheme for factorising the matrixd@hger operator and hence con-
struct a Darboux transformation, an interesting feature of which is that the matrix potential
andboundary conditions are altered under the transformation. We present a solution of the
inverse problem in the case of general boundary conditions using a Marchenko equation
and discuss the specialisation to the case of a graph with trivial compact part, that is, with
diagonal matrix potential.

1. The matrix Schrodinger operator on the semi-axis

We consider here the matrix Scidinger operator on the semi-axis, that is,

2

d
£ = —W‘FQ(X)

on L?(R,, C") whereR, = [0, 00). The potential matrixQ(x) is assumed to be
hermitian, absolutely integrable with absolutely integrable first moment and contin-
uous on the open semi-axi$]]| The matrix Schodinger operator.%,, defined on
smooth functions vanishing at the origin and with compact support, is a symmetric
operator with deficiency indice@, n). Using von Neumann extension theoB] [

we may parameterise all self-adjoint extensions of this operator by unitary mappings
between the deficiency subspaces, thallis; U(n). For practical purposes, however,

it is more convenient to describe the self-adjoint extensions in terms of self-adjoint
boundary conditionat the origin.
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It is well known that the construction of self-adjoint extensions is analogous to
the description of Lagrange planes in a hermitian symplectic sgdcén[[4] these
Lagrange planes are parameterised in terms ofriwon matrices such that their
productis hermitian. Really, in the case of a hermitian symplectic space which admits
a canonical basis, the Lagrange Grassmannian is isomorphic to the unitary group
U(n) and we are able to explicitly parameterise the Lagrange planes, and hence self
adjoint boundary conditions, in terms of a unitary matrix—for details Sgelf the
case of the matrix Schdinger operator on the semi-axis the self-adjoint boundary
conditions at the origin are given by

i * 1 *
(U —U)I/I|O+E(U + Dy, = 0. (1)

Then the solution of the matrix Sadinger equation? E = AE with boundary
values

B )

1 i
Elo==(U+D)=A Elo==U—1I
lo 2( + 1) lo 2( )

satisfies these boundary conditions. Using the Jost solutlenssolutions of the
homogeneous equaticf F.. = AF., with asymptotic behaviour

lim Fo(x, k) ~ ek k=
and no prescribed behaviour at the origin, can be written as
EX,K) =F_(x, kKM_(K) + FL.(x, KYM_(K). 3)
We define the scattering wave solution
U(x, k) = EX KMt =F_ 4+ F,S(k),

whereS(k) is known as the scattering matrix. The coefficielts can be evaluated
by taking the Wronskian oE andF_ or F_ [3]

1
T T
Miziﬂ[FiB—FiyxA], (4)

whereF, (k) = F.(0,k) are known as the Jost functions ahds the involution
YT(x, k) = Y*(x, k). The Wronskian oE" and &

W{E", 8} = [

(1]

'8, — EJE]|,= AB-B'A=0,

1By our definition, a hermitian symplectic space for a symmetric operator with non-equal deficiency
indices does not admit a canonical basis or Lagrange pl&hes [
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is always zero. Moreover, if we writg in terms of the scattering wave solutions
W(E" B} = MTW(FT + S'TFI,F_ + F.SIM_
=2ikM' [-1+ S'S|M_=0

we see, sinc&" = S for k € R, that the scattering matrix is unitary for real

If we diagonalis&J, and use the well known asymptotics of the Jost functian3][
in the above expression fv,, we see that the scattering matrix has the following
asymptotic behaviour.

LeEmmMA 1.1. Given the self-adjoint operato#’, with associated unitary matrikd
defining the boundary conditions &f, the scattering matrix of# has the asymptotics

lim () ~ U
whereU is a unitaryhermitianmatrix U = U* derived fromU by applying the map

{ 1:zeT\{-1},
Z
—1:z=-1

to the spectrum dff.

HereT is the unit circle inC. The matrixJ, since itis hermitian, defines projections

Lo-0)
2 9

which may be used to define a factorisation of the original oper#tor

1 .
P55w+uy Pt

THEOREM 1.2. Given the self-adjoint operata# we can formally factorise it as

< =D'D

o- (4]

and the functions in the domain bf satisfy the following boundary conditions at the
origin:

where

P+ |, =0.

Furthermore,V is a hermitian matrix which satisfies the Riccati equation with the
potential Q(x) on the right-hand side and has initial value satisfying

PV|,=—PH (5)

whereH is a bounded hermitian matrix specified by the boundary conditior$8.of
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ProOOF. The fact thatV (x) satisfies the Riccati equation is well known. We diago-
nalise the matriX. Suppose thdtof the eigenvalues df are—1, then we choose
the firstl elements of the basis used in the diagonalisation to be the eigenvectors with
eigenvalue-1. In this basis the boundary conditions.®fcan be written

il 0 0 o B

whereys is the boundary value (under the change of basisyeadhe(n—1) x (n—1)
diagonal matrix with entries which are the eigenvalued @xcluding the eigenvalues
—1. This means that we can write the boundary conditionsfaas

Pl 1/f|o = 0,

(6)
P 1/fx|0‘|' PH 1//|0= 0,

where H is the hermitian matrix depending on the original boundary conditions.
Consider the operatdd*D. From D we get the boundary condition

P ¥lo=0
and fromD* we get the boundary condition
P[Dv]lo=0
which is
P ¥Yxlo— P Vip¥lo=0.

So we see that as long as the initial valuevbkatisfies §), D*D has the required
boundary conditions.

It is well known that the Riccati equation can be linearised to the @thgeér
equation at zero energy; let us denotedyythese zero-energy solutions. Then it is
natural to ask how we can express the coefficiéf) in terms ofg,. The following
theorem is proved ind], we merely quote it here.

THEOREM1.3. The hermitian matrixV can be writtenV (x) = Eq,(X) o (X)
where Eq(x) is the matrix of solutions of the Sdttinger equation at zero energy
satisfying the boundary values (%) specified by the unitary matridy and subject
to:

(1) The matrixU, satisfies
PU, = PU. @)

(2) The potentialQ(x) is continuous in some neighbourhood containing the origin.
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The inverse problem for the matrix Sdulinger operator on the semi-axis with
Dirichlet boundary conditions (that is, vanishing of the functions at the origin) is
described in Agranovich and Marchenkd.[ In [3] the author extends Agranovich
and Marchenko’s result to arbitrary self-adjoint boundary conditions at the origin; the
inverse problem may be reduced to a Marchenko equfation

G(x+y)+K(x,y)+/ KX, HGt+y)dt=0, x<y, (8)
where
N 1 00
G(t) = Cze“"+—/ Sk) — U)ekt dk.
® 2 | 2 | (S =0)
Herei = —«? are the discrete eigenvalues and @eare non-negative hermitian
matrices known as the normalisation matrices. Th¢S@éd); «, C;, | =1,..., N}

is known as the scattering data. As this is a lengthy derivation we will not repeat it
here. If we are able to solv8)(for the kernel of the transformation operatorx, y)
we can recover the potential matrix from the well known identily [

dK(x, x)
-2 dx

We can also recover the self-adjoint boundary conditions at the origin from the inverse
problemvia

= Q(X).

U=[W— iWelo] [Wlo+ i Wslo]

which follows from the definition of the scattering wave solution plgs (Conse-
quently, the solution of the inverse problem allows us to recover not only the potential
but also the self-adjoint boundary conditions at the origin.

2. The Schiodinger operator on the graph with trivial compact part

The motivation for studying the matrix Satihger operator is thain the case
of diagonal potentiglit may be identified with the Scbdinger operator on the non-
compact graph with trivial compact part—here we mean the graph consisting of
semi-infinite rays with the origin of each ray identified with the single vertex of the
graph. Although these are really two different operators, for the purposes of the
inverse problem they may be identified: each component of the vector fuction on
which the matrix Schodinger operator acts is identified with the value of the function
on one of the rays of the graph.

2|t is also possible to reformulate it as a Riemann-Hilbert probigm [
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In this case the self-adjoint boundary conditions at the origin play a crudéfor
instance if we have Neumann or Dirichldioundary conditions there is no interaction
between the rays and the graph decomposesintmi-axes for which the solution of
the inverse problem is well known. The self-adjoint boundary conditions at the origin
describe the interaction between the rays and they may also be thought of as inducing
a ‘zero-range’ potential at the origi][ It is for these reasons that we consider the
matrix problem with general boundary conditions above.

For the problem on the graph—the diagonal matrix potential—the matrix of Jost
solutions is clearly a diagonal matrix and so too is the kekhel, y). As a result
the Marchenko equatior8f has along the diagona scalar, independent (in the
sense that each diagonal entrykofx, y) appears only once) Marchenko equations.
Consequently, the inverse problem on the graph decouphesdalar inverse problems
which can always be solved using only théliagonal entries of the scattering data
Using this scattering data we can recover the potential on the rays plus the self-adjoint
boundary conditions/zero-range potential at the origin.

If the self-adoint boundary conditions at the origin are specified it may be possible
to recover the potential on the rays using a smaller set of scattering data. For Dirichlet
or Neumann boundary conditions there is no interaction between the rays and we nee
all n elements of the scattering data in order to recover the potential. On the other
hand, if there is an even number of rays= 2m and we have boundary conditions
at the origin so that the graph decomposes imtoopies of the whole real axis it is
well known that we can recover the potential using amlyeflection coefficients and
normalisation constants].

Letus consider flux-conserved boundary conditions which are defined by continuity
at the origin

Pilo= olo=""=alo. D #|,=0 9)
i=1

plus conservation of flux. These are self-adjoint and we provide a brief proof that in
this case we need only— 1 of the diagonal elements of the scattering data in order
to recover the potential (for details se)[ We are able to show that the dispersion
function is equal toJ]

in—1 n ¢

+,

fii’

—

det2ikM_(k)) = M(k) =

. foofiofin >

3Agranovich and Marchenkd] consider the inverse problem for the matrix operator on the semi-axis,
however, they only consider Dirichlet boundary conditions which are not interesting in the case of
diagonal potential.

“4Actually, from (8) we need the diagonal entries k) andC?.
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wheref,; denotes the Jost function for theth ray of the graph and, ;(k) =
lim,_odf, (X, k)/dx. The scattering matrix has entrie} [

2i"kf, ,f, 5. f f,
) k — +,114,2 +n ;I
50 nf,if,; Mk O foi (10)

Suppose we are given the first- 1 diagonal entries of the scattering matrix for real

k, the reflection coefficientR; (k) = §;(k), plus the discrete eigenvaluks= ix;

and the firstn — 1 diagonal entries of the squares of the normalisation matrices,
denoted j, for each eigenvalue. Since the Marchenko equation degenerates into
independent scalar equations on the rays we can use this data to recover the potenti
and Jost solutions on the finst— 1 rays. Equation(0) implies

S =[R+f—'}f+—' for i # j.
ot

Consequently, we have enough information to recovefithe 1) x (n — 1) minor of

the scattering matrix formed by deleting the last column and row. Sacds unitary

for k € R we can recover the magnitudes of the remaining entries of the scattering

matrix. Let us consider any entry in the last column not on the diagonal

2"k fqfy o f g .
= —— —=1, i#n.
[Snl l nf, MK #
As we have the Jost functions foe 1, ... , n—1 we can solve this for the magnitude

of the dispersion function on the real axis. N&K) is analytic in the upper half-
plane B], has known magnitude on the real axis and known zeroes—the discrete
eigenvalues—and so we can recowrk) in the upper half-plane. To do this we
consider the ‘normalised’ dispersion function

N

W 1 K+in ™

Hereix, are the zeroes and, the orders of the zeroes df (k). In [3] we describe in
detail how, using thé ;, to find the ordersn, and also show there that, subject to the
absence of vitual levelsyl (k) is bounded and non-zero on the closed real axis with
asymptotic

lim M) = 1.

|k|— o0

Furthermore, by definitiot (k) is analytic in the upper half-plane with no zeroes
there. By a simple application of the Cauchy integral formula and the Plemelje formula
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(see p] for a similar calculation in the scalar case)

N .
s = o Smnia]
I=1

1 [ In[IM®K)|/IK +il]
_E/m k —k dk

where we take the principal value of the integral. Consequently we reddvey.
FromM (k) we can usel(0) to recovelS, fori # n. We now have enough information
to recover the potential on the last ray: from the scattering matrix we cah,fiahd
from M (k) we can findf, . These two functions are enough to recover the potential
on the ray as they provide the scattering data for the &thgér operator on the
semi-axis [L] (with Dirichlet boundary conditions in the cited text).
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