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TAMING THE MOVABLE SINGULARITIES

JARMO HIETARINTA!

(Received 12 April, 2000)

Abstract

We have finally obtained for each of the 6 Pais\an expression af w, w’ that behaves

as Y (z—z) + O(1) ateach kind of movable singular point. This expression is polynomial
in w’' (at most quadratic), and rationalimandz. After it is integrated and exponentiated

it yields a function that has a simple zero at each of the singular points.

1. Introduction

It has been observed many times that the original variables in which an equation is
first obtained are perhaps not the best variables for all purposes. The determination o
what is “best” depends of course on what aspect of the equation is studied.
Awell-known example is provided by the soliton equations. The dependentvariable
u in the Korteweg—de Vries equation,,+ 6uu, +u; = 0 is natural from the physical
point of view as it represents the height of the water wave. However, if we want to
construct multi-soliton solutions for this equation they are not particularly simple in
terms ofu. For this purpose one is advised to use a new dependent vaFatdéated
to u by

u=202logF, (1)

because then nftitsoliton solutions are expressed as finite polynomials in exponen-
tials. For example, the two-soliton solution of the KdV equation is giverf-by
1+en 4%+ Apen '™z, wheren = pix— pt+n°andA; = ((p — p)/(p + p)~.

We observe also that is quite regular everywhere in the complex plane, wheuveas
computed with {) has singularities.
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By the way, the substitutionly transforms the KdV equation into Hirota form
(Dg + D«Dy)F - F = 0 (after one integration), whei® is Hirota’s bilinear derivative

DQ A-B= (821 - azz)nA(Zl) B(Zz)|2:11:22-

This fact by itself does not imply thdt is an entire function (or a-function). An
example of this is given ing]: it is possible to represent the Kaup—Kupershmidt
equationu; + Us, + 30UUs, + 75U, U,y + 180u?u, = 0 as a pair of bilinear equations,
starting with the substitution = «d2?log G, wherea = 2, 1/2 or 1/4, but only with

a = 1/2 are the new functions optimal. Thus one must always verify the niceness
of the new function. Things are clearcut with solitons because we know the solution
explicitly.

Other equations may not have equally simple solutions, but one can still pose the
same questionWhat is a good set of variablesPlere our objective is to find new
dependent variables, obtained from the solutions of the Pa&mguations, such that
the new function is as regular as possible, perhaps even an entire function.

Painles himself addressed the problem of new regular dependent variables in
[4] and stated that since the equations were meromorphic functions they could be
represented as a ratio of two entire functions.

Unfortunately Painles did not give any derivation for his results, and one can ask
whether there is a systematic way to approach this question2] IMartin Kruskal
and the present author gave a partial solution to this problem, arid ihg results
were further improved, but a uniform treatment of all kinds of movable singularities
was still lacking. In P] we used an ansatz that was polynomialirand this worked
for some equations and expansions (those where the free parameter, in addition t
the position of the singularity, was far enough along the expansion). Martin Kruskal
urged me to generalize the ansatz to rational expansions, because “it must work”.

Here we present a complete solution: for each Pamleglation we have an
expression that behaves a4 — z)) at each kind of movable singularity. Using
it one can construct a function that is entire, except maybe around possible fixed
singularities. In other words, the expressions presented here are regular eacbnd
and every movable singularity, but the behaviours near fixed singularities (if any) are
not known.

2. The present method

Let us recall that the equation may become singular for certain values of the
dependent variable or independent variable The valuew = oo is singular for
each Painles'equation, in addition the value = 0 is singular fol?, — Py, w = 1 for
Py, Py andw = zfor P,. The dependent variablemay attain this value atany point
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in the z-plane depending on the initial values, and the singularity is therefore called
movable. By a suitable rational transformation we can take any of the singularities of
w into the singularity of typev = oco. In practice we will do this and therefore it is
enough to develop the technical aspects of the singularity analysis only for this case.
The fixed singularities of the Painle\équations are = 0 for P, P, and Py,
andz = 1 for P,;. We do not have anything new to say about the fixed singularities
and our results guarantee regular behaviour only at the movable singularities, anc
therefore the resulting expression is an entire function only provided that the possible
fixed singularity does not cause trouble.
The concrete problem for each of the Paigl@duations is therefore as follows:
Construct an expression of the form

H,(w', w,2) = Ayw? + Byw +C,, A, By, C, rational inw, z (2)
such that
+0(), n=12 3)

NGRS
at eachtype of movable singular point. It is also required tiikt does not have a
worse kind of singularity somewhere elsé griori it was not obvious that it would be
enough to consider an expansion quadrati@inSince it turns out thad, is always
nonzero we cannot just také, = H2.]

As an example considd?, and Py,. These equations are singularwat= oo
andw = 0. The second singularity is transformeddo by w = 1/u. If this
transformation is made both in the equation and in the express$iome get from
the Painlee equation an expansion fararound its movable singularity (which now
is of typex 1/(z — 7)), and the requirement is that when this is substituted in the
transformedH, they should again behave as B).{

The previous result®] gave very simpleH,’s for P, and P, and therefore here we
first tried to construciH, for all Painle\e equations. Howevelr, is more fundamental,
because by taking its derivative we geltl,. SinceH; must be polynomial at least for
P and P, it means that we must consider polynomials that are nominally of higher
order in ¥ (z — z) and for which the leading terms must cancel. The systematic
approach is then to increase the order until a result is obtained. Exampl@: fois
of order 2, the next order 3 can be obtained only withorder 4 only withw?, and
order 5 only withw'w, but order 6 both withv? andw?. Since the leading orders
must cancel we must go at least to order 6.

2Note that here usually ~ C/(z— z) + - - - so a cheap solution would be to take

Hi = —w'/w ~ 1/(z — ), ande~/@'/dz ~ 7 _ 7, but then near a zero af we would get

—w'/w ~ —1/(z — ), and therefore~/ @'/ dz ~ 1/(z — z,), and thus we would have eliminated one
singularity and created another.
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As mentioned above it is enough if we can obtain an expression2jkiK H,,
because thenrd H,;/dzhas the correct expansion fbk. In fact

d dH; oH; 0H;
—H, = n-_" 1 [} e
dz "= 9w TV %0 T oz
dH; dH; oH; doH;
=[w" - P(z N—+Pzww)—+w—+— (4
[w' = P@ww)] ==+ P ww) o= +w' == = (4)
whereP(z, w, w") is the left-hand side of the Painke¥quation. This means thilp
defined by
oH;  doH;
—+ — 5
Jw + 0z ®)
has the behaviour o8]. There may be a problem with respect®), pecauses) may
containw’® terms, but in fact; turns out to be such that these terms cancel.

Once the expressions, have been obtained one can construct a fundtidoy

F:=e/Mmiz— g [[Mdzdz_ (7 _7y4 ho... (6)

. OH;
—H; =Pz, w,w)—+w
Jw’

andG by
G :=wF (7)
and then these functions are regular at the movable singularities of the original solution.

The corresponding Painlevéquation can then be expressed in termB andG as
follows:

(logF) = Hi(z, (G/F), (G/F)), (8)
(logF)" = Hx(z, (G/F), (G/F)"). 9)
This set of equations is third order, with the third integration constant being related
to the scaling invarianc®, F — pG, pF. After clearing the denominators, this pair
of equations is homogeneoush G and can in some cases be written in the Hirota
bilinear form? (In[1] it was assumed that, depends only om, w, see for example
(9) and [1, (4.8)].)
In the following sections we will go through the Paindesquations one by one and
show how the nonsingular expressions can be constructed.

3. The results

3.1. B: The first Painleg’equation is given by
w' = 6w? + z.

3The pair 8), (9) is not completely equivalent to the original Pairéesquation, because b)(
dH;/dz+ H, = 0is possible also ifv solvesdH; /9w’ = 0.
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It has movable singularities whete~ oo and the expansion around that is given by

1
w=—"——+ 0((z— 2)?).
(2 — 2)?
We can therefore take

Hy = w.

If one restricts the ansatz to a polynomiakih w, z one quickly recovers Painleis
result ¢ for H;:

H; = 2w? — 2w® — zw.

As mentioned before, this seems to startzas z,)~° but the leading terms cancel and
yield the required behaviouB). Clearly

d

—H, + H, = w'[w” — 6w? — z] = 0 moduloP,.
dz

3.2. B;: Painle’s second equation is given by

w' =2wi+wz+a,

and the expansion around any movable singularity is given by

+ O(z — 7).

w =
Z— 10

One now finds

HlII =w? —w* - zw? - 2qw, HzII = w?.
These results were reported beforedh [

3.3. Py The third Painleg’equation is

1 1 1 1
w' =—w?—=w + w4+ =(@uw?+p) — —. (20)
w V4 V4 w
Note that the equation is now singular for= co andw = 0. Around a movable

singularity atw = oo the solution has the expansion

1 atl

Z— 12 27,

w=x= + O(z — 7). (11)
In order to analyze the other singularity we transform it to infinityuby= 1/u. This
yields an equation similar to td. () exceptthatr — —8, 8 — —«, and foru we can
therefore use expansiohl) with the same change.
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Since we must now search for an expression that is regular at each singularity the
expression may contain negative powerswof The ansatz Pat, w, w')/w? works
and yields

wo_zw? oz, 1 B o lw? 1/, 1
H —m‘z@*ﬁ Cewty M=\t L)

Note that these expressions are manifestly invariant uinder 1/w (and associated
parameter changes) and therefore the given asymptotic behaviour is clearly valid for
both types of movable singularities: when~ co and whenw ~ 0.

3.4. By: The fourth Painleg’equation is given by

1 3
w' = —w?+ zw? + 4zw? + 2(Z — )w + E (12)
2w 2 w
This equation also has singularitiesiat= co andw = 0. The expansion around the
movable singularity ofv = oo is given by
+1

1 ) 2
w=—r—a+3[- 4@+ Ple-2)+0(@-2P).  (13)

The transformatiom = 1/u moves the singularity = 0 tou = oo and foru we get
a different equation

3 2 3 2 3
U = —u“—Bu’ —2(z —a)u — 4z — — 14
SoU? = AU =27 — ) o (14)
and expansion
+i /42
u= 2V L 5, (15)
Z—7y
A computer search with an ansatz a$jp yields
1 2 / 1
v =1 e o — w4 B
2w w2 w
1w? 1 B
v _ == =02 2 _ =
H,' = > + 2w 27 — ) e

(Our previous polynomial resul] was only applicable to the = co case.)

3.5. Py:  The fifth Painle¥ equation

1 1 , 1 (w—1)>2 B w ww+l)
//: I - iz o I~ _ 8— 16
v <2w+w—1>w Zw+ z? O(w_’_w +y2+ w—1 (16)
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has three singular points, = 0, 1, co. Aroundw = oo the expansion is

V2
w= 22 o), (17)
-7
The singularityw = Oistransformedta = co byw = 1/u, and the resulting equation
and expansion are as before, except that the parameters get pertaugd:, ) —
(_ﬂi -, —Y, 8)
The singularityw = 1 is different; when it is transformed 0 = oo by w =
u/(u — 1) we get the equation

u// _ 1 + 1 u/2 1u/
“\2u 2u-1) z

u (u—l)_ u(u—1)
B O(zz(u -1 B Z2u

—su(u—1(2u -1 (18)

which has the expansion

ii/m +iv/28 +y — 287
zZ— 7 45z,
(Our previous polynomial methodg][could only handle this last expansion.)

For our computer aided search we used the anBatzw, w')/w?(w — 1)?, the
new result is as follows:

+c(z—2) +---. (19)

v 3zw’? w+Dw  Sow 38  yw+1D 35zw

Hy = 2ww — 12 ww —1) z w  2w-1  (w-—1?

At this level H, is already rather long and not so informative so we do not write it
down.

4. Py
Finally the sixth Painle®’'equation is given by

, 171 1 1 /2 1 1 1 ,
w=s|—+—-+ we—| -+ + w
2\w w-1 w-z z z—-1 w-1z

ww — (w — 2) z—1 82(2_1)>
72(z — 1)? (w — 1)2 (w—22)"

z
(a+pZ+v (20)
It has four kinds of singularitiesy = 0, 1, z, co. The first three can be transformed to
infinity using the transformations = z/u, w = (U—2)/(U—21), w = z(u—1)/(U—2).
The resulting equation is as ir2@) except for the corresponding changes in the
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parameters(e, B, y, 8) — (=B, —a, =6+1/2, —y +1/2)or (y,6—1/2,a, +1/2)
or (=6 +1/2, —y, —B, —a + 1/2). At each singularity the expansion is, after the
transformation,

_ (@ -Dz/Vea
w=t—————

— + O(), (21)

with proper replacement far. For the search oH"' we used an ansatz with the
denominator?(w — 1)%(w — 2)2. The resultis

z—1 z 1 1 1 3

HI/I=2 o _|_ w/2+ __|_ _ w/
w w—1 w-12 w w-1 w-—z
dow 48 4yw 45 1

_z(z—l)+w(z—l)+z(w—l)+w—z_w—z' (22)

(If we were to add thev-independentterm@ — 8 —y + 8 +1/2)/(z—1) to H," it
would be invariant under the transformations above.)
The expression given in (3) of[ is
1, d
u:= 7 [Hl - OIZ[Iogw(w - D(w — z)]} ,
and yields

efudz—[ z-2+--- "
N w(w—l)(w—z)} ’

which also has a regular power series expansion at each type of movable singularity.
5. Summary

For each Painlexéquation we have constructed expresskdyig, w, w'),n = 1, 2,
guadratic inw’ and rational inw, z, such that

1
+const H, ~— 4 const

HN
Yz-2) (Z — 2)?

ateachtype of movable singularity. Furthermogj’é’gHl + H, is always proportional
to the corresponding Painleéquation. If we define

erledzzefszdZdZ’ G=U}F

then these functions are regular at each kind of movable singularity and satisfy the
pair of equations§),(9).
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It should be mentioned that the Hamiltonians given for the Painlkeguations
by OkamotoB] are somewhat similar and using them one can also construct entire
functions. One difference is, however, that our functibhiave identical behaviour
at all singularities, while Okamoto’s Hamiltonians either have a pple + z,) or are
regular at the movable singularity, depending, for example, on the sign of the residue.
Finally we note that sincéd; is a nice meromorphic function one may ask if it
solves some interesting equation. Indeed if we define H, thenY solves

(Y2 +4Y2 +2zY -Y) =0,
and ifY = H/' we get
[(Y)2 +4Y'(Y2 — 2Y + Y)]* + 64a?Y® = 0.

Similar equations should be obtainable for the higher Pagnégytiations as well.

Acknowledgments

I would like to thank M. Kruskal, C. Cosgrove, N. Joshi and N. Witte for discussions.

References

[1] J. Hietarinta, “Painle& equations in terms of entire functions”, Tine Painle@ property: One
century later(ed. R. Conte), (Springer, New York, 1999) 661-686.
[2] J.Hietarintaand M. Kruskal, “Hirota forms for the six Pairdesquations from singularity analysis”,
in Painle\é Transcenderfeds. D. Levi and P. Winternitz), (Plenum Press, New York, 1992) 175-185.
[3] K.Okamoto, “On ther-function of the Painle¥ equations"Physica D2 (1980) 525-535.
[4] P. Painlee, “Sur lesequations diérentielles du second ordaepoints critiques fixes'C.R. Acad.
Sci. Paris126(1898) 1697-1700;
[5] P. Painlee, “Sur lesequations diférentielles du second ordéepoints critiques fixes'C.R. Acad.
Sci. Paris143(1906) 1111-1117.
[6] J. Springael, “Direct combinatorial schemes for the application of the Hirota method in soliton
theory", Ph.D. Thesis, Vrije Universiteit Brussels, 1999.



