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Abstract

The Maxwell-Dirac equations model an electron in an electromagnetic field. The two
equations are coupleda the Dirac current which acts as a source in the Maxwell equation,
resulting in a nonlinear system of partial differential equations (PDE’s). Well-behaved
solutions, within reasonable Sobolev spaces, have been shown to exist globally as recently
as 1997 1 2]. Exact solutions have not been found—except in some simple cases.

We have shown analytically ir6[ 18] that any spherical solution surrounds a Coulomb
field and any cylindrical solution surrounds a central charged wire; arif] anfl [L9] that

in any stationary case, the surrounding electron freléstbe equal and opposite to the
central (external) field. Here we extend the numerical solutiong]ito[a family of orbits

all of which are well-behaved numerical solutions satisfying the analytic resulé am¢l

[11]. These solutions die off exponentially with increasing distance from the central axis
of symmetry. The results irLB] can be extended in the same way. A third case is included,
with dependence om only yielding a related fourth-order ordinary differential equation
(ODE) [3].

1. The Maxwell-Dirac equations

The Maxwell-Dirac equations model an electron in an electromagnetic field. The two
equations are coupleda the Dirac current j,, that is, we include the nonlinearity
of the self-field (see ()). Global existence was fully established by Flato, Simon
and Taflin as recently as 19977, despite sustained interest([L3, 14, 15]) in this
nonlinear system of PDE’s.

In covariant notation (using the summation convention), the coupled Maxwell-Dirac
equations can be written as follows:

y(d, —ieA)Y +imy =0, «=0,...,3

_ 1
Fozf} = Aﬂ,a - Aa,[h aaFaﬁ = _47Tejﬂ7 Whereja = l[fyal/f' ( )
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Note thatys e C*is the Dirac wave-function or-4pinorandy, the Dirac conjugate.
These are acted upon by which are the usuajamma matricegmembers of a
Clifford algebra) andA, is the 4-potential.

Quantum electrodynamics (QED) are based upon these equations. In QED, the
interactions are introduced as a perturbation expansion and evaluated using Feynma
integrals (or diagrams). However, without second quantization of the field, various
authors have sustained interest in the answers to several questions:

(1) Do well-behaved solutions exist7([12, 13, 14, 15])?

(2) What do these solutions look like, at the origin and at infinigy {{8])?
(3) Do these characteristics have any physical mean®d.g)?

(4 Can we find numerical solutionsg([16, 18, 21])?

1.1. Some simplified versions of the problem The full four-dimensional non-
linear problem is somewhat intractable—global existence has only been establishec
recently ([LZ] and references therein). Some simplified versions of the problem are as
follows:

(1) The static case in which we assume that there exists a Lorentz frame in which
there is no current “flow” §, 18]), thatis, j* = &5 j°.

(2) The stationary casé. [] in which we assumey (Xo, X) = €“%¢ (X).

(3) The static spherically symmetric caség]).

(4) The static cylindrically symmetric cases].

In keeping with the theorem inLP] which outlines the conditions under which the
static condition implies stationarity, cases (3) and (4) are also stationary. Other two-
dimensional versions are the411 case which was solved exactly for a massless
electron by Schwinger in2[], the axi-symmetric case and a slightly more general
version in which we assumarcular current flowj* = (j°, 0, j¢, 0), all of which
require further investigation.

2. ODE solutions

Even within the axi-symmetric system there are three interesting ODE cases, spher:
ically symmetric, cylindrically symmetric and dependencezamly. The spherical
and cylindrical cases were examined extensively6inlB]. The case where depen-
dence is orz only, is similar in some respects{). We first applyreality conditiongo
the electromagnetic potenti@ which has been expressed in terms of Dirac spinors
and their first derivatives (by solving the Dirac equations for the potentfig) {[9])).
These reality conditions allow us some simpler expressions which are then insertec
into the Maxwell equation, resulting in fourth-order ODE’s. We will also note here
thatin the 1+ 1 case (¢, 9, 10]) the system was also reduced to fourth-order ODE’s,
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which in some cases are solved explicith®,([L0]), whilst in other cases we are
currently developing more numerical results])[

When we assume that the Dirac current is static, we lose three (real) degrees o
freedom inyr, since three components gf are set to zero. Seé][and [18] in which
we also fix the gauge by choosing

1//0 — _YdWm/2 d,Z — _Yeitn/2

1//1 =Xé(X+’?)/2, w3 :Xefi(xfn)/Z’ 2

wheren, x, X andY are real functions. These expressions were substituted into the
potential (which was solved for in terms of Dirac spinors and their first derivatives),
yielding

X2=YHap  (Vx)

0 _ EAINEAT AR
A= ot e va ot T et vy )
1 [a

We can now demand that the null tetratisn®, m* (andm®) are real. This results in

the thregeality conditionsfollowing. These conditions are written in general form in
[18]. Note thatthese reality conditions can also be regarded as three obfwsistency
conditionsresulting from having eight equations (the Dirac equations and their four
conjugate equations) in four unknowns (the four terma&9f, so that when we solve

for the potential we must demand that these conditions are met for consistensly. In [
we look at these conditions and show their equivalence to Radfeality conditions
before generalizing them to higher dimensions. One of the conditions is conservation
of charge, which is obeyed automatically as stated & [The other three conditions,

in the variables required for the static case, are given below:

0 o 2y _

X+ Y) =0, )
V.l =—(X*+Y?siny, (6)

ol

a—l—(VX)Xl:O, (7

wherel = (2XY cosp, 2XY sinp, X? — Y?).

The Maxwell equations act upoA, as defined above, and the current vector
becomeg® = (2(X? +Y?),0,0,0).

We showed in §] that the static equations, in the gauge given3)y dre stationary
if and only if an/0t = 0 anddX/dt = 0 (oraY/ot = 0). In the stationary case,
dx/ot = 0 andal/at = 0. Now in the stationary case, the third reality condition
(7) tells us thatV y is proportional tol and we choose the functiam such that
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| = (a/r sinf)Vy. Substituting this into the expression for the potent&ldnd
noting thatX? + Y2 = |I| then

V.l X5 X

—>—— =cosy £/ x? e 8

(X2 +Y?2) X \/Xr+r2+r25|n29 ®)

From here, itis a straightforward calculation to apply symmetry arguments and calcu-
late the resulting ODE's §, 6, 18]). All three cases can be expressed in the following
form, where

A® = cosy +

r, distance from origin in the spherical case;
X = { p, distance from central axis in the cylindrical case;
Z in thez dependent case.

Then, in dimensionless variable$,([L8]), the equations reduce to:
dx dF dA_F dz

ax AT T R TIR dx

Ix = —Zsiny, 9

where

X2, in the spherical case;
f(x) ={x, in the cylindrical case;
1, inthezdependentcase.

Itis easily shown that these four first-order equations can be written as the fourth-order
equation,

d? d’x . dy d d’x . dy .
e (f OO(W_SI“X&)) +& (f OO(W_SI“X&)) siny=0. (10)

In the cylindrical caseZ(p) is the charge per unit ring radiys F(p) is the charge
within a radiuso, andAis the scalar potentiak’ (see p]). Similar physical quantities
are represented in the spherical andases. Most importantly, we are looking for
solutions whose charge densif(x) decreases rapidly towards infinity, so that we
can find solutions which are localizedparticle-like. Our zero total charge resui]|
tells us to expect that — 0 asx — oo and likewise A — constax — oo.

As pointed out by Chris Cosgrove (private communicatioh}) fas non-integer
resonance numbersl([2]) and we do not expect to find an integrable system (in the
soliton sense) here. Instead, we show that there are a fanulspa$ (in the sense of
[8]) all of which approach the trivial (constant) solution at infinity. As an example,
we look at the cylindrical case, noting that similar results hold in the spherical and
z case. The orbits in the following section complete the resultsjinn which a
single member (analytic in/p) of these families was shown to exist and calculated
numerically.
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3. Numerical solutions (cylindrical case)
In [6] the following results were shown.

LEMMA 1. Suppos€y, F, A, Z) is a solution to(9) on | = (0, p,), for somepy,
0 < p; < 1. Suppose also tha > 0is continuous and bounded dn Then

(iy FisC!onl and has awell-defined, finite limit as— 0. Z has a well-defined
limitasp — O.

(i) If F(O) # O0thenAis unbounded ap — 0. In particular, A = Q(p) In(p),
where Q is C? and bounded o, Q@ — F(0) asp — 0. Also, x is bounded as
p — 0.

LEMMA 2. Suppos€y, F, A, Z) is a solution to(9) on p € (0, o). Suppose also
that Z > 0 with F continuous and bounded on the interval. Then

(i) If F(py) > Ofor somep; € [0, 00), theny — oo, A - ocoandF — oo as
p — 00.

(i) f F <0on(0,0) thenF — 0asp — oo. In addition, if A and Z
have well-defined limits a8 — oo thenZ — 0Oand A — A, asp — oo, with
-1<A.=1l

Similar results were established for the spherical castdh [Using these lemmas,
boundary conditions were calculated under the assumption that the solutions were
analytic in I/p atoo. In [6] we showed that the numerical solutions in Figure
surround a centrally charged wire (in keeping with Lembpaand that the electron
field is equal and oppositely charged, so that the total electric charge vanishes. (This
last property was proven to be true of all stationary solutiong $h)

4. Vanishing total charge

In the above solutions the variabke(p) representing the total charge within a
ring, radiusp, tends towards zero ak. Lemmal also states that the potential
must tend towards a solution which is logarithmicdnnear the central axis. This
corresponds to a central charged wire (alongztexis) which is a solution to the
vacuumMaxwell equations. As such, we can think of this part of the solution as
representing aexternal field (The scalar potential could be separated at this point
iNt0 Acxternal + Atermiontinteraction SINCE theAgema CONtributes nothing to the coupling
between the Maxwell and Dirac equations.) Physically, this means that the (inner)
external field must be surrounded by an equal and oppositely charged field. The total
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Charge on ring radius
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FIGURE 1. Localized solution to the cylindrically symmetric equations. The charge on a ring, radius
r, F(r), decreases to zero towards. The potential (plotted against lo} is log-like at the origin,
indicating a charged wire solution.

electric charge of the system

p—o0 47

1
lim —/ (VA®).dS, with S, the unit ring of radiup
S

must vanish.

In [3], we were able to show that this is the case for all stationary solutions, given
that they are in a “reasonable” function space. If we definisalated systenas one
for which all sources are contained in some Igl(k < oo) and for which the fields
die off as|x| = r — oo, then we showed in3] and [19] that an isolated, stationary,
static Maxwell-Dirac system is electrically neutral. A similar result, for the total
electric charge per unit length in telirection (orunit ring), holds in the cylindrical
case. This showshathematically that a (stationary) solution must be atom-like (in
the sense that any central charge must be surrounded by an equal and opposite charge
In addition it shows that therannotbe a stationary solution representing an isolated
electron (or even one that rotates around the axis with constant velocity).
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FIGURE 2. A family of orbits of which the solution in Figurkis an example. As nonlinear solutions they
satisfy all the conditions of Lemmdsand?2.

Note also that the signs of the charges can be reversed, giving us negatively charge
singularities and positively charged “electron” fields. All results remain unchanged
under such a reversal of sign. The total charge must vanish overall. A more difficult
problem presents itself if we are to allow for two fermion fields of opposite charge,
for example, the solution corresponding to positronium. We are currently considering
ways in which we can have have solutions of opposite charge interacting together.

In [11] Estebaret al. showed that stationary solutions musteéx@onentially de-
creasing at infinity We therefore looked for numerical solutions of this type. We
assume that solutions are of the foeni*!g(|x|) whereg(|x|) is the analytic function
which we solved for in the numerical examples above (in the cylindrical case). By
varying the value o€, the boundary conditions are perturbed to neighboring solutions
(orbits), all decreasing exponentially at infinity (see Figgye

Thec = 0 case is the numerical solution which we see in FigureThe other
values ofc yield solutions which satisfy the two lemmas and the zero total charge
result. That is, all solutions surround a central wire along the axis of symmetry.
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5. Discussion and conclusions

Similar extensions apply to the spherical ca§e The spherical solutions surround
a central Coulomb field, but the static condition forces a monopole at the origin
([3, 18, 19)), that is, an unbounded? component. Further ODE solutions occur in
thez case B] and 1+ 1 case, neither of which has been fully examined in the previous
literature (P, 10]). These results will be forthcoming also ]|

Similar spherically-symmetric solutions were found &Y]. This time the Schy-
dinger-Newton equations provided an identical coupling as in the static Maxwell-Dirac
case, which is essentially an elliptic system. More work must be done to investigate
the stability of both of these systems. [h/] implications have been developed in
the context of quantum gravity, but work in this area is far from complete. We are
currently considering the problem in this context. The solutions found ihijlow
up at larger distances from the origin. However, in the Maxwell-Dirac case, this
behaviour appeared only as a numerical anomaly. When the total charge becam:
slightly positive (due to the step-size of the numerical solution), we entered a regime
described in §, Lemma 2] in which all solutions become unboundedoas> oc.
These solutions were illustrated numerically B}, [but discarded as being of less
interest than the bounded solutions.

The solution shown in Figuréwas originally calculated using a NAGJ] routine
converted into MATLAB (B, 22]). The calculation was repeated using the MATLAB
ODE solver ODE113. The numerical solutions shown in Figuiedso made use of
ODE113. The relative errortolerance was seeat 4 and the absolute errortolerance
at le — 8. The same behaviour was observed when the tolerances were decreased t
le— 6 and B— 12 orincreased toel— 3 and & — 6. All solutions remained stable
whether calculated as a function of increasing or decreasing radius (that is, shooting
away from or towards the central axis).

The two-dimensional cases (static axi-symmetric, circular current axi-symmetric,
the massive & 1 case) still require reliable numerical results. Those available to
date ([L6, 21]) have been flawed by the imposition of “approximations” which were
shown in [L8] to be possible only in trivial cases (in which the equations are no longer
coupled). The nonlinearity of this very interesting system forces localized solutions
of specific types, and a case-by-case analysis is far from complete.
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