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Abstract

In this paper, we consider the problem of the steady-state fully developed magnetohydrody-
namic (MHD) flow of a conducting fluid through a channel with arbitrary wall conductivity
in the presence of a transverse external magnetic field with various inclined angles. The
coupled governing equations for both axial velocity and induced magnetic field are firstly
transformed into decoupled Poisson-type equations with coupled boundary conditions.
Then the dual reciprocity boundary element method (DRBEM) [20] is used to solve the
Poisson-type equations. As testing examples, flows in channels of three different cross-
sections, rectangular, circular and triangular, are calculated. It is shown that solutions
obtained by the DRBEM with constant elements are accurate for Hartmann number up to
8 and for large conductivity parameters comparing to exact solutions and solutions by the
finite element method (FEM).

1. Introduction

The problem of magnetohydrodynamic (MHD) flow through channels has become
important because of its practical applications in nuclear reactors, MHD flow meters,
MHD generators, blood flow measurements, pumps, accelerators, and so on. Due to
the coupling of equations of fluid mechanics and electrodynamics, exact solutions are
out of the question for most practical cases. Therefore, it is always desirable to explore
for more efficient numerical methods which render accurate numerical solutions.

In [25, 26], Singh and Lal have obtained numerical solutions of steady-state MHD
flows through channels of triangular cross-sections by using a finite difference method
(FDM) together with the Kantorovich technique [11]. Then, to overcome the drawback
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of the finite difference mesh in fitting arbitrary cross-sections of the channel, they also
presented a finite element method (FEM) to solve steady-state [27, 28] and unsteady-
state [29] MHD channel flow problems with arbitrary wall conductivity. But with
linear elements in the FEM they could only obtain results, at most, up to Hartmann
numberM = 5. Later Tezer-Sezgin and Koksal [33] improved the FEM results for
high Hartmann numbers by using quadratic elements for both velocity and magnetic
fields. To further improve the accuracy of the FEM results, Gardner and Gardner
[6] employed bi-cubic B-spline elements. However, their method is unavailable for
arbitrary cross-sections of the channel.

To improve the computational efficiency, Tezer-Sezgin [30] and Tezer-Sezgin and
Dost [31, 32] adopted a boundary element method (BEM). In their papers, both the
coupled velocity and magnetic field equations are simplified into decoupled homo-
geneous or inhomogeneous modified Helmholtz equations with coupled boundary
conditions and then solved by the conventional BEM [30, 31] or by using radial basis
functions [32].

However, one of the common problems appearing in all of the above mentioned
works is the imposed magnetic field being generally assumed to be perpendicular to
the direction of gravitational acceleration. Such an assumption simplified their models
and numerical calculations. However, it also significantly reduced the versatility of
their models.

In this paper, we present a more general case, in which the assumption that the
imposed magnetic field is perpendicular to the direction of gravitational acceleration
is no longer necessary. With an inclined imposed magnetic field, the coupled veloc-
ity and magnetic field equations are firstly transformed into two decoupled Poisson
equations with coupled boundary conditions, and then solved by the dual reciprocity
boundary element method (DRBEM) [15, 20]. To show the accuracy of the DRBEM,
three different geometries, that is, the rectangle, circle and triangle, are taken as the
cross-section of the channel whose walls are arbitrarily conducting. Comparison is
made between DRBEM solutions and other solutions, including exact solutions and
numerical solutions obtained by using the FEM. Through the comparison, it is found
that the agreementbetween the DRBEM solutions and other solutions is good for Hart-
mann numbers up to 8 although only the simplest constant elements in the DRBEM
are used.

2. Governing differential equations

Let� represent the cross-section of a channel, through which a conducting fluid
subject to a constant magnetic field flows, and0 be the boundary of�. A Cartesian
coordinate is chosen such that thexy-plane lies with a cross-section of the channel
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and thez direction points to the direction along which the fluid flows. The magnetic
field of strengthM is applied in the direction lying in thexy-plane but forming an
angle� with the y-axis.

It is well-known that Maxwell equations of electromagnetism and the basic equa-
tions of fluid mechanics lead to the coupled system of equations in the velocity and
magnetic field. These equations for a viscous and incompressible fluid can be put in
the following non-dimensional form [24]:

∇2V + Mx
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and¹, ² and¦ are, respectively, the kinematic viscosity, density and electric conduc-
tivity of the fluid, ¼0 is the magnetic permeability in vacuum,dp=dz is the constant
axial pressure gradient,B0 is the strength of the applied magnetic field,B0x andB0y

are respectively thex andy components of the applied magnetic field,Vz andBz are
respectively thez components of velocity and induced magnetic field. HereV , B
and M are called axial velocity, induced magnetic field and the Hartmann number,
respectively.

A general form of the boundary conditions can be written as

V = 0 on0; (2)

@B

@n
+ ½B = 0 on0; (3)

wheren is the outward normal unit vector of the boundary and½ is the conductivity
parameter given by½ = ¦a=.¦ ′h/, wherea is a characteristic length,¦ and¦ ′ are the
electrical conductivity of the fluid and of the walls, respectively, andh is the thickness
of the walls.

There are two special cases as far as the wall conductivity is concerned. For a
non-conducting wall,¦ ′ = 0 or ½ = ∞, condition (3) reduces toB = 0 on @�.
On the other hand, for a perfectly conducting wall,¦ ′ = ∞ or ½ = 0, condition (3)
becomes@B=@n = 0 on@�.
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Equations (1) may be decoupled by the introduction of two new variablesW1 and
W2 defined asW1 = V + B and W2 = V − B. Under these new variables, the
decoupled differential system now has the form

∇2W1 + Mx
@W1

@x
+ My

@W1

@y
= −1;

∇2W2 − Mx
@W2

@x
− My

@W2

@y
= −1;

(4)

subject to the coupled boundary conditions

W1 = −W2;
@W1

@n
+ ½W1 = @W2

@n
+ ½W2:

Furthermore, if we setu1 = W1e.x Mx+y My/=2 andu2 = W2e−.x Mx+y My/=2, (4) can then be
rewritten as

∇2u1 = M2

4
u1 − e.x Mx+y My/=2; ∇2u2 = M2

4
u2 − e−.x Mx+y My/=2; (5)
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)
ex Mx+y My : (6)

The boundary conditions (6) can be decoupled only for a special case when the
boundary wall is non-conducting. Because of this, analytical solution is generally
unavailable and thus numerical solutions must be resorted to. Therefore, it is always
desirable to search for more efficient as well as accurate numerical methods. It
is worth indicating that (5) are in fact the modified Helmholtz equations with an
inhomogeneous term. Tezer-Sezgin and Dost [32] solved them by using radial basis
functions. In this paper, we shall treat (5) as Poisson equations and solve them by
using the DRBEM [4, 20, 36].

3. The dual reciprocity boundary element method

The BEM is now a well-established numerical technique for solving boundary-value
problems that involve linear as well as certain types of nonlinear partial differential
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equations (PDEs) [1]. The basic idea of the technique is to find an integral equation
equivalent to the original PDE, and to solve this integral equation using a discreti-
sation procedure as with any other numerical approach. For certain types of linear
and homogeneous PDE, only a boundary discretisation is necessary; this reduction
in the dimensionality of the problem permitsaccurate solutions to be obtained very
efficiently, and is the main attraction of the BEM approach. However, for an inhomo-
geneous PDE, the integral equation involves a domain integral, and the reduction in
dimensionality is apparently lost. Unfortunately, the Poisson-type equations (5) to be
dealt with in this paper fall into this category.

Among various methods for converting domain integrals into boundary integrals in
the BEM for inhomogeneous PDEs, the most successful one is the so-called DRBEM,
which was first proposed by Nardini and Brebbia [15] in 1982 and later improved
by many others [19, 21, 40, 35]. While many variations, such as the Laplace trans-
form dual reciprocity method (LTDRM) [38, 37, 39], the separation of variables-dual
reciprocity method (SOVDRM) [3] and the perturbation DRBEM [12, 13], have been
proposed since its birth, the DRBEM is still evolving and many researchers are cur-
rently actively involved in this area of research. The main idea of the DRBEM is to
divide the solution into two parts: a known particular solution of the inhomogeneous
PDE plus a complementary solution of its homogeneous counterpart. Since particular
solutions to complex problems are very difficult or sometimes even impossible to ob-
tain, the inhomogeneity is approximated by a series of simpler radial basis functions
(RBFs) for which particular solutions can be easily determined.

For the completeness of the current paper, we shall briefly describe the DRBEM
here. First of all, both terms on the right-hand side of (5) are expanded as a series of
interpolation functionsf j .x/ = f j .x; y/, that is,

M2

4
u1 − e.x Mx+y My/=2 ≈

n∑
j =1

Þ
.1/
j f j .x/;

M2

4
u2 − e−.x Mx+y My/=2 ≈
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j =1

Þ
.2/
j f j .x/;

whereÞ.1/j andÞ.2/j are the coefficients to be determined by the following interpolation
conditions atn = N + L collocation pointsxi = .xi ; yi /:

b.k/i =
n∑

j =1

Þ
.k/
j f j .xi /; i = 1; : : : ;n; k = 1;2; (7)

where

b.1/i = M2

4
u1.xi ; yi /− e.xi Mx+yi My/=2; b.2/i = M2

4
u2.xi ; yi /− e−.xi Mx+yi My/=2:

There are many ways of choosing the interpolation functionsf j . Partridge and
Brebbia [19] showed that satisfactory results can usually be obtained iff j takes
the form

∑s
m=0 ‖x − x j ‖m. Moreover, they also pointed out that the use ofs = 1
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giving f j = 1 + ‖x − x j ‖ is generally sufficient. Then Duchon [5] demonstrated
that the so-called augmented thin plate splines (ATPS), which are a combination of
the thin plate splines (TPS),‖x − x j ‖2 log‖x − x j ‖, and some augmented linear
terms 1; x; y in R2 (1; x; y; z in R3), are the optimal interpolation functions in two
and three dimensional spaces respectively in the sense that they interpolatef in Rd

(d = 2;3) with a minimised rotation-invariant seminorm. This theoretical work has
been strongly supported by some numerical results [2, 7, 38]. However, despite their
optimal properties, ATPS have some drawbacks. For example, they are onlyC1 in R2

and non-differentiable inR3 and their convergence is slow (see [14, 22, 34]). Recently,
some researchers [8, 37] suggested that the family of multiquadrics'þ.‖x − x j ‖/ =
.c2 + ‖x − x j ‖2/þ=2 can overcome the above drawbacks of ATPS. Hereþ is an odd
integer andc is a parameter. However, others argued that the choice of the parameter
c still could affect theaccuracy of the solution by several orders of magnitude [8]. For
the sake of simplicity, we shall still adopt the simplest RBF 1+‖x − x j‖ in this paper.

Then collocation pointsxi , i = 1; : : : ;n, consist ofN boundary collocation points
of the BEM andL internal nodes. To ensure the accuracy of the DRBEM solution,
some internal nodes normally have to be included. However, a new technique without
any internal collocation point, called the Multiple Reciprocity Boundary Element
Method (MRBEM), has been recently developed by Nowak and Brebbia and applied
to solve the Poisson equation [17] and the Helmholtz equation [18]. Then Neves
and Brebbia [16] and Itagaki and Brebbia [10] separately extended it to solve the
Navier equations of elasticity and the modified Helmholtz equations. The MRBEM
can be thought of as an extension of the idea of the DRBEM. However, instead of
approximating the source term by the set of RBFs, a sequence of functions related
to the fundamental solution is introduced. These functions constitute a set of higher
order fundamental solutions which permit the second Green’s identity to be applied
to each term of the sequence. As a result, the MRBEM leads, in thelimit, to the
exact boundary only formulation of the domain integrals and therefore no internal
collocation points are needed. Indeed, the current problem may be solved by adopting
the MRBEM too if we treat (5) as inhomogeneous modified Helmholtz equations. But
this is beyond the scope of our current research and thus should not be discussed here.

System (7) can be written in matrix form as


b.i /1

b.i /2
:::

b.i /n


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
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f21 f22 : : : f2n

:::
:::

: : :
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



Þ
.i /
1

Þ
.i /
2
:::

Þ.i /n


 or b.i / = Fα.i /; i = 1;2: (8)

The coefficientsα.i / can then be found simply by inverting the matrix in (8) to produce

α.i / = F−1 b.i /; i = 1;2: (9)
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Let u∗ denote the fundamental solution of the Laplace equation:

u∗.x/ = 1

2³
ln

1

‖x − ξ‖ ;

which satisfies∇2u = −Ž.x − ξ/. Applying the usual boundary element technique,
(5) are now multiplied by the fundamental solutionu∗ and integrated over the domain
� to yield ∫

�
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)
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j
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f j u
∗ d�; i = 1;2: (10)

Now, integrating by parts in (10) produces, with (8) being utilised,

cξui ξ −
∫
0
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Þ
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j

(
cξ ûξ j −

∫
0

.u∗q̂j − q∗û j /

)
d0; i = 1;2; (11)

whereû j = ‖x − x j ‖2=4 + ‖x − x j ‖3=9, j = 1; : : : ;n, is a particular solution of
the equation∇2u = f j andξ is a source point ofu∗ which can be any point within
the domain or on the boundary;uξ and ûξ j are the values ofu and û j at point ξ ,
respectively; andq1, q2, q∗ and q̂j are the normal derivatives ofu1, u2, u∗ and û j ,
respectively. The termcξ in (11) depends upon the location of the source pointξ :

cξ =
{
Þ.ξ/=2³; if ξ is a boundary point of�;

1; if ξ is an interior point of�;

whereÞ.ξ/ denotes the internal angle of the boundary at source pointξ . If we adopt
constant boundary elements, the discretised form of (11) can be written as

cξui ξ −
N∑
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.Gξkqik − Ĥξkuik/=
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j =1

Þ
.i /
j

(
cξ ûξ j −

N∑
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)
; i =1;2: (12)

Applying (12) to all collocation points, one obtains a linear system of equations

ci umi −
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.Gikqmk − Ĥikumk/
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Þ
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j

(
ci ûi j −

N∑
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which can be written in matrix form as:

HUm − GQm =
(
HÛ − GQ̂

)
α.m/; m = 1;2; (13)
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with

H = .Hi j /n×n; G = .Gi j /n×N; U1 = .u11; : : : ;u1n/
T ; Q1 = .q11; : : : ;q1n/

T ;

Û = .ûi j /n×n; Q̂ = .q̂i j /N×n; U2 = .u21; : : : ;u2n/
T ; Q2 = .q21; : : : ;q2n/

T ;

whereui , qi , ûi j andq̂i j are the values ofu, q, û j andq̂j at pointsxi , respectively, and

Hi j =




Þ.X i /=.2³/; i = j = 1; : : : ; N;

1; i = j = N + 1; : : : ;n;

Ĥi j ; i = 1; : : : ;n; j = 1; : : : ; N; i 6= j ;

0; i = 1; : : : ;n; j = N + 1; : : : ;n; i 6= j;

where the definitions of̂Hi j andGi j are as in [1].
Substituting (9) into (13), we obtain

HUm − GQm =
(
HÛ − GQ̂

)
F−1b.m/; m = 1;2;

or

HUm − GQm = S
(

M2

4
Um − E.m/
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; m = 1;2;

with S= (
HÛ − GQ̂

)
F−1 and

E.1/ = (
e.x1Mx+y1My/=2; : : : ;e.xn Mx+ynMy/=2

)T
;

E.2/ = (
e−.x1Mx+y1My/=2; : : : ;e−.xn Mx+yn My/=2

)T
:

So a final 2n × 2n linear system of equations(
H − M2

4
S
)

Um − GQm = −SE.m/; m = 1;2; (14)

is obtained. Upon imposing the boundary conditions (6), such a linear system can be
readily solved. After all the unknown valuesui or qi are found by solving the linear
system (14), a desired solution for any interior pointξ can be evaluated from (12).

4. Numerical examples

In this section, as numerical examples for the DRBEM applied to solve MHD flow
problems, three different cross-sections of the channel, that is, rectangular, circular
and triangular, are considered. Though these three cross-sections of the channel are
also studied by Singh and Lal using the FDM [25] (only the triangular case) and the
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FIGURE 1. Profiles of the axial velocity along thex-axis of a rectangular channel in the presence of
the magnetic field applied to the channel with various angles� for a non-conducting wall; (a)M = 2,
(b) M = 5.
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FIGURE 2. Profiles of the axial velocity along they-axis of a rectangular channel in the presence of
the magnetic field applied to the channel with various angles� for a non-conducting wall; (a)M = 2,
(b) M = 5.

FEM [27] (all three cases), the applied magnetic field is generally assumed to act in
the direction being perpendicular to they-axis only, that is,� = ³=2. In this paper, we
are able to present more general cases; those problems subject to an inclined applied
magnetic field with an arbitrary angle� can now be calculated with the presence of
both conducting and non-conducting walls.

4.1. Rectangular channel The cross-section of an infinitely long rectangular chan-
nel is oriented with its two perpendicular sides parallel to thex- andy-axes, respec-
tively and the origin of the coordinates at the geometric centre of the cross-section.
Both the channel width and height are taken to be unity. For all the results presented
in this section, 160 constant elements are used and 169 internal collocation points are
evenly distributed in the interior of the rectangular domain. Here, we shall show the
results of various cases.

Case (i):½ = ∞ and� can be arbitrary. But we shall only present the results of
six different� values,� = ³=2, ³=3, ³=4, ³=6, ³=12, 0. ForM = 2;5, DRBEM
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FIGURE 3. Profiles of the induced magnetic field−B along thex-axis of a rectangular channel in the
presence of the magnetic field applied to the channel with various angles� for a non-conducting wall;
(a) M = 2, (b) M = 5.
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FIGURE 4. Profiles of the induced magnetic field−B along they-axis of a rectangular channel in the
presence of the magnetic field applied to the channel with various angles� for a non-conducting wall;
(a) M = 2, (b) M = 5.

solutions of the axial velocity along thex- and y-axes are plotted in Figures1–
2 respectively and DRBEM solutions of the corresponding induced magnetic field
along thex- andy-axes are plotted in Figures3–4. In the case of� = ³=2, the exact
solutions from Shercliff [24] are also plotted. As we can see in Figures1-2, when the
applied magnetic field inclines more towards they-axis, that is,� decreases, the axial
velocity decreases slightly along thex-axis but increases slightly along they-axis.
A similar behaviour can be observed in Figures3–4 for the induced magnetic field
−B. However, the changes in axial velocity are not significant in comparison with
those changes in the induced magnetic field although the changes in axial velocity do
become more noticeable whenM is increased from 2 to 5.

Case (ii): ½ is arbitrary but� is fixed to³=2. The axial velocity and the induced
magnetic field along thex-axis are calculated for conducting walls with½ = 1;10 and
∞ whenM = 2, 5, respectively. A comparison between the present results and FEM
results [28] is made and plotted in Figures5–6. Exact solutions for non-conducting
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FIGURE5. The present DRBEM solutions and FEM solutions [28] of the axial velocityV along thex-axis
for a conducting wall with� = ³=2; (a) M = 2, (b) M = 5.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
(a) M=2λ=infinity, Exact

λ=infinity, DRBEM
λ=infinity, FEM
λ=10, DRBEM
λ=10, FEM
λ=1, DRBEM
λ=1, FEM

In
du

ce
d

m
ag

ne
tic

fie
ld

:-
B

X

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
(b) M=5λ=infinity, Exact

λ=infinity, DRBEM λ=infinity, FEM
λ=10, DRBEM λ=10, FEM
λ=1, DRBEM λ=1, FEM

In
du

ce
d

m
ag

ne
tic

fie
ld

:-
B

X

FIGURE 6. The present DRBEM solutions and FEM solutions [28] of the induced magnetic field−B
along thex-axis for a conducting wall with� = ³=2; (a) M = 2, (b) M = 5.
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FIGURE 7. (a) Profiles ofV along thex-axis of the rectangular channel with� = ³=2 and½ = ∞ for
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FIGURE8. Profiles of the axial velocityV along thex-axis of a circular channel for½ = 1; 10 and∞ and
for � = ³=2; (a) M = 2, (b) M = 5.
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FIGURE 9. Profiles of the induced magnetic field−B along thex-axis of a circular channel for½ = 1; 10
and∞ and for� = ³=2; (a)M = 2, (b) M = 5.

walls from Shercliff [24] are also plotted in these figures to provide a comparison
for the case when½ = ∞. Clearly our DRBEM solution offers excellent agreement
with the exact solution when½ = ∞. Such an excellent agreement for the case
when½ = ∞ also gives us confidence in the accuracy level of our results for other
cases where there are no analytical solutions to compare with. The FEM results
obtained by Singh and Lal [28] seem to have underestimated the axial velocity while
overestimating the induced magnetic field along thex-axis as shown in Figures5–6.
In fact, such a disagreement between our current solutions and the FEM solutions
worsens whenM is larger and½ is smaller.

It is also interesting to observe that the axial velocity increases with the increased
conductivity parameter½, whereas the induced magnetic field−B behaves in a quite
opposite way; at everyx point, the strength of the induced magnetic field−B decreases
as½ increases.

Finally, the DRBEM is tested for relatively high Hartmann numbersM = 6, 7,
8, 9 and 10. Profiles of both the axial velocity and the induced magnetic field along
the x-axis for the non-conducting wall from the DRBEM and from Shercliff [24] are
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FIGURE 10. Profiles of the axial velocityV along thex-axis of a circular channel in the presence of the
magnetic field applied to the channel with various angles�; (a) M = 2, (b) M = 5.
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FIGURE 11. Profiles of the induced magnetic field−B along thex-axis of a circular channel in the
presence of the magnetic field applied to the channel with various angles�; (a) M = 2, (b) M = 5.

plotted in Figure7. As we can see, the DRBEM is accurate for Hartmann number up to
8. If M is increased beyond 8, the error near the boundary reachesan intolerable level.
This suggests that the adoption of high-order elements such as linear and quadratic
elements may become necessary for high Hartmann numbers.

4.2. Circular channel When the cross-section of a channel is circular, we place the
origin of the coordinate system at the geometric centre of the cross-section and take
the radius as the characteristic length. In our calculation, 60 boundary elements were
used and 64 internal collocation points were evenly distributed on four inner circles
with the radii being 1=3, 1=2, 2=3 and 14=15, respectively.

In order to compare with Singh and Lal’s FEM solution [28], we calculated the axial
velocity and the induced magnetic field along the positivex-axis using the present
DRBEM for ½ = 1, 10 and∞ when M = 2, 5, respectively, for a fixed� = ³=2.
The results are plotted in Figures8–9. As can be seen from these figures, the overall
agreement between the present DRBEM results and the FEM results is very good.
However, as far as the velocity field is concerned, the difference between these two
sets of results becomes slightly larger when½ = ∞ for the case ofM = 5. On the
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FIGURE 12. Profiles of the axial velocityV along they-axis of a triangular channel for arbitrary wall
conductivity and� = ³=2; (a) M = 0, (b) M = 2.
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FIGURE 13. Profiles of the axial velocityV along they-axis of a triangular channel for arbitrary wall
conductivity and� = ³=2; (a) M = 5, (b) M = 8.

other hand, the major difference, although not very large, between the two sets of
results for the induced magnetic field along the positivex-axis is mainly observed for
the case of a smallerM value and small½ as shown in Figure9.

In the case of a non-conducting wall, the exact solution is available in [9] and is also
plotted. It is shown that the agreement between the present DRBEM, the FEM and
the exact solution is good. In addition, for a non-conducting wall, different angles of
inclination of the applied magnetic field with� being³=2, ³=3, ³=4,³=6, ³=12 and
0 are also considered. We see from Figures10–11 that both the axial velocityV and
the induced magnetic field−B along thex-axis decrease with the applied magnetic
field inclining towards they-axis (that is,� decreasing), respectively. ForM = 2,
the velocity distribution is not sensible to the change of the inclination angle of the
applied magnetic field at all, whereas whenM is increased to a larger value (M = 5),
a larger inclination angle makes a significantly larger downstream velocity.

4.3. Equilateral triangular channel Now, with a channel of triangular cross-
section, we place the origin of the coordinate system at the mid-point of the base
and thex-axis along the base with the length of a side as the characteristic length.
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FIGURE 14. Profiles of (a) the axial velocityV and (b) the induced magnetic field−B along they-axis
of a triangular channel in the presence of the magnetic field applied to the channel with various angles�

for ½ = ∞ andM = 2.
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FIGURE 15. Profiles of (a) the axial velocityV and (b) the induced magnetic field−B along they-axis
of a triangular channel in the presence of the magnetic field applied to the channel with various angles�

for ½ = ∞ andM = 5.
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FIGURE 16. Profiles of (a) the axial velocityV and (b) the induced magnetic field−B along they-axis
of a triangular channel in the presence of the magnetic field applied to the channel with various angles�

for ½ = ∞ andM = 8.
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The boundary of� is then defined by the linesy = 0, y = ±√
3.x ± 0:5/. In the

present method, we used 60 boundary elements and 28 internal collocation points.
The distribution of the 28 internal collocation points is the same as that in [27]. For a
fixed� (� = ³=2) and four differentM values (M = 0, 2, 5 and 8), the results of the
axial velocity along they-axis for½ = 0;1;10;∞ obtained from the present DRBEM
model are compared to FEM solutions [28] and exact solutions [28] (only for ½ = ∞)
in Figures12–13. It is interesting to have observed from these figures that with small
Hartmann numbers (for exampleM = 2), the axial velocity does not seem to change
very much when the wall conductivity parameter½ varies from one extreme (½ = 0)
to another (½ = ∞).

In the case of a non-conducting wall, the axial velocity and the induced magnetic
field along they-axis for the inclined applied magnetic field with� being³=2, ³=3,
³=4, ³=6, ³=12 and 0 are also calculated forM = 2, 5 and 8. It is found from
Figures14–16 (a) that the effect of the inclination angle� on the axial velocity is not
significant. However, the induced magnetic field−B along they-axis increases quite
significantly with the applied magnetic field inclining more towards they-axis, as can
be seen from Figures14–16(b). In addition, as we can see from Figures12–16, there
are some unexpected oscillations for both velocity and magnetic field in the small
interval [0:8;√3=2]. It is believed that the acute angle of the cross-section of the
triangular channel is the cause of these variations.

5. Conclusion

In this paper, DRBEM in conjunction with linear radial basis functions being
adopted as the interpolation functions is applied in the MHD steady channel flow to
obtain the numerical solution of the axial velocity and the induced magnetic field.
Comparisons between the DRBEM solutions and other solutions including the exact
solution and FEM solution are made. Through three numerical test examples with
different geometries of the cross-section of a channel, it is shown that a high nu-
merical accuracy can be achieved with the DRBEM with simplest constant elements.
In addition, the results of more general cases with an inclined magnetic field with
arbitrary inclination angles being applied are presented too; the versatility of the cur-
rent DRBEM model enables us to discuss the effect of inclined magnetic field on the
flow. Our computational results show that the influence of the inclination angle of the
applied magnetic field is far stronger on the induced magnetic field−B than on the
axial velocity.
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