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Abstract

In this paper, we consider the problem of the steady-state fully developed magnetohydrody-
namic (MHD) flow of a conducting fluid through a channel with arbitrary wall conductivity

in the presence of a transverse external magnetic field with various inclined angles. The
coupled governing equations for both axial velocity and induced magnetic field are firstly
transformed into decoupled Poisson-type equations with coupled boundary conditions.
Then the dual reciprocity boundary element method (DRBER) [s used to solve the
Poisson-type equations. As testing examples, flows in channels of three different cross-
sections, rectangular, circular and triangular, are calculated. It is shown that solutions
obtained by the DRBEM with constant elements are accurate for Hartmann number up to
8 and for large conductivity parameters comparing to exact solutions and solutions by the
finite element method (FEM).

1. Introduction

The problem of magnetohydrodynamic (MHD) flow through channels has become
important because of its practical applications in nuclear reactors, MHD flow meters,
MHD generators, blood flow measurements, pumps, accelerators, and so on. Due tc
the coupling of equations of fluid mechanics and electrodynamics, exact solutions are
out of the question for most practical cases. Therefore, it is always desirable to explore
for more efficient numerical methods which render accurate numerical solutions.
In [25, 2€], Singh and Lal have obtained numerical solutions of steady-state MHD

flows through channels of triangular cross-sections by using a finite difference method
(FDM) together with the Kantorovich techniquEl]. Then, to overcome the drawback
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of the finite difference mesh in fitting arbitrary cross-sections of the channel, they also
presented a finite element method (FEM) to solve steady-s&@t@§] and unsteady-
state P9 MHD channel flow problems with arbitrary wall conductivity. But with
linear elements in the FEM they could only obtain results, at most, up to Hartmann
numberM = 5. Later Tezer-Sezgin and Koksad improved the FEM results for
high Hartmann numbers by using quadratic elements for both velocity and magnetic
fields. To further improve the accuracy of the FEM results, Gardner and Gardner
[6] employed bi-cubic B-spline elements. However, their method is unavailable for
arbitrary cross-sections of the channel.

To improve the computational efficiency, Tezer-Sez§itj pnd Tezer-Sezgin and
Dost [31, 32] adopted a boundary element method (BEM). In their papers, both the
coupled velocity and magnetic field equations are simplified into decoupled homo-
geneous or inhomogeneous modified Helmholtz equations with coupled boundary
conditions and then solved by the conventional BE3@, B1] or by using radial basis
functions B2].

However, one of the common problems appearing in all of the above mentioned
works is the imposed magnetic field being generally assumed to be perpendicular to
the direction of gravitational acceleration. Such an assumption simplified their models
and numerical calculations. However, it also significantly reduced the versatility of
their models.

In this paper, we present a more general case, in which the assumption that the
imposed magnetic field is perpendicular to the direction of gravitational acceleration
is no longer necessary. With an inclined imposed magnetic field, the coupled veloc-
ity and magnetic field equations are firstly transformed into two decoupled Poisson
equations with coupled boundary conditions, and then solved by the dual reciprocity
boundary element method (DRBEM)H, 20]. To show the accuracy of the DRBEM,
three different geometries, that is, the rectangle, circle and triangle, are taken as the
cross-section of the channel whose walls are arbitrarily conducting. Comparison is
made between DRBEM solutions and other solutions, including exact solutions and
numerical solutions obtained by using the FEM. Through the comparison, it is found
that the agreementbetweenthe DRBEM solutions and other solutions is good for Hart-
mann numbers up to 8 although only the simplest constant elements in the DRBEM
are used.

2. Governing differential equations

Let Q represent the cross-section of a channel, through which a conducting fluid
subject to a constant magnetic field flows, dhtde the boundary af2. A Cartesian
coordinate is chosen such that tke-plane lies with a cross-section of the channel
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and thez direction points to the direction along which the fluid flows. The magnetic
field of strengthM is applied in the direction lying in they-plane but forming an
angleg with the y-axis.

It is well-known that Maxwell equations of electromagnetism and the basic equa-
tions of fluid mechanics lead to the coupled system of equations in the velocity and
magnetic field. These equations for a viscous and incompressible fluid can be put in
the following non-dimensional forn2f:

B B

2
VAV + My + Moo = -1, o
V2B + M, aV+M ov =0
ax Yoy —
where
> —1 1/2
V=V, (—b—d—p> , M, = Bob (—1> — Msing,
vp dz Vo

b? dp A o \"?
— _D 20 — —— ) =M
B Bz( Vo dZMO(W)O') > ) IVly BOyb< Up) Cosy,
M = (M + M)Y2 = Bob(—0/vp)*2,

andv, p ando are, respectively, the kinematic viscosity, density and electric conduc-
tivity of the fluid, 1o is the magnetic permeability in vacuundhp/dz is the constant
axial pressure gradienB; is the strength of the applied magnetic fieR}, and By,
are respectively the andy components of the applied magnetic fiel,and B, are
respectively thez components of velocity and induced magnetic field. HeéreB
and M are called axial velocity, induced magnetic field and the Hartmann number,
respectively.

A general form of the boundary conditions can be written as

V=0 onTl, (2
0B

— +AB =0 onTl, 3
on T 3)

wheren is the outward normal unit vector of the boundary anid the conductivity
parameter given by = oa/(c’h), wherea is a characteristic length, ando’ are the
electrical conductivity of the fluid and of the walls, respectively, hiiglthe thickness
of the walls.

There are two special cases as far as the wall conductivity is concerned. For a
non-conducting wallg” = 0 or A = oo, condition @) reduces toB = 0 ond<.
On the other hand, for a perfectly conducting wall,= co or » = 0, condition @)
become®$B/dn = 0 ond<2.
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Equations {) may be decoupled by the introduction of two new variabl¢sand
W, defined asw; = V + B andW, = V — B. Under these new variables, the
decoupled differential system now has the form

oW, oW,

VW, + My— + My, —— = —1,
BW aW.

VW, — My— — My—=2 = —1,
ax ay

subject to the coupled boundary conditions
W, aW.
Wl = —Wz, l )‘-Wl 2 + )\.Wz

an an

Furthermore, if we sat; = W,e*"+YM)/2 andu, = W,e~*M+YM)/2 (4) can then be
rewritten as
2 M 2

M
Viu, = - U gXMctyMy)/2. Viu, = - U2~ g OXMctyMy)/2. (5)

subject to the boundary conditions

Up = —Upe@MHyMy
aul U aUZ U, M
— + AU — — (M, My) - n = [ — + A + —(M,, My) - n | @MW,
an + AUy 2 ( y) ( an + AU + > ( v) >
or
ou ou
X My+y M 1 2 xMx+yM
Uy = —Uz€ 7, - = + 2\ Y, 6
' ? an (an ) ©6)

The boundary conditions5f can be decoupled only for a special case when the
boundary wall is non-conducting. Because of this, analytical solution is generally
unavailable and thus numerical solutions must be resorted to. Therefore, it is always
desirable to search for more efficient as well as accurate numerical methods. It
is worth indicating thatg) are in fact the modified Helmholtz equations with an
inhomogeneous term. Tezer-Sezgin and D82} $olved them by using radial basis
functions. In this paper, we shall tred&) (@s Poisson equations and solve them by
using the DRBEM 4, 20, 36].

3. The dual reciprocity boundary element method

The BEM is now a well-established numerical technique for solving boundary-value
problems that involve linear as well as certain types of nonlinear partial differential



[5] The DRBEM for MHD channel flows 309

equations (PDEs)1]. The basic idea of the technique is to find an integral equation
equivalent to the original PDE, and to solve this integral equation using a discreti-
sation procedure as with any other numerical approach. For certain types of linear
and homogeneous PDE, only a boundary discretisation is necessary; this reductiot
in the dimensionality of the problem permascurate solutions to be obtained very
efficiently, and is the main attraction of the BEM approach. However, for an inhomo-
geneous PDE, the integral equation involves a domain integral, and the reduction in
dimensionality is apparently lost. Unfortunately, the Poisson-type equafiptesife

dealt with in this paper fall into this category.

Among various methods for converting domain integrals into boundary integrals in
the BEM forinhomogeneous PDEs, the most successful one is the so-called DRBEM,
which was first proposed by Nardini and Brebbig][in 1982 and later improved
by many others19, 21, 40, 35]. While many variations, such as the Laplace trans-
form dual reciprocity method (LTDRMY38, 37, 39], the separation of variables-dual
reciprocity method (SOVDRM)J] and the perturbation DRBEMLP, 13], have been
proposed since its birth, the DRBEM is still evolving and many researchers are cur-
rently actively involved in this area of research. The main idea of the DRBEM is to
divide the solution into two parts: a known particular solution of the inhomogeneous
PDE plus a complementary solution of its homogeneous counterpart. Since particular
solutions to complex problems are very difficult or sometimes even impossible to ob-
tain, the inhomogeneity is approximated by a series of simpler radial basis functions
(RBFs) for which particular solutions can be easily determined.

For the completeness of the current paper, we shall briefly describe the DRBEM
here. First of all, both terms on the right-hand side%)fdre expanded as a series of
interpolation functionsf; (x) = f;(x, y), thatis,

M2 4 M2 2
MekyMy)/2 A @ — My My)/2
Tul—e(x M)/ NZO(J- f; (%), TUz—e XMty My)/ NZO(J- f; (%),
et =1
wherex (" anda? are the coefficients to be determined by the following interpolation

conditions ah = N + L collocation points; = (x;, V;):

n
bl = "o f;x), i=1...,n, k=12 (7)
j=1

where
2 2

M M
1 i Mx+Yyi My)/2 2 — (X Mx+Yyi My)/2
bi( ) = Tul(Xi, yi) — g McryiMy)/ s bi( ) = TUZ(Xi, Yi) — € MY M/2,

There are many ways of choosing the interpolation functibns Partridge and
Brebbia [L9] showed that satisfactory results can usually be obtainefj ifakes
the form)_> _, IIx — x;[|™. Moreover, they also pointed out that the usesof 1
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giving f; = 1+ [x — x|l is generally sufficient. Then Ducho#][demonstrated
that the so-called augmented thin plate splines (ATPS), which are a combination of
the thin plate splines (TPS)x — x;[|?log|x — x;||, and some augmented linear
terms 1x,yin R? (1, x, y, zin R®), are the optimal interpolation functions in two
and three dimensional spaces respectively in the sense that they interpataR¢
(d = 2, 3) with a minimised rotation-invariant seminorm. This theoretical work has
been strongly supported by some numerical res@ltg,[38]. However, despite their
optimal properties, ATPS have some drawbacks. For example, they ar€bimyR?
and non-differentiable iR® and their convergence is slow (sé&d,[22, 34]). Recently,
some researcherg,[37] suggested that the family of multiquadrigg(|[x — X;[|) =
(c® + [x — x;[>)#? can overcome the above drawbacks of ATPS. Hgie an odd
integer anct is a parameter. However, others argued that the choice of the parameter
c still could affecttheaccuracy of the solution by several orders of magnit@ileHor
the sake of simplicity, we shall still adopt the simplest RBF [Ix — x; || in this paper.

Then collocation pointsq,i =1, ..., n, consist ofN boundary collocation points
of the BEM andL internal nodes. To ensure the accuracy of the DRBEM solution,
some internal nodes normally have to be included. However, a new technique without
any internal collocation point, called the Multiple Reciprocity Boundary Element
Method (MRBEM), has been recently developed by Nowak and Brebbia and applied
to solve the Poisson equatioh7] and the Helmholtz equationl]. Then Neves
and Brebbia 16] and Itagaki and Brebbial[)] separately extended it to solve the
Navier equations of elasticity and the modified Helmholtz equations. The MRBEM
can be thought of as an extension of the idea of the DRBEM. However, instead of
approximating the source term by the set of RBFs, a sequence of functions relatec
to the fundamental solution is introduced. These functions constitute a set of higher
order fundamental solutions which permit the second Green’s identity to be applied
to each term of the sequence. As a result, the MRBEM leads, itirttie to the
exact boundary only formulation of the domain integrals and therefore no internal
collocation points are needed. Indeed, the current problem may be solved by adoptinc
the MRBEM too if we treat%) as inhomogeneous modified Helmholtz equations. But
this is beyond the scope of our currentresearch and thus should not be discussed her

System () can be written in matrix form as

bii) f11 f12 te fln Olii)

by’ for fpo ... f ) . .

=7 ?, - ? or b =Fa®, i=12 (8
b,(:) fnl fn2 te fnn O(,(:)

The coefficients "’ can then be found simply by inverting the matrix & {o produce

eV =F1p0, =12 9)
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Let u* denote the fundamental solution of the Laplace equation:

u*(x) = 1 In !
S 2 Ix—é&II
which satisfiesv?u = —§(x — &). Applying the usual boundary element technique,

(5) are now multiplied by the fundamental solutiohand integrated over the domain
Q to yield

/(Vzui)u*dQ =Za}”/ fiudQ, i=12 (10)
Q =1 Q
Now, integrating by parts inlQ) produces, with&) being utilised,
Celig —/(U*qi —qu)dr=> o)’ (Cgﬂu —/(u*qj - Q*Oj)> dr, i=1,2(11)
r -1 r

wherel; = |Ix — xj[12/4+ [Ix—x;[3/9, | = 1,...,n, is a particular solution of
the equatiorv?u = f; andé is a source point ofi* which can be any point within
the domain or on the boundary; and(;; are the values ofi andd; at pointég,
respectively; andy, o, g* andq; are the normal derivatives of;, u,, u* andd;,
respectively. The term in (11) depends upon the location of the source péint

o — a(&)/2r, if &isaboundary point of2;
kT if £ is an interior point o2,

wherea (§) denotes the internal angle of the boundary at source goititwe adopt
constant boundary elements, the discretised fornidf ¢an be written as

N

n N
CUig —Z(ngQik - I_Algkuik) =Z Ol?) <C§0§j —Z(ngij - I:lgkakj )) ,i=12 (12)

k=1 j=1 k=1

Applying (12) to all collocation points, one obtains a linear system of equations

N
GiUmi — Z(Gikqu — HicUmi)
k=1
n N
= Zoﬁgm) <Ci Gij — Z(Giqu]’ - Hikakj)) , i=1...,n,m=12
j=1 k=1
which can be written in matrix form as:

HU,, — GQ,, = (HO - GQ) «™ m=12 (13)
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with

H = (Hj)nxn, G = (Gjj)nxn, U; = (Ugg, -+ -, Ugn)T, Q1=(Q11,---,Q1n)T,

A

U= Ginxns Q= (GjInsn,  Up= (U, ..., Uz)', Q2= (Qa, - .-, an)T’

whereu;, g, G;; andd; are the values ai, g, (; andg; at pointsx;, respectively, and

aXi)/@r), i=j=1...,N;
T i=j=N+1..,m
T I:lij, i=1....,n, j=1...,N, i #j;
0, i=1....,n, j=N+1,....n, i #]j,

where the definitions oﬁij andG;; are asin{].
Substituting 9) into (13), we obtain

HUp — GQp = (HU - GQ) F ™, m=12,
or

MZ
HU,, — GQ,, = s(Tum _ E<m>> . m=12
with S= (HU — GQ)F* and

D) _ (ataMyx+yiMy)/2 O My+ynMy)/2) T
E® = (e ,...,€e ,

@ _ (o= aMctyiMy)/2 —(a My+YaMy) /2 T
E® = (e ,...,€ .

So afinal 2 x 2n linear system of equations
MZ
(H — TS) Unm— GQ,, = —SE™, m=1,2 (14)

is obtained. Upon imposing the boundary conditiod)s guch a linear system can be
readily solved. After all the unknown valuesor g; are found by solving the linear
system {4), a desired solution for any interior poifittan be evaluated fronip).

4. Numerical examples

In this section, as numerical examples for the DRBEM applied to solve MHD flow
problems, three different cross-sections of the channel, that is, rectangular, circular
and triangular, are considered. Though these three cross-sections of the channel al
also studied by Singh and Lal using the FDRA] (only the triangular case) and the
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FIGURE 1. Profiles of the axial velocity along theaxis of a rectangular channel in the presence of
the magnetic field applied to the channel with various anglésr a non-conducting wall; (aM = 2,
(b) M =5.
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FIGURE 2. Profiles of the axial velocity along theaxis of a rectangular channel in the presence of
the magnetic field applied to the channel with various anglésr a non-conducting wall; (aM = 2,
(b)M =5.

FEM [27] (all three cases), the applied magnetic field is generally assumed to act in
the direction being perpendicular to theaxis only, thatis¢ = /2. Inthis paper, we

are able to present more general cases; those problems subject to an inclined applie
magnetic field with an arbitrary angie can now be calculated with the presence of
both conducting and non-conducting walls.

4.1. Rectangular channel The cross-section of an infinitely long rectangular chan-
nel is oriented with its two perpendicular sides parallel toxhandy-axes, respec-
tively and the origin of the coordinates at the geometric centre of the cross-section.
Both the channel width and height are taken to be unity. For all the results presentec
in this section, 160 constant elements are used and 169 internal collocation points ar
evenly distributed in the interior of the rectangular domain. Here, we shall show the
results of various cases.

Case (i):A = oo and¢ can be arbitrary. But we shall only present the results of
six different¢ values,p = n/2, /3,7 /4, 7/6, /12, 0. ForM = 2,5, DRBEM
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FIGURE 3. Profiles of the induced magnetic fieldB along thex-axis of a rectangular channel in the
presence of the magnetic field applied to the channel with various apdt@sa non-conducting wall;
@M=2,(b)M =5.
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FIGURE 4. Profiles of the induced magnetic fieleB along they-axis of a rectangular channel in the
presence of the magnetic field applied to the channel with various apdt@sa non-conducting wall;
@M=2,(b)M =5.

solutions of the axial velocity along the- and y-axes are plotted in Figureb-
2 respectively and DRBEM solutions of the corresponding induced magnetic field
along thex- andy-axes are plotted in Figuré&s4. In the case 0§ = /2, the exact
solutions from Shercliff24] are also plotted. As we can see in Figuieg, when the
applied magnetic field inclines more towards thaxis, that is¢ decreases, the axial
velocity decreases slightly along tixeaxis but increases slightly along tlyeaxis.
A similar behaviour can be observed in Figufegl for the induced magnetic field
—B. However, the changes in axial velocity are not significant in comparison with
those changes in the induced magnetic field although the changes in axial velocity dc
become more noticeable whéhis increased from 2 to 5.

Case (ii): A is arbitrary butp is fixed torr /2. The axial velocity and the induced
magnetic field along the-axis are calculated for conducting walls with= 1, 10 and
oo whenM = 2, 5, respectively. A comparison between the present results and FEM
results 8] is made and plotted in Figurés6. Exact solutions for non-conducting
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FIGURES. The present DRBEM solutions and FEM solutio®g] of the axial velocityV along thex-axis
for a conducting wall witlp = /2; ()M = 2, (b)M = 5.
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FIGURE 6. The present DRBEM solutions and FEM solutio@8][of the induced magnetic field-B
along thex-axis for a conducting wall witp = 7/2; ()M = 2, (b) M = 5.
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316 Huan-Wen Liu and Song-Ping Zhu [12]

U og 016

vvvv9doo a) M=2 S asiclele) b) M=5
020 A 250 P (@ s 2006 (b)
ivvxo\ 00,
OO0 —— Vov‘o 01247V VIV VI, Oq
Lg=F ALY i v VY %0
> 0.15 o - Q*’ N YV o,
2 o 2 Vw0,
8 +  A=infinity, Exact “\k N 8 008 V-0
© 01090 x=infinity, DRBEM % 2 00000000 Rodonhy 92
g ® \=infinity, FEM ;\: g TEOog g, E’ﬁ
—v— A\=10, DRBEM R‘f‘\ 0044 T+ A=infinity, Exact
0051y )=10, FEM W%\ —0— =infinity, DRBEM @  A=infinity, FEM \
—0— =1, DRBEM —v—)=10, DRBEM v A=10, FEM
® =1, FEM —0—)=1, DRBEM ® A=1, FEM
0.00 , ; 0.00 , ; ;
00 02 0.4 06 08 10 00 02 0.4 06 08 10

X

FIGURE8. Profiles of the axial velocity along thex-axis of a circular channel for = 1, 10 andoo and
for¢p =n/2;(@)M =2, (b)M =5.

0.15

0.20
4 A=infinity, Exact (a)|M=2 +  Asinfinity, Exact (b)M=5| n
—O— A=infinity, DRBEM —o— A=infinity, DRBEM \
® =infinity, FEM ® )\=infinity, FEM I \
) @ y
-1; —v— A=10, DRBEM . 1': 0154 o A=10, DRBEM ,D’D
@ 010 Vv A=I0FEM e = g v =10, FEM o
5 —O—)=1, DRBEM =) S ' ‘J
5 . . o o= |
g = i FEm Lo £ o0— =1, DRBEM o
2 S 0101 W \=1, FEM .
2 0 5 17T 47| v FITYT |
g (E’D; v g u Pee oYV 2o
° R = .
2 0.05 o 2 / vV 5.0-089000¢. \
S [ V‘T,ZVZ’ 0000400 Vv, ‘é 0.05 . 2y gg00° 009,
g I /v/io* 0o | W = D§§§¥ \
el . gt
B %o, GF
0.00 0.00+&
0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 06 08 1.0
X X
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walls from Shercliff p4] are also plotted in these figures to provide a comparison
for the case when = oco. Clearly our DRBEM solution offers excellent agreement
with the exact solution whein = oco. Such an excellent agreement for the case
wheni = oo also gives us confidence in the accuracy level of our results for other
cases where there are no analytical solutions to compare with. The FEM results
obtained by Singh and LaPB] seem to have underestimated the axial velocity while
overestimating the induced magnetic field alongsthaxis as shown in Figures-6.

In fact, such a disagreement between our current solutions and the FEM solutions
worsens whem is larger and. is smaller.

It is also interesting to observe that the axial velocity increases with the increased
conductivity parametex, whereas the induced magnetic field behaves in a quite
opposite way; at evenypoint, the strength of the induced magnetic field decreases
asa increases.

Finally, the DRBEM is tested for relatively high Hartmann numbbts= 6, 7,

8, 9 and 10. Profiles of both the axial velocity and the induced magnetic field along
the x-axis for the non-conducting wall from the DRBEM and from Sherchiff][are
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plotted in Figure/. Aswe can see, the DRBEM is accurate for Hartmann number up to
8. If M isincreased beyond 8, the error near the boundary reaches an intolerable level
This suggests that the adoption of high-order elements such as linear and quadrati
elements may become necessary for high Hartmann numbers.

4.2. Circular channel When the cross-section of a channelis circular, we place the
origin of the coordinate system at the geometric centre of the cross-section and take
the radius as the characteristic length. In our calculation, 60 boundary elements were
used and 64 internal collocation points were evenly distributed on four inner circles
with the radii being 13, 1/2, 2/3 and 1415, respectively.

In orderto compare with Singh and Lal's FEM soluti@8], we calculated the axial
velocity and the induced magnetic field along the positivexis using the present
DRBEM for A = 1, 10 ando whenM = 2, 5, respectively, for a fixe¢g = /2.

The results are plotted in Figur8s9. As can be seen from these figures, the overall
agreement between the present DRBEM results and the FEM results is very good.
However, as far as the velocity field is concerned, the difference between these two
sets of results becomes slightly larger whega: oo for the case oM = 5. On the
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other hand, the major difference, although not very large, between the two sets of
results for the induced magnetic field along the posixivaxis is mainly observed for
the case of a smallév value and small as shown in Figuré.

Inthe case of a non-conducting wall, the exact solution is availab8} and is also
plotted. It is shown that the agreement between the present DRBEM, the FEM and
the exact solution is good. In addition, for a non-conducting wall, different angles of
inclination of the applied magnetic field withbeingn/2, 7 /3, n /4,7 /6, 7 /12 and
0 are also considered. We see from Figur@sl1 that both the axial velocity and
the induced magnetic field B along thex-axis decrease with the applied magnetic
field inclining towards they-axis (that is,¢ decreasing), respectively. F = 2,
the velocity distribution is not sensible to the change of the inclination angle of the
applied magnetic field at all, whereas whdns increased to a larger valubi(= 5),

a larger inclination angle makes a significantly larger downstream velocity.

4.3. Equilateral triangular channel Now, with a channel of triangular cross-
section, we place the origin of the coordinate system at the mid-point of the base
and thex-axis along the base with the length of a side as the characteristic length.
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The boundary of2 is then defined by the lineg = 0, y = ++/3(x £ 0.5). In the
present method, we used 60 boundary elements and 28 internal collocation points
The distribution of the 28 internal collocation points is the same as tha#jn for a
fixed ¢ (¢ = 7 /2) and four differenM values M = 0, 2, 5 and 8), the results of the
axial velocity along the-axis fora = 0, 1, 10, oo obtained from the present DRBEM
model are compared to FEM solutior#g] and exact solutions2f] (only for A = o)
in Figures12-13. Itis interesting to have observed from these figures that with small
Hartmann numbers (for exampl = 2), the axial velocity does not seem to change
very much when the wall conductivity paramekevaries from one extreme.(= 0)
to another{ = o0).

In the case of a non-conducting wall, the axial velocity and the induced magnetic
field along they-axis for the inclined applied magnetic field wighbeingr /2, /3,
/4, 7/6, w/12 and O are also calculated fdof = 2, 5 and 8. It is found from
Figuresl4-16 (a) that the effect of the inclination angpeon the axial velocity is not
significant. However, the induced magnetic fiel® along they-axis increases quite
significantly with the applied magnetic field inclining more towardsytkexis, as can
be seen from Figures4-16 (b). In addition, as we can see from Figufies-16, there
are some unexpected oscillations for both velocity and magnetic field in the small
interval [0.8, v/3/2]. It is believed that the acute angle of the cross-section of the
triangular channel is the cause of these variations.

5. Conclusion

In this paper, DRBEM in conjunction with linear radial basis functions being
adopted as the interpolation functions is applied in the MHD steady channel flow to
obtain the numerical solution of the axial velocity and the induced magnetic field.
Comparisons between the DRBEM solutions and other solutions including the exact
solution and FEM solution are made. Through three numerical test examples with
different geometries of the cross-section of a channel, it is shown that a high nu-
merical accuracy can be achieved with the DRBEM with simplest constant elements.
In addition, the results of more general cases with an inclined magnetic field with
arbitrary inclination angles being applied are presented too; the versatility of the cur-
rent DRBEM model enables us to discuss the effect of inclined magnetic field on the
flow. Our computational results show that the influence of the inclination angle of the
applied magnetic field is far stronger on the induced magnetic fiddthan on the
axial velocity.

Acknowledgments

The first author was supported in part by an Australian Government Overseas
Postgraduate Research Scholarship, a University of Wollongong Postgraduate Awarc



(17]

The DRBEM for MHD channel flows 321

and a Guangxi University for Nationalities Key Grant #00SXX00001.

The authors would also like to gratefully acknowledge some very constructive
suggestions from two anonymous referees; based on these suggestions we have revis
the paper to its current form.

(1]
(2]
(3]
(4]
(5]

(6]
(7]
(8]

E)
(10]

(11]
(12]

(13]
(14]
(15]

(16]

(17]

(18]

(19]

References

C. A. Brebbia, J. C. F. Tells and L. C. Wrobel (edBpundary element techniquéSpringer,
Berlin, 1984).

T. R. Bridges and L. C. Wrobel, “A dual reciprocity formulation for elasticity problems with body
forces using augmented thin plate splingddmm. Numer. Methods EntR (1996) 209-220.

I. L. Brunton and A. J. Pullan, “A semi-analytic boundary element method for parabolic problem”,
Eng. Anal. Boundary Element8 (1996) 253-264.

C. J. Coleman, D. L. Tullock and N. Phan-Thien, “An effective boundary element method for
inhomogeneous partial differential equationrdBAMP 42 (1991) 730-745.

J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spacesgristructive
theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1L8g8)re
Notes in Math. 571, (Springer, Berlin, 1977) 85-100.

L. R. T. Gardner and G. A. Gardner, “A two dimensional bi-cubic B-spline finite element: used in
a study of MHD-duct flow”, Comput. Methods Appl. Mech. Eri24(1995) 365-375.

M. A. Golberg, “The method of fundamental solutions for Poisson’s equat®ng, Anal. Bound-

ary Elementd6 (1995) 205-213.

M. A. Golberg, C. S. Chen and S. Karur, “Improved multiquadric approximation for partial
differential equations”Eng. Anal. Boundary Element8 (1996) 9-17.

R. R. Gold, “Magnetohydrodynamic pipe flow, part. I’, Fluid Mech.13 (1962) 505-512.

M. ltagaki and C. A. Brebbia, “Generation of higher order fundamental solutions to the two-
dimensional modified Helmholtz equatiof£ng. Anal. Boundary Elementd (1993) 87-90.

A. D. Kerr, “An extension of the Kantorovich methodQuart. Appl. Math26 (1968) 219.

H.-W. Liu, “Numerical modeling of the propagation of ocean waves”, Ph. D. Thesis, University of
Wollongong, Australia, 2001.

H.-W. Liu, S.-P. Zhu and T. R. Marchant, “A perturbation DRBEM model for weakly nonlinear
wave runups around islands”, accepted in principle.

W. R. Madych and S. A. Nelson, “Multivariate interpolation and conditionally positive definite
functions 11", Math. Comp54 (1990) 211-230.

D. Nardini and C. A. Brebbiad new approach to free vibration analysis using boundary elements
(Comput. Mech., Southampton, and Springer, Berlin, 1982).

A. C. Neves and C. A. Brebbia, “The multiple reciprocity boundary element method in elasticity:
A new approach for transforming domain integrals to the bound&my”J). Numer. Methods Eng.
31(1991) 709-727.

A.J.Nowak and C. A. Brebbia, “The multiple-reciprocity method. A new approach for transforming
BEM domain integrals to the boundarng. Anal. Boundary Elemeng1989) 164-168.

A. J. Nowak and C. A. Brebbia, “Solving Helmholtz equation by multiple reciprocity method”,
in Computer and experiments in fluid flgads. G. M. Carlomagno and C. A. Brebbia), (Comput.
Mech., Southampton, 1989) 265-270.

P. W. Partridge and C. A. Brebbia, “Computerimplementation of the BEM dual reciprocity method
for the solution of Poisson-type equationShftware Engrg. Workstatiorts(1989) 199-206.



322
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

(40]

Huan-Wen Liu and Song-Ping Zhu [18]

P. W. Partridge, C. A. Brebbia and L. C. Wrob&he dual reciprocity boundary element method
(Comput. Mech., Southampton, and Elsevier Appl. Sci., London, 1992).

P. W. Partridge and L. C. Wrobel, “The dual reciprocity method for spontaneous ignititnJ,
Numer. Methods En@®0 (1990) 953-963.

M. J. D. Powell, “The uniform convergence of thin plate splines in two dimensiondJnim. of
Cambridge Numer. Anal. Report DAMTP 1993/NA 16

M. J. D. Powell, “The theory of radial basis function approximation in 1990"Advances in
numerical analysis, Vol. Il (Lancaster, 199@Dxford Univ. Press, New York, 1992) 105-210.

J. A. Shercliff, “Steady motion of conducting fluid in pipes under transverse magnetic fields”,
Math. Proc. Cambridge Philos. So49(1953) 136-144.

B. Singh and J. Lal, “Magnetohydrodynamic axial flow in a triangular pipe under transverse
magnetic field”Indian J. Pure Appl. Math9 (1978) 101-115.

B. Singh and J. Lal, “MHD axial flow in a triangular pipe under transverse magnetic field parallel
to a side of the triangle’Indian J. Tech17(1979) 184-189.

B. Singh and J. Lal, “Finite element method in magnetohydrodynamic channel flow problems”,
Int. J. Numer. Methods End8(1982) 1104-1111.

B. Singh and J. Lal, “Finite element method for MHD channel flow with arbitrary wall conductiv-
ity”, J. Math. Phys. Scil8(1984) 501-516.

B. Singh and J. Lal, “Finite element method for unsteady MHD flow through pipes with arbitrary
wall conductivity”, Int. J. Numer. Methods Fluid$(1984) 291-302.

M. Tezer-Sezgin, “BEM solution of MHD flow in a rectangular duckit. J. Numer. Methods
Fluids 18 (1994) 937-952.

M. Tezer-Sezgin and S. Dost, “Boundary element method for MHD channel flow with arbitrary
wall conductivity”, Appl. Math. Modelindl8 (1994) 429-436.

M. Tezer-Sezgin and S. Dost, “Boundary element solution of inhomogeneous modified Helmholtz
equation”,Scientia Iranical (1994) 157-166.

M. Tezer-Sezgin and S. Koksal, “Finite element method for solving MHD flow in a rectangular
duct”, Int. J. Numer. Methods Eng8 (1989) 445-459.

Z. Wu and R. Shaback, “Local error estimates for radial basis function interpolation of scattered
data”,IMA J. Num. Anal13(1993) 13-27.

Y. L. Zhang and S.-P. Zhu, “On the choice of interpolation functions used in the dual-reciprocity
boundary-element methodEng. Anal. Boundary Element8 (1994) 387-396.

R.Zheng, C. J. Coleman and N. Phan-Thien, “A boundary element approach for non-homogeneous
potential problems”Comp. Mech7 (1991) 279-288.

S.-P. Zhu and H.-W. Liu, “On the application of the multiquadric bases in conjunction with the
LTDRM method to solve nonlinear diffusion equation&fppl. Math. Compu96(1998) 161-175.

S.-P. Zhu, H.-W. Liu and X.-P. Lu, “A combination of the LTDRM and the ATPS in solving linear
diffusion problems”Eng. Anal. Boundary Elemen24 (1998) 285-289.

S.-P. Zhu, P. Satravaha and X.-P. Lu, “Solving linear diffusion equations with the dual reciprocity
method in Laplace spaceEng. Anal. Boundary ElementS8 (1994) 1-10.

S.-P. Zhu and Y. L. Zhang, “Improvement on dual reciprocity boundary element method for
equations with convective term&Comm. Numer. Methods Ent0 (1994) 361-371.



