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Abstract

In this work we shall study the existence of extremal solutions for an impulsive problem
with functional-boundary conditions and weak regularity assumptions, not only on the
right-hand side of the equation and on the functions that define the boundary conditions,
but also on the impulse functions, which will be required to be nondecreasing, but not
continuous as well, as is customary in the literature.
Moreover, in order to prove one of our results we shall study a general impulsive linear
problem, giving a complete characterisation of resonance for it.

1. Introduction

The framework of impulsive differential equations has proved to be the most adequate
for the modelling of processes with short time perturbations where change is assumed
to occur instantaneously. These equations exhibit several new phenomena and pose a
number of specific problems that cannot be treated with the usual techniques for ordi-
nary differential equations (ODEs). There are many applications in different sciences
for impulsive differential equations. We mention here a model for drug distribution
[11, 12], the model of a single-species population with changes to important biologi-
cal parameters [5, 17] and the impulsive stabilisation of a state which may not be an
equilibrium point of the system (stabilisation of an inverted pendulum) [14].

In recent years many authors have considered different problems involving im-
pulsive differential equations, and many types of techniques have been employed
to deduce the existence of solutions: degree theory, topological transversality, fixed
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point theorems, passing to the limit and the definition of a proper generalisation of the
Poincaré map for the study of initial and periodic boundary value problems.

On the other hand, a recent trend in the study of the existence of solutions for
ODEs is that of discontinuous nonlinearities. It is necessary to point out that the usual
techniques we have mentioned before strongly depend on continuity, so one has to
look for alternative ways to deal with this type of problem. The fundamental reference
in this field we have followed is [10].

In practical situations impulse effects are constant over certain ranges of values,
mainly when the impulses are used to keep a control over a determined system. Thus it
is reasonable to consider discontinuous impulse functions, rather than continuous ones,
to obtain more realistic models (for example, a model of medical drug distribution in
which each patient receives either one or two doses per day, depending on his, or her,
temperature).

However, to the best of our knowledge, we know of no paper on impulsive equations
that considers discontinuous impulse functions.

As we said in the abstract we shall study the existence of extremal solutions for an
impulsive problem with functional-boundary conditions when some of the classical
regularity hypotheses over the functions that define the problem are removed. In
particular, impulsive functions will be required to be nondecreasing but not continuous.

The results that we shall present extend and complement those in [2, 8, 9, 10, 13]
and are new even for the nonimpulsive case.

2. Notation, definitions and preliminary results

We shall study the impulsive functional-boundary value problem given by

x′.t/ = f .t; x.t// for a.a. t ∈ J = [0;1];
x.t+

k / = Ik.x.tk//; k = 1;2; : : : ;m;

B.x.0/; x/ = 0;

(2.1)

where 0= t0 < t1 < · · · < tm < tm+1 = 1 is a fixed partition which corresponds to
impulse effects.

REMARK. It is not difficult to prove that the results of the present work for (2.1)
remain valid if we change the intervalJ by an arbitrary compact real interval[a;b]:
a simple change of variable shows the equivalence between the two problems.

Following the standard notation, we consider the set

PC.J/ = { x : J → R | x is continuous inJ \ {t1; t2; : : : ; tm}
and there existx.t−

k / = x.tk/ andx.t+
k /; k = 1;2; : : : ;m};
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which is a Banach space with the norm‖x‖ = sup{|x.t/| : t ∈ J}.
In the spacePC.J/ we consider the usual pointwise partial ordering: forv;w ∈

PC.J/, we shall writev ≤ w whenv.t/ ≤ w.t/ for all t ∈ J. In such a case, we
define the interval[v;w] = {z ∈ PC.J/ : v ≤ z ≤ w}.

The general assumptions for problem (2.1) are listed below:
(F) (1) For everyx ∈ R, f .·; x/ is Lebesgue measurable onJ.

(2) For a.a.t ∈ J, lim supz→x− f .t; z/ ≤ f .t; x/ ≤ lim inf z→x+ f .t; z/ for
all x ∈ R.

(3) For everyR > 0 there exists ∈ L1.J/ such that| f .t; x/| ≤  .t/ for
a.a.t ∈ J and allx ∈ R with |x| ≤ R.

(I) Ik : R → R is a nondecreasing function for eachk = 1;2; : : : ;m.
(B) B : R × PC.J/ → R is such that for every¾ ∈ PC.J/ we have that, for all

u ∈ R, lim inf z→u− B.z; ¾ / ≥ B.u; ¾ / ≥ lim supz→u+ B.z; ¾ /. Moreover, for
eachu ∈ R, the functionB.u; ·/ is nonincreasing inPC.J/.

The type of functional-boundary conditions we use here follows the spirit of [9].
Note that the usual boundary conditions, such as initial or periodic conditions, are
covered in the formulation of problem (2.1). For periodic boundary conditions it
suffices to defineB.u; ¾ / = u − ¾.1/ for .u; ¾ / ∈ R × PC.J/. Furthermore,
not only the behaviour of the solution at the boundary is involved in the condition
B.x.0/; x/ = 0 and, for instance, a condition of the formx.0/ = ∫ 1=2

1=3 x.s/ds, can be
studied in the frame of problem (2.1).

Let us denoteJ0 = [0; t1] and fork = 1;2; : : : ;m, Jk = .tk; tk+1]. We define the
following subspace ofPC.J/:

� = {x ∈ PC.J/ : x|Jk
∈ AC.Jk/; k = 0;1; : : : ;m};

whereAC.K / denotes the space of absolutely continuous functions in the intervalK .
Now we define the concepts of a lower and upper solution for problem (2.1).

DEFINITION 2.1. A function Þ : J → R is a lower solution of problem (2.1) if
Þ ∈ �, f .·; Þ.·// is measurable and

Þ′.t/ ≤ f .t; Þ.t// for a.a. t ∈ J;

Þ.t+
k / ≤ Ik.Þ.tk//; k = 1;2; : : : ;m;

B.Þ.0/; Þ/ ≤ 0:

A functionþ : J → R is an upper solution of (2.1) if þ ∈ �, f .·; þ.·// is measurable
and

þ ′.t/ ≥ f .t; þ.t// for a.a. t ∈ J;

þ.t+
k / ≥ Ik.þ.tk//; k = 1;2; : : : ;m;

B.þ.0/; þ/ ≥ 0:
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Finally we say thatx is a solution of (2.1) if it is both a lower and an upper solution.

REMARK. A function f : J ×R → R is said to besuperpositionally measurableor
sup-measurableif f .·; x.·// is measurable onJ wheneverx : J → R is a measurable
function onJ, see [1].

For instance, continuous, and even Carath´eodory, functions are sup-measurable
functions, so in that case, the condition “f .·; x.·// is measurable” is unnecessary in
Definition 2.1.

However, if f only verifies (F), the compositionf .·; x.·//may not be a measurable
function, even for continuousx (see [8]).

REMARK. In [2] a particular case of the following problem is considered:

x′.t/ = q.x.t// f .t; x.t// for a.a. t ∈ J = [0;1];
x.t+

k / = Ik.x.tk//; k = 1;2; : : : ;m;

B.x.0/; x/ = 0;

(2.2)

where the functionq : R → .0;∞/ is such thatq, 1=q ∈ L∞
loc.R/ and

∫ ±∞

0

ds

q.s/
= ±∞:

Note that, althoughf verifies condition (F), the productq f may not fulfil it.
However, this apparently more general situation can be studied as a particular case of
problem (2.1).

Indeed, following the ideas of [4, 8], one can prove thatx ∈ � is a solution of (2.2)
if and only if � ◦ x is a solution of

y′.t/ = f .t; �−1.y.t/// for a.a. t ∈ J = [0;1];
y.t+

k / = �
(
Ik.�

−1.y.tk///
)
; k = 1;2; : : : ;m;

B.�−1.y.0//; �−1 ◦ y/ = 0;

where�.x/ = ∫ x

0 ds=q.s/ for all x ∈ R.
Moreover, since� is an increasing homeomorphism fromR onto R, it can be

proved that the function.t; y/ ∈ J × R 7→ f .t; �−1.y// verifies condition (F), the
impulse functions� ◦ Ik ◦ �−1 are nondecreasing fork = 1;2; : : : ;m and B̃.u; ¾ / =
B.�−1.u/; �−1 ◦ ¾/ for .u; ¾ / ∈ R× PC.J/ verifies condition (B).

If Þ andþ are, respectively, a lower and an upper solution of problem (2.1) and
Þ ≤ þ, we say that a solutionx of (2.1) is maximal in[Þ; þ] if for every solution
y ∈ [Þ; þ] of (2.1) we have thatx ≥ y. We define theminimal solution in[Þ; þ] by
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reversing the inequalities. When both minimal and maximal solutions in[Þ; þ] exist,
we call them theextremal solutions in[Þ; þ].

Analogously, we say thatx∗ andx∗ are, respectively, the minimal and the maximal
solutions of (2.1), and we call them the extremal solutions, if they are solutions, and
x∗.t/ ≤ x.t/ ≤ x∗.t/ for all t ∈ J, wheneverx is a solution of (2.1).

The following result is [8, Theorem 3.1], and we include it here for the convenience
of the reader.

THEOREM 2.2. If f : J × R → R verifies conditions.1/ and .2/ of (F) and,
moreover, there exists ∈ L1.J/ such that| f .t; x/| ≤  .t/ for a.a. t ∈ J = [0;1]
and all x ∈ R, then the initial value problem

x′.t/ = f .t; x.t// for a.a.t ∈ J; x.0/ = x0;

has extremal solutions for everyx0 ∈ R.

The following lemmas will be used in the proof of our main results.

LEMMA 2.3. Let a;b ∈ R, a ≤ b andh : R → R be such thath.a/ ≤ 0 ≤ h.b/
and lim inf z→x− h.z/ ≥ h.x/ ≥ lim supz→x+ h.z/ for all x ∈ [a;b].

Then there existc1; c2 ∈ [a;b] such thath.c1/ = 0 = h.c2/ and if h.c/ = 0 for
somec ∈ [a;b] thenc1 ≤ c ≤ c2, that is,c1 andc2 are, respectively, the smallest and
largest of the zeroes ofh in [a;b].

PROOF. We shall only prove the existence ofc1 since the existence ofc2 may be
deduced using symmetric arguments.

If h.a/ = 0 thenc1 = a. Assumeh.a/ < 0. Since lim supz→a+ h.z/ ≤ h.a/ < 0,
there exists" > 0 such thath.t/ < 0 for all t ∈ [a;a + "]. Set

r = sup
{
t ∈ .a;b] : h.s/ < 0 for all s ∈ [a; t]}

and let us prove thath.r / = 0.
If h.r / < 0 we deduce (just as we did fora in the last paragraph) thath.t/ < 0

for all t ∈ [r; r + "1] for some"1 > 0, which contradicts the definition ofr . Hence it
must hold thath.r / ≥ 0.

If h.r / > 0, since lim infz→r − h.z/ ≥ h.r / > 0, there exists"2 > 0 such that
h.t/ > 0 for all t ∈ [r − "2; r ], which is impossible by the definition ofr .

Finally, if h.c/ = 0 for somec ∈ [a;b], we haver ≤ c by our choice ofr . Thus
we have to definec1 = r .

A set S ⊂ PC.J/ is said to be quasi-equicontinuous if for allx ∈ S and" > 0
there existsŽ > 0 such thats; t ∈ Jk and|s − t | < Ž implies|x.s/− x.t/| < ".

The following result about the relatively compact sets inPC.J/ is a consequence
of the Arzela-Ascoli theorem. The reader can find its proof in [13].
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LEMMA 2.4. A setS ⊂ PC.J/ is relatively compact if and only ifS is bounded
and quasi-equicontinuous.

The following result is an adaptation of [10, Theorem 1.4.7] for the spacesPC.J/
and�.

LEMMA 2.5. Let Þ; þ ∈ � be such thatÞ ≤ þ and G : [Þ; þ] → [Þ; þ] is a
nondecreasing mapping. Moreover, suppose that there existsv ∈ � such that

|Gx.s/− Gx.t/| ≤ |v.s/− v.t/|; s; t ∈ Jk; k = 0;1; : : : ;m; (2.3)

for everyx ∈ [Þ; þ].
ThenG has a least fixed pointx∗ in [Þ; þ] and a greatest one,x∗. Furthermore, it

is satisfied that

x∗ = min
{

x ∈ [Þ; þ] : Gx ≤ x
}
; x∗ = max

{
x ∈ [Þ; þ] : Gx ≥ x

}
:

PROOF. Let {xn} be a monotone sequence in[Þ; þ]. Since the operatorG is
nondecreasing,{Gxn.t/} is for eacht ∈ J a monotone sequence in[Þ.t/; þ.t/]. Thus
we definex.t/ = limn→∞ Gxn.t/ for eacht ∈ J.

From (2.3) it follows that for eachn ∈ N,

|Gxn.s/ − Gxn.t/| ≤ |v.s/− v.t/|; s; t ∈ Jk; k = 1;2; : : : ;m: (2.4)

Therefore the sequence{Gxn} is quasi-equicontinuous and bounded and, by Lem-
ma2.4, the sequence{Gxn} converges inPC.J/ to x.

Now, (2.4) implies asn → ∞ that

|x.s/− x.t/| ≤ |v.s/− v.t/|; s; t ∈ Jk; k = 0;1; : : : ;m: (2.5)

Sincev ∈ �, it follows from (2.5) thatx ∈ �.
In this situation, a straightforward application of [10, Theorem 1.2.2] yields the

result.

3. Linear problems: the resonance condition

In this section we shall study the linear problem

x′.t/ = p.t/x.t/ + q.t/ for a.a. t ∈ J; (3.1)

x.t+
k / = ckx.tk/+ dk; k = 1;2; : : : ;m; (3.2)

x.0/ = L.x/+ ½; (3.3)
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wherep, q ∈ L1.J/, ½, ck anddk are given real numbers andL is a linear functional
defined on the vector spacePC.J/.

Note that forck = 1 anddk = 0, k = 1;2; : : : ;m, we have the corresponding
nonimpulsive case, and forL.u/ = u.1/ and½ = 0 we have periodic boundary
conditions.

In the following proposition we discuss completely the solvability of (3.1)–(3.3),
obtaining a general characterisation of resonance. A first step in the study of the
resonance of the periodic case is given in [6, 15, 16].

In what follows, by
∑

s<ti<t we mean, as usual,
∑

{i :s<ti<t}, and in the same way by∏
s<ti<t we mean

∏
{i :s<ti<t}.

PROPOSITION3.1. Let p, q ∈ L1.J/, ½, ck, dk ∈ R, k = 1;2; : : : ;m, and a linear
mappingL : PC.J/ → R be fixed.

.a/ (Resonance)If

L

(
t 7→

∏
tk<t

cke
∫ t

0 p.s/ ds

)
= 1; (3.4)

then the linear problem(3.1)–(3.3) is solvable if and only if

−½ = L

(
t 7→

∫ t

0

∏
s<tk<t

cke
∫ t

s p.r / dr q.s/ds

)
+ L

(
t 7→

∑
0<tk<t

∏
tk<ti<t

ci e
∫ t

tk
p.r / dr dk

)
;

and, in such a case, the problem has infinitely many solutions, which are given by the
expression

x.t/=−
∏
tk<t

cke
∫ t

0 p.s/ ds+
∫ t

0

∏
s<tk<t

cke
∫ t

s p.r / drq.s/ds+
∑

0<tk<t

∏
tk<ti<t

ci e
∫ t

tk
p.r / dr dk; (3.5)

where− ∈ R.
.b/ If condition (3.4) is violated, problem(3.1)–(3.3) has a unique solution given
by (3.5) and

− =
½+ L

(
t 7→ ∫ t

0

∏
s<tk<t cke

∫ t
s p.r / dr q.s/ds

)
1 − L

(
t 7→ ∏

tk<t cke
∫ t

0 p.s/ ds
)

+
L
(

t 7→ ∑
0<tk<t

∏
tk<ti<t ci e

∫ t
tk

p.r / dr dk

)
1− L

(
t 7→ ∏

tk<t cke
∫ t

0 p.s/ ds
) : (3.6)
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PROOF. It is known that a function that satisfies (3.1)–(3.2) also satisfies the equality
([13, Theorem 1.4.1])

x.t/ = x.0/
∏
tk<t

cke
∫ t

0 p.s/ ds +
∫ t

0

∏
s<tk<t

cke
∫ t

s p.r / drq.s/ds

+
∑

0<tk<t

∏
tk<ti<t

ci e
∫ t

tk
p.r / dr dk; (3.7)

for all t ∈ J.
Imposing the conditionx.0/ = L.x/+½ and taking into account the linearity ofL,

one can deduce (a) and (b) by direct computation.

REMARK. Note that when we consider periodic boundary conditions (defining
L.x/ = x.1/ for x ∈ PC.J/ and½ = 0), relation (3.4) becomes

∏p
k=1 cke

∫ 1
0 p.s/ ds = 1,

and if, moreover, we consider the nonimpulsive case, that is,ck = 1, dk = 0,
k = 1;2; : : : ;m, we obtain

∫ 1

0 p.s/ds = 0.

REMARK. For the nonimpulsive case, corresponding tock = 1, dk = 0,
k = 1;2; : : : ;m, the linear mappingL is defined over the set of continuous func-
tions on the intervalJ.

Therefore, ifL : C .J/ → R is a continuous functional, there exists a function of
bounded variation� : J → R such thatL.v/ = ∫ 1

0 v.t/d�.t/ for all v ∈ C .J/, where
the integral is understood in the Riemann-Stieltjes sense.

For instance, the periodic conditions correspond to the function�, defined by
�.t/ = 0 for t ∈ [0;1/ and�.1/ = 1.

Using this fact, condition (3.4) can be expressed more succinctly as

∫ 1

0

(
e
∫ t

0 p.s/ ds
)

d�.t/ = 1:

For our purposes we will require the following generalised maximum principle.

LEMMA 3.2. Let p, q ∈ L1.J/, q.t/ ≥ 0 for a.a. t ∈ J, ½, ck, dk ∈ R
+,

k = 1;2; : : : ;m, and a linear nondecreasing mappingL : PC.J/ → R be fixed.
If x ∈ � is a solution of(3.1)–(3.3) and condition

L

(
t 7→

∏
tk<t

cke
∫ t

0 p.s/ ds

)
< 1 (3.8)

is fulfilled, thenx.t/ ≥ 0 for eacht ∈ J.
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PROOF. Note thatx is explicitly given by (3.5) and (3.6). Hence, sinceq anddk,
k = 1;2; : : : ;m, are nonnegative, it suffices to show thatx.0/ ≥ 0 to conclude our
result.

SinceL is nondecreasing and½ ≥ 0, by (3.3) we have that

x.0/ = L.x/ + ½ ≥ L

(
t 7→ x.0/

∏
tk<t

cke
∫ t

0 p.s/ ds

)
;

and, sinceL is linear, we obtain

x.0/

[
1 − L

(
t 7→

∏
tk<t

cke
∫ t

0 p.s/ ds

)]
≥ 0:

Therefore, in view of (3.8), we can conclude thatx.0/ ≥ 0.

4. Nonlinear problems (I): upper and lower solutions

This section is devoted to proving the following existence result. Its proof is based
on the generalised iterative technique described in [10]. However, unlike the usual
way in which this technique is used (where the right-hand side of the differential
equation is modified to construct the iterates), we modify the functional-boundary
condition and keep the same right-hand side.

THEOREM 4.1. LetÞ andþ be, respectively, a lower and an upper solution of(2.1).
Assume thatÞ.t/ ≤ þ.t/ for all t ∈ J and that conditions(F), (I) and(B) are verified.

Then problem(2.1) has extremal solutions in[Þ; þ].

REMARK. Note that continuity is not requiredover any of the elements which define
problem (2.1). In particular, the impulse functions need not be continuous.

PROOF. Consider the mappingG : [Þ; þ] → [Þ; þ], defined as follows: for each
� ∈ [Þ; þ] defineG� as the minimal solution betweenÞ andþ of the impulsive initial
value problem

.P�/




x′.t/ = f .t; x.t//; t ∈ J;

x.t+
k / = Ik.x.tk//; k = 1;2; : : : ;m;

x.0/ = −�;

where−� is the minimal solution in[Þ.0/; þ.0/] of the implicit equation

B
(
−�; �

) = 0: (4.1)
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Note that, sinceB.u; ·/ is nonincreasing for everyu ∈ R, we have

B .þ.0/; �/ ≥ B.þ.0/; þ/ ≥ 0 ≥ B.Þ.0/; Þ/ ≥ B .Þ.0/; �/ ;

and hence, by assumption (B) and Lemma2.3, we conclude that−� is well-defined.
The existence of the minimal solution of.P�/ betweenÞ andþ can be proved by

using Theorem2.2together with standard arguments with upper and lower solutions.
It suffices to solve the problem “piecewise” over each intervalJk, k = 0;1; : : : ;m,
taking into account the following fact: ifx is the minimal minimal solution of.Pn/

betweenÞ andþ on the interval[0; tk], thenÞ.tk/ ≤ x.tk/ ≤ þ.tk/, and sinceIk is
nondecreasing, we have that

Þ.t+
k / ≤ Ik.Þ.tk// ≤ Ik.x.tk// ≤ Ik.þ.tk// ≤ þ.t+

k /;

thus the solutionx can be continued over the interval[tk; tk+1], betweenÞ andþ and
so on.

Note that ifx ∈ [Þ; þ] is a fixed point ofG thenx is a solution of (2.1) in [Þ; þ].
Let us prove thatG is nondecreasing in[Þ; þ]. Let �1, �2 ∈ [Þ; þ] be such that

�1 ≤ �2. By definition,−�i
is the minimal solution in[Þ.0/; þ.0/] of (4.1), replacing�

by �i , i = 1;2. Hence it is obviously true that if−�1 = Þ.0/ then−�1 ≤ −�2.
On the other hand, if−�1 > Þ.0/ then for every− ∈ [Þ.0/; −�1/ we have

0> B.−; �1/ ≥ B.−; �2/;

and we obtain−�1 ≤ −�2 again.
Then we can say thatG�2 is an upper solution of the initial value problem.P�1/

andG�2 ≥ Þ, so problem.P�1/ has a minimal solution betweenÞ andG�2. Since the
minimal solution of that problem betweenÞ andþ is G�1, we have thatG�1 ≤ G�2.

By condition (3) in (F) there exists ∈ L1.J/ such that

|.G�/′.t/| ≤  .t/ for a.a. t ∈ J and all � ∈ [Þ; þ]:
Now we define fork = 0;1; : : : ;m the functionv.t/ = ∫ t

tk
 .s/ds with t ∈ Jk. It

is easy to see thatG satisfies (2.3) with this functionv.
By Lemma2.5, G has a minimal fixed pointx∗ ∈ [Þ; þ] which, moreover, satisfies

x∗ = min {x ∈ [Þ; þ] : Gx ≤ x} : (4.2)

Finally, if x is a solution of (2.1) in [Þ; þ] then B.x.0/; x/ = 0 and x.0/ ∈
[Þ.0/; þ.0/], which implies thatx.0/ ≥ −x, by the definition of−x, and henceGx ≤ x.
Thus, by (4.2), we conclude thatx∗ ≤ x, that is,x∗ is the minimal solution of (2.1) in
[Þ; þ].

To deduce the existence of the maximal solution of (2.1) in [Þ; þ] it suffices to
redefineG in the obvious way.
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5. Nonlinear problems (II): global solvability

Finding an upper and a lower solution for a problem of type (2.1) is not a simple
matter in many practical situations. From this point of view it is useful to have
sufficient conditions for the existence of upper and lower solutions. Moreover, it
would be convenient to be able to be sure that one can find a lower solution,Þ, and an
upper solutionþ, such thatÞ ≤ þ on J and that all the solutions belong to[Þ; þ].

In this sense, and following the spirit of [9, Proposition 6.1] and [10, Proposi-
tion 2.3.1], we present the following result.

THEOREM 5.1. Suppose that conditions(F), (I) and (B) are satisfied. Assume also
that the following set of assumptions is fulfilled:

.a/ There existp, q1, q2 ∈ L1.J/ such thatp.t/x +q1.t/ ≤ f .t; x/ ≤ p.t/x +q2.t/
for a.a.t ∈ J and all x ∈ R, and f .·; v.·// is measurable wheneverv ∈ �.
.b/ There exist constantsck ∈ .0;∞/ andd1;k, d2;k;∈ R k = 1;2; : : : ;m, such that
ckx + d1;k ≤ Ik.x/ ≤ ckx + d2;k for all x ∈ R and all k = 1;2; : : : ;m.
.c/ There exists a nondecreasing linear mappingL : PC.J/ → R and there exist

constantsa ∈ .0;∞/ and½1, ½2 ∈ R such that

au − L.¾/+ ½1 ≥ B.u; ¾ / ≥ au − L.¾/ + ½2;

for all .u; ¾ / ∈ R× PC.J/.

If

L

(
t 7→

∏
tk<t

cke
∫ t

0 p.s/ ds

)
< a (5.1)

then problem(2.1) has extremal solutions among all its solutions.

PROOF. The following impulsive problem


y′.t/ = p.t/y.t/ + q2.t/ for a.a. t ∈ J,

y.t+
k / = ck y.tk/+ d2;k; k = 1;2; : : : ;m;

y.0/ = .1=a/L.y/ − ½2=a;

has a unique solution,þ, by virtue of condition (5.1) and Proposition3.1.
By assumption (a) we have thatþ ′.t/ = p.t/þ.t/ + q2.t/ ≥ f .t; þ.t// for a.a.

t ∈ J. By condition (b),þ.t+
k / = ckþ.tk/+ d2;k ≥ Ik.þ.tk// for k = 1;2; : : : ;m, and,

finally, condition (c) implies thatB.þ.0/; þ/ ≥ aþ.0/ − L.þ/ + ½2 = 0, and hence
þ is an upper solution of (2.1).
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Similarly, if Þ denotes the unique solution of the problem


y′.t/ = p.t/y.t/ + q1.t/ for a.a. t ∈ J,

y.t+
k / = cky.tk/+ d1;k; k = 1;2; : : : ;m;

y.0/ = .1=a/L.y/ − ½1=a;

thenÞ is a lower solution of (2.1).
If we denotev ≡ þ − Þ, we have that

v′.t/ = p.t/v.t/ + q2.t/ − q1.t/ ≥ p.t/v.t/ for a.a. t ∈ J,

v.t+
k / = ckv.tk/+ d2;k − d1;k ≥ ckv.tk/;

v.0/ = 1

a
L.v/ + ½1 − ½2

a
≥ 1

a
L.v/;

so, by Lemma3.2, we conclude thatÞ ≤ þ on J.
Now, by virtue of Theorem4.1, we can affirm that problem (2.1) has the extremal

solutions in the interval[Þ; þ].
Finally, one can prove that any solution of (2.1) belongs to[Þ; þ]. Indeed, letx be

a solution of (2.1) and callw ≡ x − Þ. Assumptions (a), (b) and (c) allow us to use
Lemma3.2 to deduce thatw ≥ 0 in J, that is,x ≥ Þ in J. Similar arguments show
thatx ≤ þ in J.

REMARK. Under the conditions of Theorem5.1we can constructa priori bounds
on the solutions: it suffices to consider the functionsÞ andþ which are defined in the
proof.

Note that the explicit expression ofÞ andþ is given by (3.5) and (3.6).

Theorem5.1 is used to deduce the existence of global extremal solutions in the
next example.

Consider the problem

x′.t/ = 1√|t − 1| + [x.t/] + sgn.x.t// − 1√|t − 1|x.t/; t ∈ J = [0;2]; (5.2)

x.1+/ = [x.1/]; (5.3)

k[x.0/] −
[∫ 2

0

x.s/ds

]
− x.1/ = 0; (5.4)

wherek > 0 is a fixed number,[s] denotes the greatest integer less than or equal to
s ∈ R and

sgn.s/ =
{

s=|s|; if s 6= 0,

0; if s = 0.
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The assumptions of Theorem5.1are fulfilled if we consider

p.t/ = 1 − 1√|t − 1|; q1.t/ = −2 + 1√|t − 1| ; q2.t/ = 1 + 1√|t − 1| ;

for a.a.t ∈ J; constantsc1 = 1, d1;1 = −1, d2;1 = 0, a = k, ½1 = 1, ½2 = −k and the
linear nondecreasing mappingL.v/ = ∫ 2

0 v.s/ds + v.1/ for all v ∈ �.
Now, by Theorem5.1, we can say that if condition (5.1) is satisfied, then problem

(5.2)–(5.4) has the extremal solution among all its solutions.
Note that in this case, condition (5.1) becomes∫ 2

0

(
e
∫ s

0 p.r / dr
)

ds+ e
∫ 1

0 p.s/ ds < k;

so problem (5.2)–(5.4) has global extremal solutions for sufficiently large values of
k > 0.

6. What if the impulse functions are not nondecreasing?

In [3] Cabada and Liz and in [7] Frigon and O’Regan show the existence of
solutions for the periodic and initial value problem with impulses without assuming
monotonicity conditions on functionsIk (the authors required these functions to be
continuous). In the following example we show that when some of the impulse
functions are not nondecreasing the conclusion of Theorem4.1may fail to be valid.

Consider the following periodic problem:

x′.t/ = 3x2=3.t/ for a.a. t ∈ [−1;1], (6.1)

x.0+/ = −x.0/; (6.2)

x.−1/ = x.1/: (6.3)

In this case the unique impulse effect is given by functionI .x/ = −x for all x ∈ R,
which is not a nondecreasing function.

A lower solution of (6.1)–(6.3) is given by

Þ.t/ =
{

0; if t ∈ [−1;0],
.t − 1/3; if t ∈ .0;1],

and an upper solution is

þ.t/ =
{
.t + 1/3; if t ∈ [−1;0],
0; if t ∈ .0;1].

Note thatÞ ≤ þ, so every condition of Theorem4.1 is verified except condition(I).
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Now we are going to prove that problem (6.1)–(6.3) has no minimal solution in
[Þ; þ], which will show that the conclusion of Theorem4.1 is not valid in general for
this type of impulse function.

Note thatx ≡ 0 is a solution of (6.1)–(6.3) in [Þ; þ] and if y ∈ [Þ; þ] is another
solution we have two possibilities: there existst0 ∈ .−1;0/ such thaty.t0/ > 0 or
t0 ∈ .0;1/ such thaty.t0/ < 0.

Assumet0 ∈ .−1;0/ such thaty.t0/ > 0. Since the problem

v′.t/ = 3v2=3.t/ for all t ∈ [t0;0]; v.t0/ = y.t0/;

has a unique increasing solution, theny.0/ > 0 which implies thaty.0+/=− y.0/<0,
so there exists" > 0 such thaty.t/ < 0 for t ∈ .0; "/.

Reasoning in a symmetric way it can be proved that if there existst0 ∈ .0;1/ such
that y.t0/ < 0 then there exists" > 0 such thaty.t/ > 0 for t ∈ .−";0/.

Hence we have proved that no nontrivial solution of (6.1)–(6.3) in [Þ; þ] can be
minimal, because it is not less than or equal to the trivial solution over the whole
interval[−1;1]. On the other hand, we cannot say thatx ≡ 0 is the minimal solution
because there exist nontrivial solutions in[Þ; þ]: consider, for instance, the functiony
defined by

y.t/ =
{
.t + 1/3; if t ∈ [−1;0],
.t − 1/3; if t ∈ .0;1].

On the other hand, when some of the functionsIk are discontinuous and not
nondecreasing, not even the existence of a solution can be assured, as the following
simple example shows:

u′.t/ = 0; t ∈ [0;2];
u.1+/ = I .u.1//; (6.4)

u.0/ = u.2/;

with I .x/ = 1 if x ∈ .∞;0/, and I .x/ = −1 if x ∈ [0;∞/. FunctionsÞ = −2 and
þ = 2 are respectively lower and upper solutions of problem (6.4) but this problem is
unsolvable.
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