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FOR FIRST-ORDER IMPULSIVE PROBLEMS
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Abstract

In this work we shall study the existence of extremal solutions for an impulsive problem
with functional-boundary conditions and weak regularity assumptions, not only on the
right-hand side of the equation and on the functions that define the boundary conditions,
but also on the impulse functions, which will be required to be nondecreasing, but not
continuous as well, as is customary in the literature.

Moreover, in order to prove one of our results we shall study a general impulsive linear
problem, giving a complete characterisation of resonance for it.

1. Introduction

The framework of impulsive differential equations has proved to be the most adequate
for the modelling of processes with short time perturbations where change is assumec
to occur instantaneously. These equations exhibit several new phenomena and pose
number of specific problems that cannot be treated with the usual techniques for ordi-
nary differential equations (ODESs). There are many applications in different sciences
for impulsive differential equations. We mention here a model for drug distribution
[11, 12], the model of a single-species population with changes to important biologi-
cal parameterss| 17] and the impulsive stabilisation of a state which may not be an
equilibrium point of the system (stabilisation of an inverted pendulul)).

In recent years many authors have considered different problems involving im-
pulsive differential equations, and many types of techniques have been employed
to deduce the existence of solutions: degree theory, topological transversality, fixed
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point theorems, passing to the limit and the definition of a proper generalisation of the
Poincag map for the study of initial and periodic boundary value problems.

On the other hand, a recent trend in the study of the existence of solutions for
ODEs is that of discontinuous nonlinearities. It ecessary to point out that the usual
techniques we have mentioned before strongly depend on continuity, so one has tc
look for alternative ways to deal with this type of problem. The fundamental reference
in this field we have followed is1[0].

In practical situations impulse effects are constant over certain ranges of values,
mainly when the impulses are used to keep a control over a determined system. Thus |
is reasonable to consider discontinuous impulse functions, rather than continuous ones
to obtain more realistic models (for example, a model of medical drug distribution in
which each patient receives either one or two doses per day, depending on his, or hel
temperature).

However, to the best of our knowledge, we know of no paper on impulsive equations
that considers discontinuous impulse functions.

As we said in the abstract we shall study the existence of extremal solutions for an
impulsive problem with functional-boundary conditions when some of the classical
regularity hypotheses over the functions that define the problem are removed. In
particular, impulsive functions will be required to be nondecreasing but not continuous.

The results that we shall present extend and complement thogednd, 10, 13]
and are new even for the nonimpulsive case.

2. Notation, definitions and preliminary results

We shall study the impulsive functional-boundary value problem given by
x'(t) = f(t,x(t)) fora.a.teJ=][0,1],
Xt = (X)), k=1,2,...,m, (2.1)
B(x(0), x) =0,
where 0=ty < t; < --- < t, <ty = 1is afixed partition which corresponds to
impulse effects.

REMARK. It is not difficult to prove that the results of the present work far1)
remain valid if we change the intervadlby an arbitrary compact real intervia, b]:
a simple change of variable shows the equivalence between the two problems.

Following the standard notation, we consider the set

PC(J)={x:J— R|xiscontinuousinJ\ {t;,ts, ..., ty}
and there exisx(t, ) = x(t) andx(t’), k =1,2,..., m},
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which is a Banach space with the nofi|| = sug|x(t)| : t € J}.

In the spaceP C(J) we consider the usual pointwise partial ordering: fow €
PC(J), we shall writev < w whenv(t) < w(t) forallt € J. In such a case, we
define the intervalv, w] = {ze€ PCJ) : v <z < w}.

The general assumptions for probletnlj are listed below:

(F) (1) Foreveryx € R, f(-, x) is Lebesgue measurable dn

(2) Fora.at € J, limsup,_,- f(t,2) < f(t,x) < liminf .+ f(t, ) for
all x € R.

(3) For everyR > 0 there existgy € L1(J) such that f (t, x)| < ¥ (t) for
a.at € Jandallx € R with |x| < R.

() Ix: R — Ris a nondecreasing function for edch=1,2, ..., m.

(B) B: R x PC(J) — R is such that for every € PC(J) we have that, for all
u e R, liminf,, B(z,§) > B(u,&) > limsup,_, .. B(z,£). Moreover, for
eachu € R, the functionB(u, -) is nonincreasing i C(J).

The type of functional-boundary conditions we use here follows the spiri]of |
Note that the usual boundary conditions, such as initial or periodic conditions, are
covered in the formulation of problen2.(l). For periodic boundary conditions it
suffices to defineB(u,&) = u — &(1) for (u,&) € R x PC(J). Furthermore,
not only the behaviour of the solution at the boundary is involved in the condition
B(x(0), x) = 0 and, for instance, a condition of the fox(0) = 11/32 x(s) ds, can be
studied in the frame of problen (1).

Let us denotely, = [O,t;] and fork = 1,2, ..., m, J = (i, ty.1]. We define the
following subspace oP C(J):

Q={xePCU):x, € AC(Kk), k=0,1,..., m},

whereAC(K) denotes the space of absolutely continuous functions in the int€rval
Now we define the concepts of a lower and upper solution for probfeih (

DErINITION 2.1. A function«: J — R is a lower solution of problem2(1) if

a e, f(-,a()) is measurable and

o'(t) < f(t,a(t)) fora.a.te ],

ath < L(a(t)), k=12...,m,

B(x(0),x) < 0.
A function8: J — R s an upper solution ofA\1) if 8 € 2, f (-, B(:)) is measurable
and

B'(t) > f(t,B()) fora.a.te ],

B = k(Bt), k=1,2,....m,

B(8(0), B) = 0.
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Finally we say thak is a solution of 2.1) if it is both a lower and an upper solution.

ReMARK. A function f: J x R — Ris said to besuperpositionally measurabte
sup-measurablé f (-, x(-)) is measurable od whenevex: J — R is a measurable
function onJ, see [].

For instance, continuous, and even Cagatory, functions are sup-measurable
functions, so in that case, the conditioh(*, x(-)) is measurable” is unnecessary in
Definition 2.1

However, if f only verifies (F), the compositiofi(-, X(-)) may not be a measurable
function, even for continuous (see B]).

REMARK. In[2] a particular case of the following problem is considered:

X'(t) = qx@)) ft,x@)) fora.a.te J=][0,1],
Xt = (X)), k=12 ...,m, (2.2)
B(x(0), x) = 0,

where the function): R — (0, co) is such that], 1/q € L2.(R) and

loc
/*“ ds
— =4
o q(s

Note that, althoughf verifies condition (F), the produaif may not fulfil it.
However, this apparently more general situation can be studied as a particular case o
problem @.1).

Indeed, following the ideas ofl| 8], one can prove that € Q is a solution of 2.2)
if and only if ¢ o X is a solution of

y'(t) = f(t, o (y(t))) fora.a.t € J =0, 1],
yt) = ¢ (@ " (yt))), k=1,2,....m,
B¢~ (y(0). ¢ oy) =0,

whereg (x) = [, ds/q(s) for all x € R.

Moreover, sincep is an increasing homeomorphism froRhonto R, it can be
proved that the functioiit, y) € J x R — f(t, ¢~1(y)) verifies condition (F), the
impulse functions o I, o ~* are nondecreasing fér= 1,2, ..., mandB(u, &) =
B(¢p~1(u), 97t 0 &) for (u, &) € R x PC(J) verifies condition (B).

If « andp are, respectively, a lower and an upper solution of problgrf) @nd
a < B, we say that a solutior of (2.1) is maximal in[«, 8] if for every solution
y € [a, B] of (2.1) we have thak > y. We define theminimal solution in[«, 8] by
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reversing the inequalities. When both minimal and maximal solutiofg,iA] exist,
we call them theextremal solutions ifie, B].

Analogously, we say that, andx* are, respectively, the minimal and the maximal
solutions of 2.1), and we call them the extremal solutions, if they are solutions, and
X, (1) < x(t) < x*(t) forallt € J, whenevekx is a solution of 2.1).

The following resultis 8, Theorem 3.1], and we include it here for the convenience
of the reader.

THEOREM2.2. If f: J x R — R verifies conditiong1) and (2) of (F) and,
moreover, there existg € L(J) such that| f (t, x)| < ¥ (t) fora.a.t € J = [0, 1]
and allx € R, then the initial value problem

X'(t) = f(t,x(t)) foraated, x(0) =x,
has extremal solutions for evexy € R.

The following lemmas will be used in the proof of our main results.

LEMMA 2.3. Leta,b € R,a < bandh: R — R be such thah(a) < 0 < h(b)
andliminf,_,- h(z) > h(x) > limsup, .. h(z) for all x € [a, b].

Then there existy, ¢, € [a, b] such thath(c;) = 0 = h(c,) and if h(c) = 0 for
somec € [a, b] thenc; < ¢ < ¢, that is,c; andc, are, respectively, the smallest and
largest of the zeroes &fin [a, b].

ProOF. We shall only prove the existence of since the existence @b may be
deduced using symmetric arguments.

If h(a) = 0thenc, = a. Assumeh(a) < 0. Since limsup.,. h(z) <h(a) < 0,
there existg > 0 such thah(t) < Oforallt € [a, a+ ¢]. Set

r = sup{t € (a,b] : h(s) <0 forall s e [a,t]}

and let us prove thdt(r) = 0.

If h(r) < 0 we deduce (just as we did farin the last paragraph) thatt) < 0
forallt e [r,r + &1] for somee; > 0, which contradicts the definition of Hence it
must hold thah(r) > 0.

If h(r) > 0, since liminf_,,- h(z) > h(r) > O, there existg, > 0 such that
h(t) > Oforallt € [r — &5, r], which is impossible by the definition of

Finally, if h(c) = O for somec € [a, b], we haver < c by our choice of. Thus
we have to define; =r.

A setS c PC(J) is said to be quasi-equicontinuous if for alle Sande > 0
there exist$ > 0 such thas, t € J, and|s —t| < § implies|x(s) — x(1)| < e.

The following result about the relatively compact seti6(J) is a consequence
of the Arzela-Ascolitheorem. The reader can find its proofli§.[
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LEMMA 2.4. A setS ¢ PC(J) is relatively compact if and only i is bounded
and quasi-equicontinuous.

The following result is an adaptation df(), Theorem 1.4.7] for the spac®LC(J)
andQ.

LEMMA 2.5. Leta, B € @ be such thatx < B and G: [«, B] — [a,B] IS a
nondecreasing mapping. Moreover, suppose that there exist® such that

IGX(s) — Gx()| < |v(s) —v(®)|], sted, k=01 ....,m, (2.3)

for everyx € [a, B].

ThenG has a least fixed poirk, in [«, 8] and a greatest one*. Furthermore, it
is satisfied that

X, =min{x € [a, B]: Gx < x}, x*=max{x € [a, B] : Gx > x}.

PrOOF. Let {x,} be a monotone sequence [im, 3]. Since the operatoG is
nondecreasindG x, (1)} is for eacht € J a monotone sequencefia(t), A(t)]. Thus
we definex(t) = lim,_. ., Gx,(t) for eacht € J.

From 2.3) it follows that for eachn € N,

[GX%(S) — GX (D) < |v(s) —v()], s ted, k=12....,m. (2.4)

Therefore the sequend&x,} is quasi-equicontinuous and bounded and, by Lem-
maZ2.4, the sequencfG x,} converges irP C(J) to x.
Now, (2.4) implies asn — oo that

IX(s) — x| < |v(s) —v(®t)|], sted,k=01....,m. (2.5)

Sincev € , it follows from (2.5) thatx € Q.

In this situation, a straightforward application dfgf Theorem 1.2.2] yields the
result.

3. Linear problems: the resonance condition

In this section we shall study the linear problem

X'(t) = p)x() + q(t) fora.a.t € J, (3.2)
X(t5) = aX(t) + dy, k=1,2,...,m, (3.2)
X(0) = L(X) + A, (3.3)
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wherep, g € L1(J), A, ¢ andd, are given real numbers ardis a linear functional
defined on the vector spa&C(J).

Note that forc, = 1 anddy, = 0, k = 1,2,..., m, we have the corresponding
nonimpulsive case, and fdr(u) = u(l) andx = 0 we have periodic boundary
conditions.

In the following proposition we discuss completely the solvability )—(3.3),
obtaining a general characterisation of resonance. A first step in the study of the
resonance of the periodic case is givenanis, 16.

In what follows, by ', _, we mean, as usug},

Hs<ti <t we meanl_[[i s<tj<t}"

and in the same way by

i:s<tj<t}?

PrOPOSITION3.1. Letp, g € L*(J), A, ¢, dc € R, k=1,2,..., m, and a linear
mappingL : PC(J) — R be fixed.

(@ (Resonancéf
] (t o TToet p@ds) 1 34
te<t
then the linear probleni3.1)—(3.3) is solvable if and only if
—A=L (t > /Ot l_[ ce- p‘”d'q(s)ds> +L (t > Z 1_[ ¢ e P“)d'dk) ,
s<ti<t O<ti<t t<t <t

and, in such a case, the problem has infinitely many solutions, which are given by the
expression

t
x(t)=1] [ ceh p<s>d$+/ []cesP g ds+ > ] ce""d. (3.5)
ty<t s<tk<t O<ty <t ty<tj <t

wheret € R.
(b) If condition (3.4) is violated, problen{3.1)—(3.3) has a unique solution given
by (3.5 and

A+ L (t = .[Ot Hs<tk<t CkefSI p(r)drq(s) ds)
-t (t = [Ty ceh P(S)ds)

L (t = D octeet [ it G eh p(’>drdk)
-t (t = [t c.eh P(S)ds)

T =

_|_

(3.6)
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PrOOF. Itis known that a function that satisfie® {)—(3.2) also satisfies the equality
([13, Theorem 1.4.1])

t
x0 =xO [ Jaeb®+ [ [] st ¥qeds

te<t 0 syt

+ Z l_[ CiefIL p(r)dr dk, (37)

O<tg <t ty<tj <t

forallt € J.
Imposing the conditiox(0) = L (x) + A and taking into account the linearity bf
one can deduce (a) and (b) by direct computation.

ReEMARK. Note that when we consider periodic boundary conditions (defining
L(x) = x(1) forx € PC(J) andx = 0), relation 8.4) becomes|;_, el POds — 1,
and if, moreover, we consider the nonimpulsive case, thatiis= 1, d¢ = O,
k=12 ...,m we obtainfol p(s)ds = 0.

REMARK. For the nonimpulsive case, correspondinggo = 1, d¢ = O,

k =1,2,...,m, the linear mappingd- is defined over the set of continuous func-
tions on the interval.

Therefore, ifL: ¥(J) — R is a continuous functional, there exists a function of
bounded variation: J — R suchthat (v) = folv(t)dr)(t) forallv € ¥ (J), where
the integral is understood in the Riemann-Stieltjes sense.

For instance, the periodic conditions correspond to the functiodefined by
n(t) =0fort € [0, 1) andn(l) = 1.

Using this fact, condition3.4) can be expressed more succinctly as

/01 (efo' P<S>d$) dn(t) = 1.

For our purposes we will require the following generalised maximum principle.

LEMMA 3.2. Let p, g € LYJ), q(t) > Oforaa.t € J, A, G, d, € R,
k=12 ...,m andalinear nondecreasing mappihg PC(J) — R be fixed.
If x € Q is a solution of(3.1)—3.3) and condition

L (t > [ oe” P<S>d$> <1 (3.8)

tk<t

is fulfilled, thenx(t) > 0 for eacht € J.
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PrOOF. Note thatx is explicitly given by 8.5 and @3.6). Hence, sincg anddy,
k=1,2,...,m, are nonnegative, it suffices to show tixa0) > 0 to conclude our
result.

SincelL is nondecreasing anid> 0, by 3.3) we have that

XO) =L +2r=L (t — x(0) [ ] ae” p<s>ds) ’

tk<t

and, sinceL is linear, we obtain

x(0) [1— L (t — ]_[ckeJS P<S>d$)} > 0.

tk<t

Therefore, in view of 8.8), we can conclude that(0) > 0.

4. Nonlinear problems (1): upper and lower solutions

This section is devoted to proving the following existence result. Its proof is based
on the generalised iterative technique described.Bj. [ However, unlike the usual
way in which this technique is used (where the right-hand side of the differential
equation is modified to construct the iterates), we modify the functional-boundary
condition and keep the same right-hand side.

THEOREM4.1. Leta and B be, respectively, a lower and an upper solutior(2fl).
Assume that(t) < B(t) forall t € J and that conditiongF), (I) and(B) are verified.
Then problen{2.1) has extremal solutions if, A].

ReEMARK. Note that continuity is not required over any of the elements which define
problem @.1). In particular, the impulse functions need not be continuous.

ProOF. Consider the mappinG: [«, 8] — [«, B], defined as follows: for each
n € [«, B] defineGy as the minimal solution betweenandg of the impulsive initial
value problem

x'(t) = f(t, x)), teld,
(P X(t,:“) = | (X(t)), k=1,2,...,m,
x(0) =1,

wherer, is the minimal solution i« (0), (0)] of the implicit equation

B (z,.n) =0. (4.1)
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Note that, sinceB(u, -) is nonincreasing for eveny € R, we have

B (8(0),n) = B(B(0), ) = 0> B(a(0), @) = B(x(0),n),

and hence, by assumption (B) and Lem&3 we conclude that, is well-defined.

The existence of the minimal solution OP,) betweenx andg can be proved by
using Theoren2.2together with standard arguments with upper and lower solutions.
It suffices to solve the problem “piecewise” over each integak = 0,1,..., m,
taking into account the following fact: ¥ is the minimal minimal solution ofP,)
betweernw and g on the intervalO, t,], thena(t,) < x(t) < B(t), and sincel, is
nondecreasing, we have that

a(ty) < lle) < k(xt) < k(Bt) < BE),

thus the solutiorx can be continued over the interyal, t,.1], betweenx andg and
so on.

Note that ifx € [«, B8] is a fixed point ofG thenx is a solution of 2.1) in [«, B].

Let us prove thaG is nondecreasing ifw, 8]. Letni, n, € [«, B] be such that
n1 < n,. By definition, ,, is the minimal solution i« (0), (0)] of (4.1), replacingy
by ni,i =1, 2. Hence itis obviously true that #f, = «(0) thent,, < 7,,.

On the other hand, if,, > «(0) then for everyr € [«(0), 7,,) we have

0> B(z,n1) > B(z, 1),

and we obtairr,, < r,, again.

Then we can say th&n, is an upper solution of the initial value probleiR,,)
andGn, > «, so problemP,,) has a minimal solution betweenandGn,. Since the
minimal solution of that problem betweenandg is Gny, we have thaGn; < Gns.

By condition (3) in (F) there existg € L(J) such that

[(Gn) )] < y¥(t) fora.a.t € J and all € [«, B].

Now we define fok = 0, 1, ..., m the functionv(t) = fti Y(s)dswitht € J. It
is easy to see th& satisfies 2.3) with this functionv.
By Lemma2.5, G has a minimal fixed point, € [«, 8] which, moreover, satisfies

X, =min{x € [a, B] : GX < X}. (4.2)

Finally, if x is a solution of 2.1) in [«, 8] then B(x(0),x) = 0 andx(0) €
[@(0), B(0)], which implies thak(0) > t,, by the definition of,, and henc&x < x.
Thus, by @.2), we conclude that, < x, that is,x, is the minimal solution ofZ.1) in
[, B].

To deduce the existence of the maximal solution D) in [«, 8] it suffices to
redefineG in the obvious way.
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5. Nonlinear problems (II): global solvability

Finding an upper and a lower solution for a problem of typd)(is not a simple
matter in many practical situations. From this point of view it is useful to have
sufficient conditions for the existence of upper and lower solutions. Moreover, it
would be convenient to be able to be sure that one can find a lower solufiand an
upper solution3, such thatx < g on J and that all the solutions belong e, 1.

In this sense, and following the spirit 09,[ Proposition 6.1] and1[0, Proposi-
tion 2.3.1], we present the following result.

THEOREM5.1. Suppose that conditior(§), (I) and (B) are satisfied. Assume also
that the following set of assumptions is fulfilled

(@ There exisp, g;, 0, € L1(J) such thatp(t)x +qu(t) < f(t, x) < p(t)X +p(t)
fora.a.t € Jandallx € R, and f (-, v(-)) is measurable whenevere Q.

(b) There exist constantg € (0, co) andd;y, dox, € Rk =1,2, ..., m, such that
X+ dix < k(X)) <agXx+dyforall x e Randallk =1,2,..., m.

(c) There exists a nondecreasing linear mappingP C(J) — R and there exist
constantsaa € (0, o0) andiq, A, € R such that

au—L(§) + 4= B, §) zau— L) + 2,

forall (u,&) e R x PC(J).
If

L <t > ]_[ckef3 P<S>d$) <a (5.1)

tk<t

then problen{(2.1) has extremal solutions among all its solutions.
ProOOF. The following impulsive problem

y'(t) = pt)yt) + op(t) fora.a.t € J,
Y(t5) = Gy (t) + oy k=12...,m,
y(0) = (L/a)L(y) — A2/a,

has a unique solutiorg, by virtue of condition $.1) and PropositiorB. 1

By assumption (a) we have that(t) = pt)8t) + q(t) > f(t, A(t)) for a.a.
t € J. By condition (b),8(t)) = cB(t) + dax > I (B(t)) fork=1,2,..., m, and,
finally, condition (c) implies thaB(8(0), 8) > aB(0) — L(8) + », = 0, and hence
B is an upper solution of2(1).
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Similarly, if @ denotes the unique solution of the problem

y'(t) = p)y®t) + q(t) fora.a.t € J,
y(tlj) = Cky(tk) -+ dl,k, k = 1,2,....,m,
y(0) = (I/a)L(y) — M/a,

thenq is a lower solution of2.1).
If we denotev = B8 — «, we have that

V() = p(Hv) + ) — qu(t) > pt)v(t) fora.a.ted,
v(t) = C(t) + b — dix > G (ty),
A — Ao

1 1
v(0) =—-L() + > =L (v),
a a
so, by Lemma3.2, we conclude that < g on J.
Now, by virtue of Theorerd.1, we can affirm that problen2(1) has the extremal
solutions in the intervdlke, B].
Finally, one can prove that any solution @f{) belongs td«, 8]. Indeed, le be
a solution of 2.1) and callw = x — @. Assumptions (a), (b) and (c) allow us to use
Lemma3.2to deduce thaty > 0 in J, thatis,x > « in J. Similar arguments show
thatx < gin J.

ReMARK. Under the conditions of Theorefl we can construc priori bounds
on the solutions: it suffices to consider the functiarendg which are defined in the
proof.

Note that the explicit expression efandp is given by 8.5 and @.6).

Theoremb5.1is used to deduce the existence of global extremal solutions in the
next example.
Consider the problem

s 1 1 _
X'(t) = Wit + [X(t)] + sgn(x(t)) —mx(t), teJ=1[0,2], (5.2
x(1") = [x(D], (5.3)
2
K[x(0)] — [/ X(S) ds] —x(1) =0, (5.4)
0

wherek > 0 is a fixed numbers] denotes the greatest integer less than or equal to
se R and

s/ls|, ifs#0,

S0 = {o, it s=0.
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The assumptions of Theorébnl are fulfilled if we consider

1 1 1
pt) =1 Nk qu(t) = 2+m, Qz(t)—1+m,
fora.at € J; constantg; = 1,d;; = —1,d,; =0,a =Kk, A; = 1,1, = —k and the
linear nondecreasing mappihgv) = foz v(s)ds+ v(1) forall v € Q.
Now, by Theoren®.1, we can say that if conditiorb(1) is satisfied, then problem
(5.2—(5.9 has the extremal solution among all its solutions.
Note that in this case, conditioB.() becomes

2
/ (eFPrer) st el o < i,
0

so problem %.2—(5.4) has global extremal solutions for sufficiently large values of
k > 0.

6. What if the impulse functions are not nondecreasing?

In [3] Cabada and Liz and in7] Frigon and O'Regan show the existence of
solutions for the periodic and initial value problem with impulses without assuming
monotonicity conditions on functionkg (the authors required these functions to be
continuous). In the following example we show that when some of the impulse
functions are not nondecreasing the conclusion of Thedrémay fail to be valid.

Consider the following periodic problem:

X'(t) = 3x#3%(t) fora.a.t e [-1,1], (6.1)
x(0%) = —x(0), (6.2)
x(=1) = x(1). (6.3)
In this case the unique impulse effect is given by functiox) = —x for all x € R,

which is not a nondecreasing function.
A lower solution of 6.1)—(6.3) is given by

® 0, if t e [—1,0],
o =
(t—-13 ifte(01],

and an upper solution is
t+ 13 ifte[-1,0],
pt) = ( ) :
0, if t € (0,1].

Note thate < B, so every condition of Theorefhlis verified except conditiofl).
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Now we are going to prove that probler.{)—(6.3) has no minimal solution in
[«, B], which will show that the conclusion of Theorefrl is not valid in general for
this type of impulse function.

Note thatx = 0 is a solution of §.1)—(6.3) in [«, 8] and ify € [«, 8] is another
solution we have two possibilities: there exigtss (—1, 0) such thaty(t;) > 0 or
to € (0, 1) such thaty(ty) < O.

Assumet, € (—1, 0) such thaty(ty) > 0. Since the problem

v (t) = 3v¥3(t) forall t e[ty, 0], v(ty) = Yy(to),

has a unique increasing solution, thg®) > 0 which implies thay(0")= — y(0) <0,
so there exists > 0 such tha(t) < Ofort € (0, ¢).

Reasoning in a symmetric way it can be proved that if there eistq40, 1) such
thaty(ty) < 0 then there exists > 0 such thaty(t) > 0 fort € (—¢, 0).

Hence we have proved that no nontrivial solution ®f1f—(6.3) in [«, 8] can be
minimal, because it is not less than or equal to the trivial solution over the whole
interval[—1, 1]. On the other hand, we cannot say tkat O is the minimal solution
because there exist nontrivial solutiongdn 81: consider, for instance, the functign
defined by

t+1°% ifte[-1,0]
1) =
Yo {(t—l)3, if t € (0, 1.

On the other hand, when some of the functidpsare discontinuous and not
nondecreasing, not even the existence of a solution can be assured, as the followin
simple example shows:

ut) =0, tel0,2],

u(l™) =1 (u()), (6.4)
u(0) = u(2),
with I (x) = 1 if x € (00, 0), andl (x) = —1if x € [0, c0). Functionsx = —2 and

B = 2 are respectively lower and upper solutions of problém) (but this problem is
unsolvable.
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