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Abstract

The convexity assumptions for a miniméactional programming problem of variational

type are relaxed to those of a generalisekity situation. Sufficient optimality conditions

are established under some specific assumptions. Employing the existence of a solution
for the minimax variational fractional problem, three dual models, the Wolfe type dual,
the Mond-Weir type dual and a one parameter dual type, are constructed. Several duality
theorems concerning weak, strong and strict converse duality under the framework of
invexity are proved.

1. Introduction

Fractional programming is an interesting subject which features in several types of
optimisation problems. For example, it can be used in engineering and economics tc
minimise a ratio of functions between a given period of time and a utilised resource in
order to measure the efficiency or productivity of a system. In these sorts of problems
the objective function is usually given as a ratio of functions in fractional programming
form (see Stancu-Minasio2()]).

The optimisation problem considered in this paper consists of minimising a max-
imum of several time-dependent ratios involving integral expressions. Many authors
have studied this type of variational programming (see for exaniplé,[5, 8, 19,

21, 22]). Other minimax programming problems involving generalised convexity are
discussed in]2, 13,15, 14]. Inthis paper, the usual convexity assumptions are relaxed
to those of a generalised invexity situation. Since the model involves a state function
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X(t) in the integrand of the integration, the results also relate to questions of optimal
control.
We consider a minimax problem with a fractional objective in the form:

Py v = min max fa’; fiet x(®, x(t)d
x si=p [Ugi(t, X(1), X(t)) dt
subjectto x e PST,R"), x@) =«, x(b)=4,
/bhj(t, x(t), X(t))dt <0,
jaemz {,2,....,m}, teT =][a,b],

where the functiong', ¢',i € pandh’, j € mare continuous in, x andx and have
continuous partial derivatives with respectt@ndx, and whereP ST, R") is the
space of all piecewise smooth state functigrdefined on the compact time setin
R. The norm ofx € PY(T, R") is defined byj|X|| = [|X|| + [IDX|ls, WhereD is the
differential operator ofP S(T, R") defined by

t
y=Dx ifandonlyif x(t) =x(a) +/ y(s)ds.
a

So D = d/dt except at the point of discontinuity. Throughout we assume that

b b
/g‘(t,x(t),X(t))dt>0, /f‘(t,x(t),X(t))dtzO

foreach € pandanyx € Zp, the set of all feasible solutions OP). For simplicity,
we writex(t) = x andx(t) = X.

In order to obtain necessary and sufficient optimality conditions for prolbm
Bector et al. [1] considered an equivalent parametric problem #oe R in the
following form:

(EPR) minimise g
subjecttox € PYT,R"), x@) =«, x(b)=48,
b
f [t x, %) —vg (t, x, %)]dt < q,

a
b
hitt,x,%)dt <0, foriep andjem,

a

and they established the following result.

LEmMMA 1.1 ([1]). The functionx* is an optimal solution of(P) with optimal
value v* if and only if the triple (x*, v*, g*) is an optimal solution of E R,) with
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optimal valueq* = 0. That is
; J2fi, X, %) dt
fab g (t, x*, x*) dt
Here all functions in(P) are assumed to exhibit some generalised convexity. In
[1], they also constructed various duality models &rP,). In [16], Liu employed
the same approach as ifi fo establish optimality conditions and duality theorems
for (P) in the case of generalis€&, p)-convex functions.
In this paper, we will establish optimality conditions and duality theorems in the
case of generalised invexity ifP) as well as in(EPR,). To this end, in Sectio
we introduce some notation and preliminary results. In Seciowe give some
definitions on generalised invexity and derive some sufficient optimality conditions
for problem (P) in the case of generalised invexity. Employing these results, we
construct three dual problems in Sectigr§. Here we investigate weak, strong and
strict converse duality theorems under the framework of generalised invex functions.

2. Notation and preliminary results

For x & PS(T, RY), we letF' (x) = [ fi(t,x, %) dt, G'(x) = [2g'(t, x, X dt
andH! (x) = f hi(t, x, x)dt, fori e pandj e m. Suppose that function, g' and
h! are continuous ih, x andx and have continuous partial derivatives with respect to
(w.r.t.) xandx. Thenthe functional6 = (F, F2, ... ,FP),G = (G}, G?,... ,GP)
andH = (H H? ..., H™) are (FEchet) differentiable o® (T, R"). It follows
that the probleniP) may be rewritten in the form:

. F'(x)
® (G
subjecttox(a) = «, x(b) =8 and H(x) < 0.

Herex andpg are fixed vectors ifR". The equivalent parametric minimisation problem
(ER,)) is then given by
(EPR) minimise q
subjectto F'(x) —vG'(x) <q,iep, HX <0, jem,
x € PYT, R") with fixed boundary conditions
x(@) = o and x(b) = B.
As in [4, 5], it can be shown that ik € .Z;, a feasible solution ofP), then

i() (y, F(x))
P00 = M) - 1)
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wheree is a vector of ones irR} and (-, -) denotes the inner product iRP. For
convenience, henceafter we define= {y € RY|(y, €) = 1}.
For simplicity, forx € PS(T, R", y € R} andz € R we denote

DX, y) = (y, F(X)) = / Zy fi(t, x, %) dt,
w(x,y>=<y,G<x>>=/ Zy‘g‘(t,x,fodt and

Qx,2) = (y, HX)) = / ZthJ(t X, X) dt.

Evidently ®(x, -), ¥ (X, -) and(x, -) are linear functionals.
From @.1), if x* is an optimal solution ofP), then

F'(x*) O (x*,y)
P = G (x*) rygx\lf(x*, y)

_ <I>(X*, yx) _ minmax—2Y) _ & YY)
WX, §x)  xvel WX, y) WXy

(2.2)

wherey(x*) = y*.
Problem(P) is actually equivalent to

)
minmaxM subjecttoH(x) <0, xe R" and yel.
x oy W(X,Y)

The conceptused here for the solutio BfP,) coincides with finding the minimax
solution of the Lagrangian

L(X, y;v,2) =(y, F(X)) —v(y, G(X)) + (z, H(X))
=d(X,y) —vV¥(X,y) + Q2(X, 2
for multipliers v* € R, z € RT, and the solution is given bl'(x, y)¢ = 0 for any
& € C([a, b], R". Hence necessary optimality conditions {&), as in Bectoet al.

[2, Theorem 1] (see also Craver])are actually Kuhn-Tucker type conditions which
we can rewrite as follows.

THEOREM 2.1 (Necessary conditionslf. x* is an optimal solution ofP), then there
existy* e | and multipliersv* € Randz* € RT such that(x*, v*, y*, z*) satisfies

(X", y*) — v (X5, y) + Q(x*, ) =0, (2.3)

d(xX*, y") — W (X', y) =0, (2.4)

Q(x*,z) =0, (2.5)
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whered’ andW¥’ are the gradients ob andW at (x*, y*) respectively an®’ (x*, z*) =
(z, VH (X)).

In order to construct parameter-free dual modelg Ry, using @.4) we replace*
by ®(x*, y*)/ ¥ (x*, y*), and then restate Theoreiri as follows.

THEOREM 2.2 (Necessary condition)f x* is an optimal solution ofP), then there
existy* e | and multipliersv* € Randz* € RT such that(x*, y*, z*) satisfies

W (X", y) P (X, y*) — (X, y) Wi (X", y) + (X", y)Q (X', Z) =0, (2.6)
Qx*,z)=0, (2.7)

and obtain the optimal value by

o Py X Y) F' (%)
o) = W(x*, Yy N, y) (‘ e G (x)))' 28)

3. Generalised invexity

For sufficient optimality conditions of the fractional variational probléR), we
will relax the assumption of convexity to that of generalised invexity (see Mond and
Husain [L9)). This approach will give a basic technique for constructing some duality
theorems for probleniP).

Letx e PST, R andfe CHT xR"x R"). Define a functional:P ST, R")— R
by Jx) = [2 f(t, x, %) dt.

We assume that the boundary poirta) andx(b) are fixed. Consider the admis-
sible vectorsx + w with admissible variationss € C([a, b], R") vanishing at the
boundary points. Then the differential dfis a linear functional o€ ([a, b], R"),

b
J/(X)wzi/ f(t, X +aw, X +aw)dt
da J,

a=0

b
:/ [ fut, x, %)w(t) + fu(t, X, %) (t)] dt

ab b
:/ [ fu(t, x, %) — Dfe(t, x, %) Jw(t) dt + fe(t, X, D)w(t)

b
=/ [ fe(t. X, X) — Dfg(t, X, %) Jw(t) dt.

Thatis,

b
J(X)w =/ [ fu(t, x, %) — Dfg(t, x, %) ]w(t) dt (3.1)
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forall w € C([a, b], R"), w(a) = 0 = w(b), whereD = d/dt.

This concept allows us to define a functign: PST,R") x PST, R")
C(T, R") with conditionn(x, u) = 0 if x = u. Using this functiory, we will give
the following definitions for generalised invexity.

DEFINITION 3.1. For anyu € P T, R"),
(i) adifferentiable function] is said to banvexw.r.t. n if

J(X) — J(u) = J'(Wn(x,u); (3.2)

(i) J is said to bepseudoinvexv.r.t. n if J'(U)n(x,u) > 0= J(x) > J(u), or
equivalentlyJ(x) < J(u) = J'(Wn(x,u) < 0;
(i) Jis said to bestrictly pseudoinvew.r.t. n if, for x # u,

J'(Wnx,u) > 0= JX) > J(),

or equivalentlyJ(x) < J(u) = J'(U)n(x,u) < 0;
(iv) Jis said to beguasi-invexw.r.t. n if

J'Wnx,u) > 0= J(X) > J(), (3.3)

or equivalentlyJ (x) < J(u) = J(Un(x,u) <O0.

REMARK 3.1.If X,u € %p, thenx(@a) = u(@) = «, x(b) = u(b) = B and so
n(x(a), u(a)) = 0, n(x(b),u(b)) = 0. This shows that the functiom(x,u) on T
satisfies the zero boundary condition. It follows that #12 of Definition 3.1 if
X, U € Zp we always have the representatiGnlj:

b
J'(Wn(x, u) =/ [ fe(t, u, 1) — Dfe(t, u, )]n(x, u)(t) dt,
wheren(x, u) € C(T, R").

This shows that the concept of generalised invexity used here actually coincides
with the original concept of invexity given by Hanson and Mo®dl [For details,
consult Cravend].

For convenience, we denote I@,(x,y) = ®u(X,y), Vi(X,y) = ¥ (X,y) the
partial FiEchet derivative with respect to the feasible variable

Now we can state sufficient optimality conditions {ét) in the case of generalised
invexity as follows.

THEOREM 3.1 (Sufficient conditions)Let x*eZp, y*el, z*eR] and (x*, y*, z°)
satisfy (2.6—2.9). Define A(X) = W(x*, yHP(X, y*) — W(X, y)P(x*, y*) and
B(X) = AX) + ¥ (x*, y)Q(X, z*). If, for the giveny* and z*, any one of the
following conditions holds
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@ @C,yx), —V(,y)andQ(-, z*) are invex w.r.t. the function;
(b) Ais pseudoinvex ang (-, z*) is quasi-invex w.r.ty;

(c) Ais quasi-invex an@2 (-, z*) is strictly pseudoinvex w.r.i;
(d) B is pseudoinvex w.r.i,

thenx* is an optimal solution ofP).

PrOOF. If x* is not an optimal solution ofP), then there is a feasible solution
u € .Zp such that

P(X") > P (u). (3.4)
By (2.1) and @.2),

DY) o s — max DY) L Py

AT A , el.
W(x*, y*) yel W(u,y) = W(u,y")

It follows that
AU) = DU, yHW (X", y") — &(X*, yHW(u, y*) < 0= A(X") (3.5)
and so by rearranging the above inequality, we get
WX, YOl u, y) — (X, y)] — @(X*, y) W (U, y) — U(x", y)] < 0. (3.6)
Sinceu € %, by condition @.6), we have
Qu,z) <0=Q (X", z. (3.7)
Consequently, 3.5 and @.7) yield B(u) < B(x*). Now if condition (a) holds, for

y* € |,z € RT, employing the invexity ofb (-, y*), =W (-, y*) andQ2 (-, z), we then
have the inequalities

@ (U, y*) — d(X*, y*) = PI(X*, y)n(u, x*), (3.8)
—[W(u, y") — W(x*, yH] = =W (X5, yIn(u, X, (3.9)
QU, Z") — Q(X*, z°) > Q (X", Z)n(u, X*). (3.10)

Here for eachy* andz*, @/, ¥, and Q2] are partial Fechet derivatives o® (-, y*),
—W(, y*)andQ(., z*) atx*, respectively. Sinc& (x*, y*) > 0 and®(x*, y*) > 0,
we multiply (3.8) by W (x*, y*), (3.9) by ®(x*, y*) and @.10 by W (x*, y*). Adding
up the resulting inequalities, it follows fron3.€) and @.7) that

0> [W(X", y) @i (X", y*) — @(xX*, y) Wi (xX*, y) + W (X", y)Qi (X, 29 ]n(u, x*).



346 H. C. Laiand J. C. Liu 8]

This contradictsZ.6). Hence 8.4) does not hold, and sot must be optimal fo(P).
For condition (b),A is pseudoinvex and so fror.§),

A(u) < AKX = A(XH)n(u, x*) <0,
that is,
[W(x*, yHPL(X*, y*) — @(X*, y) Wi (X", y)]n(u, x*) < 0. (3.11)

The identity ¢.6) and inequality 8.11) yield €7 (x*, " )W (x*, y*)n(u, x*) > 0. Since
W (x*, y*) > 0, it follows that

Q) (x*, Z)n(u, x*) > 0. (3.12)

On the other hand, the functighin condition (b) is assumed to be quasi-invex wi-t.
Thus inequality 8.12) implies Q/(x*, z*)n(u, x*) < 0, (by 3.3)), which contradicts
(3.12. Hence 8.4) does not hold. This shows that is optimal for(P).

If conditions (c) or (d) hold, the optimality of* can be proved using the same
argument as that for condition (b). Hence the proof is complete.

In the next sections, we will construct some dual models.

4. The first dual model—the Wolfe type dual

Employing Theoren2.2, we will construct two parametric-free dual models. Con-
sider the Wolfe type dual problem given by

d(u,y) + Q2,2
W(u,y)
subjectto(u,z) e PS(T,R") x R and yel C R},
u@ =a, ulb) =38,
Y(u, y)®iu,y) — [@(u,y) + 2, 2]V Uu,Yy)
+ W(u, y)Q(u,z) =0. (4.2)

(D1) Maximise

Denote byK; the set of all feasible solutions of problgi1). We assume throughout
this section that

dU,yY)+Q2U,z2>0 and ¥(u,y) >0 forall (u,y,2 e K. (4.2)

In what follows, we shall establish weak, strong and strict converse duality theorems
for (P)—(DY).
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THEOREM 4.1 (Weak duality).Letx € Zp, (U, Y, 2) € K; and let
CX) = VU, NP, Y + QX 2] =[P, y) + Q2(U, 2]V (X,Y).

If, for eachy andz, either one of the following conditions holds

@ oC,y), —¥(,y") and Q(-, z*) are invex w.r.t. the function (defined as in
Definition 3.1);
(b) Cis pseudoinvex w.r.iy,

then

DU, y) 4+ Q2(U, 2z
d(X) > vay) , (4.3)

whereg (x) is defined by2.1).

PrOOF. If (4.3 were not true, then

DU, y) + Q2(u, 2

P(X) < vay) (4.4)
It follows from (2.2) that for anyy € |,
P(X,y) < maXCD(X, p) — $(x) < P(u, y) + Q(u, Z)’
V(x,y) = pel W(X, B) Y(u,y)
or
P(X, Y)VU,Y) — [P, y) + (U, D]V (X, y) <0. (4.5)

Rewriting the above inequality, we get
[P(X, Y)+2(X, D]V (U, y) =[P, y)+Q2(U, D]W(X, y) <Q2(X,2¥(U,Y). (4.6)

SinceQ(x,2) < 0,if x € #p,ze RTand¥(u,y) > 0, Q(x,2W¥(u,y) < 0. It
follows from (4.6) that

C(x) < 0= C(u). (4.7)

Now if condition (a) holds, foreachy < I, z € RT, the invexity of (., y*),
—W (-, y*) and2(-, z*) implies that

CD(X, y) - q)(u’ y) = d)él_(uv y)n(X7 U), (48)
—[W (X, y) = WU, Y] = =W, y)n(x, w, (4.9)
Q(Xv Z) - Q(u9 Z) 2 Qél_(uv Z)n(xv u)7
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or
—Q(Uu,2) > —Q(X, 2) + 21U, 2n(X, u). (4.10)

From @.2), ¥(u,y) and®(u, y) + Q(u, 2) are nonnegative. Multiplying4(8) by
wu,y), (4.9 by &, y) + Q(u,2) and @.10 by W(u, y), and summing up the
resulting inequalities, then frord (5) we eventually obtain that

(WU, Y@, y) — [P, y) + QU, 2)]¥; (U, y) + ¥ (U, )2 U, 2 }n(x,u) < 0.

This contradicts4.1). So @.4) does not hold and4(2) does hold.

From condition (b)C is pseudoinvex andl(7) implies thatC’'(u)»(x, u) < 0, that
is, {W (U, )@y (U, y) — [®(U, Y) + (U, D]¥; (U, y) + ¥ (U, ) (U, 2} (X, u) < 0.
This contradicts4.1). Hence ¢.3) does not hold and the proof is complete.

THEOREM4.2 (Strong duality) If x* is an optimal solution of P) satisfying the
conditions of Theorem3.2 and 4.1, then there exisy* € | andz* € RT such that
(x*, y*, z*) is an optimal solution ofD1) and the optimal values qfP) and (D1)
are equal; that ismin(P) = max(D1).

PrOOF. If x* is an optimal solution of(P), then by Theoren?.2, there exist
y* € | andz* € RT which satisfy the constraints ¢D1), so that(x*, y*, z) € K;.
Furthermore

YD F QXL Z) | PXLY)
W(x", YY) WX, yY)

P (X,

sinceQ (x*, z*) = 0. HenceXx*, y*, z*) is an optimal solution ofD1). Consequently,
(4.3 demonstrates th&P) and(D1) have the same optimal values.

THEOREM4.3 (Strict converse dualityLetx; and(x*, yo, Zy) be optimal solutions
for (P) and (D1), respectively. Assume that the assumptions of Thedr2rare
fulfilled, and that

C() =W (X, Y@ (-, Yo) + (-, 20)] — [P(X7, Yo) + QU(X", )W (-, Yo)

is a strictly pseudoinvex function w.rt. Thenx; = x* is an optimal solution ofP),
and(P) and (D1) have the same optimal value

P (X", Yo) + (X, Zo)
W(X*, Yo) '

P (X)) =
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PROOF. Suppose on the contrary that # x*. Then by Theorerd.2, there exist
y: € I andz e RY suchthatxy, yi, ) is an optimal solution ofD1) and
D (Xq, Y1) + (X1, Z1)
W (X1, Y1) '

As in the proof given in Theorer. 1, we replace by x;, and(u, y, 2) by (x*, Yo, 2),
to derive the inequality

P (X)) =

D (X", Yo) + (X", Zo)
P (X)) > W o) .

This contradicts the fact that

D (X1, Y1) + R2(Xq, Z1) _ D (X", Yo) + (X", Zp)
W (Xq, Y1) W (X*, Yo) '

P (X)) =

Hence we conclude that

P (X", Yo) + (X", Z)
W (X*, Yo) '

X, =x* and ¢(x) =

5. The second dual model—the Mond-Weir type dual

We introduce the Mond-Weir type dual problem as follows:

(D2) Maximise oM. Y)
Y(u,y)

subjectto(u,y) e PST,R") x I, u@ =a, u(b) =25,
YU, y)®y(u,y) — U, WU y) + U, y)2u,2 =0, (5.1)
Qu,2 >0, ze R™. (5.2)

Denote byK, the set of all feasible solutions of problef®2). We still assume
throughout that> (u, y) > O and¥(u, y) > Oforall (u, y, 2) € K,. We will establish
weak, strong and strict converse duality theorems Ryr—(D?2).

THEOREM5.1 (Weak duality).Letx € Zp, (U, Y, 2) € K, and define

D(X) =¥, y)P(X,y) —¥(X,y)®(,y) and
E(X) = D(X) + Y (u, y)Q2(X, 2).

If, for eachy € I, z € R, any one of the following conditions holds
@ @C,y), —¥(,y) andQ (-, 2) are invex w.r.tx;
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(b) D is pseudoinvex ang (-, z) is quasi-invex w.r.ty;
(c) D is quasi-invex and2 (-, 2) is strictly pseudoinvex w.r.i;
(d) E is pseudoinvex w.r.j,

then
o (u, y)
X) > ———. 5.3
d(X) = v, y) (5.3)
PrROOF. Suppose the result 06(3 were not true. Then
o (U, y) > $(X) = maxq)(x’ Y1) > D (X, Y)'
\I/(U, Y) el \II(X7 yl) \II(X7 y)
This implies that
D) = o, y)¥(u,y) — P, y)¥(x,y) < 0= D(u). (5.4)

Asx € Fp,z € RT andQ(x, z) < 0, the constraint inequalityp(2) of (D2) yields
Qx,2) <0< Q(Uu, 2. (5.5)
Consequently,5.4) and 6.5) yield
EX) < E(u). (5.6)

If condition (a) holds, then by the invexity @, —¥ and2, we have

CD(X, y) - q)(u’ y) = d)él_(uv y)n(X7 U), (57)
—[W(X,y) — W(u,y)] = —¥i(u, y)n(x, u), (5.8)
Q(X,2) — (U, 2) > Q(U, 219X, u). (5.9

SinceW(u, y) and®(u, y) are nonnegative, we multiphp(7) by ¥ (u, y), (5.8 by
®(u, y) and 6.9) by ¥ (u, y), and sum up the resulting inequalities. Eventually, from
(5.4) and 6.5), we obtain the inequality

0> [W(u, )®yu,y) — @, Y)W, y) + ¥ (u, y)Q U, 2]nx, u).

This contradictsg.1) in the constraint ofD2). Hence §.3) holds.
In condition (b),D is pseudoinvex. Thus(4) implies D’(u)n(x, u) < 0, that s,

[W(u, y)®)(u,y) — @, y)¥;u, y)]n(x,u) <O0. (5.10)
It follows from (5.1) and 6.10) that

—W(u, y)Q U, 2n(x,u) <0 or Q) (u, 2n(x,u) >0
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since¥ (u, y) > 0. ButQ is quasi-invex, so the above inequality implies
Q(X,2) > Q2(U, 2

which contradictsq.5). So 6.3 holds.
The proof for the cases when conditions (c) or (d) hold is similar. Hence the proof
is complete.

THEOREM 5.2 (Strong duality) If x* is an optimal solution of P) satisfying the
conditions of Theorem3.2 and 5.1, then there exisy* € | andz* € RT such that
(x*, y*, z*) is an optimal solution ofD2), and (P) and (D2) have the same optimal
values.

PrOOF. If x* is an optimal solution ofP), then by Theorem 2.2, there exigte |
and z* € RT such thatx*, y*, z*) € K, the feasible solution afD2), and

XY _ R Y)
W(xs, ys) el W(xry)

(X)) =

It follows from Theorem 5.1 thatx*, y*, z*) is an optimal solution ofD2) and
min(P) = maxD,).

THEOREM 5.3 (Strict converse dualityLetx; and(x*, yo, Zy) be optimal solutions
of (P) and(D2), respectively. Assume that the conditions of The&eare fulfilled,
and thatD(-) = W(X*, Yo) P (-, Yo) — Y (-, Yo)P(X*, Yo) is strictly pseudoinvex and
Q (-, 2o) is quasi-invex w.rty. Thenx; = x* is an optimal solution of P), and (P)
and (D2) have the same optimal valugsx,) = ®(x*, Vo) /¥ (X*, Vo).

PROOF. Sincex; is an optimal solution ofP), by Theorenb.2, there existy; € |
andz e RT such thai(x,, yi1, ) is an optimal solution ofD2) and

CD(X]_, yl)
\II(XL yl) )

On the other handx*, o, Zo) is an optimal solution ofD 2), with optimal value equal
to ¢ (X1), that is,

P(X) =

D (X1, Y1) _ D (X", Yo)
WX, y1) WX, Yo)

P (xe) = (5.11)

If X; # x*, we could deduce

P (X", Yo)
— 5.12
¢ (X)) > X, Yo) ( )
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which would contradict%.11).
Supposeq.12) does not hold, thea (x;) < ®(X*, o)/ V(X Vo), that is,

<I>(X:,YO) > b(x) = max 2% Y) . P (X1, Yo)
W (X*, Yo) yel WXy, y) = W(X1, Yo)

or D(X) = @ (X, Yo) W (X*, Yo) — P(X*, Yo) W (X1, Yo) < 0= D(x*), that is,
D(x;) < D(x%). (5.13)
SinceD is strictly pseudoinvex, 5,13 implies D’'(x*)n (x4, X*) < 0, or
[W(X*, Yo) DL(X", Yo) — (X", Yo) W1 (X", Yo) |0 (X, X*) < O. (5.14)
By (5.1) and 6.14), we get—W (x*, yo) 2} (X*, Zo)n(Xy, X*) < 0, that is,
Q) (X", Z)n(Xg, X*) > 0, (5.15)
sinceW (x*, yp) > 0. By the quasi-invexity of2, (5.15 implies
Q (X1, Zp) > Q(X*, ). (5.16)

On the other handy; € Z5, 7, € RT andQ(x;, z)) < 0. By (5.2), Q(x*, ) > 0.
Thus Q(xq, Z9) < Q(X*, Z) which contradicts §.16§. Hence §.12 holds under
X, # X*. Thereforex; = x*.

6. The third dual model

In this section, we employ Theorer@2and3.1to construct a one-parameter dual
problem for(P), and consider

(D3) Maximise v
subjectto(u,v,y,2) € PST,R" x R, x | x RT,
u@ =a, ul) =38,
®y(u,y) —v¥iu, y) + Qi(u, 2) =0,
du,y) —v¥(u,y) >0, Q(u,2 >0

Denote byK; the set of all feasible solutions of problet®3). Then by a proof
similar to that for TheoremS.1-5.3, we can obtain the following theorems relating
(P) and(D3).
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THEOREM 6.1 (Weak duality).Letx € Zp, (U, v, Y, 2) € K. Define
NX) = d(X, y) —v¥(x,y) and M(Xx) = N(X) + Q(X, 2).

If, for y € I,z € R, any one of the following conditions holds

@ @C,y), —V¥(,y) andQ (., 2) are invex w.r.t. the function;
(b) N is pseudoinvex an (-, z) is quasi-invex w.r.ty;

(c) N is quasi-invex and2 (-, 2) is strictly pseudoinvex w.r.i;
(d)y M is pseudoinvex w.r.i,

theng (x) > v.

THEOREM 6.2 (Strong duality) If x* is an optimal solution of P) satisfying the
conditions of Theorem®.1and6.1, then there exisy* € I, z1* € RT andv* € Ry,
such that(x*, y*, z*, v*) is an optimal solution ofD3), and(P) and (D3) have the
same optimal values.

THEOREM 6.3 (Strict converse dualityLetx; and (x*, Yo, Zy, vo) be optimal solu-
tions of(P) and (D3), respectively, and let the conditions of Theo@be fulfilled.
IfL() = D, Yo) —vo¥ (-, Vo) is strictly pseudoinvex an@ (-, zy) is quasi-invex w.r.t.
the function, thenx; = x* is an optimal solution ofP), and(P) and(D3) have the
same optimal valueg(x,) = vo.

Itis remarkable that most of the fractional objectives other than the integral expres-
sion can also be employed technically as demonstrated in this paper.
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