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Abstract

The convexity assumptions for a minimaxfractional programming problem of variational
type are relaxed to those of a generalised invexitysituation. Sufficient optimality conditions
are established under some specific assumptions. Employing the existence of a solution
for the minimax variational fractional problem, three dual models, the Wolfe type dual,
the Mond-Weir type dual and a one parameter dual type, are constructed. Several duality
theorems concerning weak, strong and strict converse duality under the framework of
invexity are proved.

1. Introduction

Fractional programming is an interesting subject which features in several types of
optimisation problems. For example, it can be used in engineering and economics to
minimise a ratio of functions between a given period of time and a utilised resource in
order to measure the efficiency or productivity of a system. In these sorts of problems
the objective function is usually given as a ratio of functions in fractionalprogramming
form (see Stancu-Minasion [20]).

The optimisation problem considered in this paper consists of minimising a max-
imum of several time-dependent ratios involving integral expressions. Many authors
have studied this type of variational programming (see for example [1, 4, 5, 8, 19,
21, 22]). Other minimax programming problems involving generalised convexity are
discussed in [12,13, 15, 14]. In this paper, the usual convexity assumptions are relaxed
to those of a generalised invexity situation. Since the model involves a state function
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x.t/ in the integrand of the integration, the results also relate to questions of optimal
control.

We consider a minimax problem with a fractional objective in the form:

.P/ v∗ = min
x

max
1≤i ≤p

∫ b

a f i .t; x.t/; ẋ.t//dt∫ b

a gi .t; x.t/; ẋ.t//dt

subject to x ∈ P S.T; Rn/; x.a/ = Þ; x.b/ = þ;∫ b

a

h j .t; x.t/; ẋ.t//dt ≤ 0;

j ∈ m ≡ {1;2; : : : ;m}; t ∈ T = [a;b];
where the functionsf i , gi , i ∈ p andh j ; j ∈ m are continuous int , x andẋ and have
continuous partial derivatives with respect tox and ẋ, and whereP S.T; Rn/ is the
space of all piecewise smooth state functionsx defined on the compact time setT in
R. The norm ofx ∈ P S.T; Rn/ is defined by‖x‖ = ‖x‖∞ + ‖Dx‖∞;whereD is the
differential operator onP S.T; Rn/ defined by

y = Dx if and only if x.t/ = x.a/+
∫ t

a

y.s/ds:

So D = d=dt except at the point of discontinuity. Throughout we assume that

∫ b

a

gi .t; x.t/; ẋ.t//dt > 0;
∫ b

a

f i .t; x.t/; ẋ.t//dt ≥ 0

for eachi ∈ p and anyx ∈ FP, the set of all feasible solutions of.P/. For simplicity,
we writex.t/ = x andẋ.t/ = ẋ.

In order to obtain necessary and sufficient optimality conditions for problem.P/,
Bector et al. [1] considered an equivalent parametric problem forv ∈ R in the
following form:

.E Pv/ minimise q

subject tox ∈ P S.T; Rn/; x.a/ = Þ; x.b/ = þ;∫ b

a

[
f i .t; x; ẋ/− vgi .t; x; ẋ/

]
dt ≤ q;∫ b

a

h j .t; x; ẋ/dt ≤ 0; for i ∈ p and j ∈ m;

and they established the following result.

LEMMA 1.1 ([1]). The functionx∗ is an optimal solution of.P/ with optimal
value v∗ if and only if the triple.x∗; v∗;q∗/ is an optimal solution of.E Pv/ with
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optimal valueq∗ = 0: That is

v∗ =
∫ b

a f i .t; x∗; ẋ∗/dt∫ b

a gi .t; x∗; ẋ∗/dt
:

Here all functions in.P/ are assumed to exhibit some generalised convexity. In
[1], they also constructed various duality models for.E Pv/. In [16], Liu employed
the same approach as in [1] to establish optimality conditions and duality theorems
for .P/ in the case of generalised.F; ²/-convex functions.

In this paper, we will establish optimality conditions and duality theorems in the
case of generalised invexity in.P/ as well as in.E Pv/. To this end, in Section2
we introduce some notation and preliminary results. In Section3, we give some
definitions on generalised invexity and derive some sufficient optimality conditions
for problem.P/ in the case of generalised invexity. Employing these results, we
construct three dual problems in Sections4–6. Here we investigate weak, strong and
strict converse duality theorems under the framework of generalised invex functions.

2. Notation and preliminary results

For x ∈ P S.T; Rn/, we let Fi .x/ = ∫ b

a f i .t; x; ẋ/dt, Gi .x/ = ∫ b

a gi .t; x; ẋ/dt

andH j .x/ = ∫ b

a h j .t; x; ẋ/dt, for i ∈ p and j ∈ m. Suppose that functionsf i ; gi and
h j are continuous int , x andẋ and have continuous partial derivatives with respect to
(w.r.t.) x andẋ. Then the functionalsF = .F1; F2; : : : ; F p/, G = .G1;G2; : : : ;Gp/

and H = .H1; H 2; : : : ; H m/ are (Fréchet) differentiable onP S.T; Rn/. It follows
that the problem.P/ may be rewritten in the form:

.P/ min
x∈P S.T;Rn/

max
i ∈p

(
Fi .x/

Gi .x/

)

subject to x.a/ = Þ; x.b/ = þ and H .x/ ≤ 0:

HereÞ andþ are fixed vectors inRn. The equivalent parametric minimisation problem
.E Pv/ is then given by

.E Pv/ minimise q

subject to Fi .x/− vGi .x/ ≤ q; i ∈ p; H j .x/ ≤ 0; j ∈ m;

x ∈ P S.T; Rn/ with fixed boundary conditions

x.a/ = Þ and x.b/ = þ:

As in [4, 5], it can be shown that ifx ∈ FP, a feasible solution of.P/, then

�.x/ ≡ max
i ∈p

Fi .x/

Gi .x/
= max

〈y;e〉=1
y∈RP+

〈y; F.x/〉
〈y;G.x/〉 ; (2.1)
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wheree is a vector of ones inRp
+ and 〈·; ·〉 denotes the inner product inRp. For

convenience, henceafter we defineI = {y ∈ Rp
+|〈y;e〉 = 1}.

For simplicity, forx ∈ P S.T; Rn/, y ∈ Rp
+ andz ∈ Rm

+ we denote

8.x; y/ = 〈y; F.x/〉 =
∫ b

a

p∑
i =1

yi f i .t; x; ẋ/dt;

9.x; y/ = 〈y;G.x/〉 =
∫ b

a

p∑
i =1

yi gi .t; x; ẋ/dt and

�.x; z/ = 〈y; H .x/〉 =
∫ b

a

m∑
j =1

zj h j .t; x; ẋ/dt:

Evidently8.x; ·/, 9.x; ·/ and�.x; ·/ are linear functionals.
From (2.1), if x∗ is an optimal solution of.P/, then

�.x∗/ = max
i ∈p

Fi .x∗/
Gi .x∗/

= max
y∈ I

8.x∗; y/

9.x∗; y/

= 8.x∗; ŷ.x∗//
9.x∗; ŷ.x∗//

= min
x

max
y∈ I

8.x; y/

9.x; y/
= 8.x∗; y∗/
9.x∗; y∗/

; (2.2)

whereŷ.x∗/ = y∗.
Problem.P/ is actually equivalent to

min
x

max
y

8.x; y/

9.x; y/
subject to H .x/ ≤ 0; x ∈ Rn and y ∈ I :

The concept used here for the solution of.E Pv/ coincides with finding the minimax
solution of the Lagrangian

L.x; y; v; z/ = 〈y; F.x/〉 − v〈y;G.x/〉 + 〈z; H .x/〉
= 8.x; y/− v9.x; y/+�.x; z/

for multipliers v∗ ∈ R; z ∈ Rm
+ , and the solution is given byL ′.x; y/¾ = 0 for any

¾ ∈ C.[a;b]; Rn/. Hence necessary optimality conditions for.P/, as in Bectoret al.
[2, Theorem 1] (see also Craven [7]) are actually Kuhn-Tucker type conditions which
we can rewrite as follows.

THEOREM 2.1 (Necessary conditions).If x∗ is an optimal solution of.P/, then there
existy∗ ∈ I and multipliersv∗ ∈ R andz∗ ∈ Rm

+ such that.x∗; v∗; y∗; z∗/ satisfies

8′.x∗; y∗/− v∗9 ′.x∗; y∗/+�′.x∗; z∗/ = 0; (2.3)

8.x∗; y∗/− v∗9.x∗; y∗/ = 0; (2.4)

�.x∗; z∗/ = 0; (2.5)
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where8′ and9 ′ are the gradients of8and9 at .x∗; y∗/ respectively and�′.x∗; z∗/ =
〈z∗;∇ H .x/〉.

In order to construct parameter-free dual models for.P/, using (2.4) we replacev∗

by8.x∗; y∗/=9.x∗; y∗/, and then restate Theorem2.1as follows.

THEOREM 2.2 (Necessary condition).If x∗ is an optimal solution of.P/, then there
existy∗ ∈ I and multipliersv∗ ∈ R andz∗ ∈ Rm

+ such that.x∗; y∗; z∗/ satisfies

9.x∗; y∗/8′
1.x

∗; y∗/−8.x∗; y∗/9 ′
1.x

∗; y∗/ +9.x∗; y∗/�′
1.x

∗; z∗/ = 0; (2.6)

�.x∗; z∗/ = 0; (2.7)

and obtain the optimal value by

�.x∗/ = 8.x∗; y∗/
9.x∗; y∗/

= max
y∈ I

8.x∗; y/

9.x∗; y/

(
= min

x
max
1≤i ≤p

Fi .x/

Gi .x//

)
: (2.8)

3. Generalised invexity

For sufficient optimality conditions of the fractional variational problem.P/, we
will relax the assumption of convexity to that of generalised invexity (see Mond and
Husain [19]). This approach will give a basic technique for constructing some duality
theorems for problem.P/.

Let x ∈ P S.T; Rn/ and f ∈ C1.T×Rn×Rn/. Define a functionalJ:P S.T; Rn/7→R
by J.x/ = ∫ b

a f .t; x; ẋ/dt.
We assume that the boundary pointsx.a/ andx.b/ are fixed. Consider the admis-

sible vectorsx + w with admissible variationsw ∈ C.[a;b]; Rn/ vanishing at the
boundary points. Then the differential ofJ is a linear functional onC.[a;b]; Rn/,

J ′.x/w = d

dÞ

∫ b

a

f .t; x + Þw; ẋ + Þẇ/dt

∣∣∣∣
Þ=0

=
∫ b

a

[
fx.t; x; ẋ/w.t/ + fẋ.t; x; ẋ/ẇ.t/

]
dt

=
∫ b

a

[
fx.t; x; ẋ/− D fẋ.t; x; ẋ/

]
w.t/dt + fẋ.t; x; ẋ/w.t/

∣∣∣∣
b

a

=
∫ b

a

[
fx.t; x; ẋ/− D fẋ.t; x; ẋ/

]
w.t/dt:

That is,

J ′.x/w =
∫ b

a

[
fx.t; x; ẋ/ − D fẋ.t; x; ẋ/

]
w.t/dt (3.1)



344 H. C. Lai and J. C. Liu [6]

for all w ∈ C.[a;b]; Rn/, w.a/ = 0 = w.b/, whereD = d=dt.
This concept allows us to define a function� : P S.T; Rn/ × P S.T; Rn/ 7→

C.T; Rn/ with condition�.x;u/ = 0 if x = u. Using this function�, we will give
the following definitions for generalised invexity.

DEFINITION 3.1. For anyu ∈ P S.T; Rn/,

.i/ a differentiable functionJ is said to beinvexw.r.t.� if

J.x/ − J.u/ ≥ J′.u/�.x;u/; (3.2)

.ii/ J is said to bepseudoinvexw.r.t. � if J ′.u/�.x;u/ ≥ 0 ⇒ J.x/ ≥ J.u/, or
equivalentlyJ.x/ < J.u/ ⇒ J′.u/�.x;u/ < 0;
.iii / J is said to bestrictly pseudoinvexw.r.t.� if, for x 6= u,

J ′.u/�.x;u/ ≥ 0 ⇒ J.x/ > J.u/;

or equivalentlyJ.x/ ≤ J.u/ ⇒ J′.u/�.x;u/ < 0;
.iv/ J is said to bequasi-invexw.r.t.� if

J ′.u/�.x;u/ > 0 ⇒ J.x/ > J.u/; (3.3)

or equivalentlyJ.x/ ≤ J.u/ ⇒ J′.u/�.x;u/ ≤ 0.

REMARK 3.1. If x;u ∈ FP, then x.a/ = u.a/ = Þ, x.b/ = u.b/ = þ and so
�.x.a/;u.a// = 0, �.x.b/;u.b// = 0. This shows that the function�.x;u/ on T
satisfies the zero boundary condition. It follows that in (3.2) of Definition 3.1 if
x;u ∈ FP we always have the representation (3.1):

J ′.u/�.x;u/ =
∫ b

a

[
fx.t;u; u̇/− D fẋ.t;u; u̇/

]
�.x;u/.t/dt;

where�.x;u/ ∈ C.T; Rn/.

This shows that the concept of generalised invexity used here actually coincides
with the original concept of invexity given by Hanson and Mond [9]. For details,
consult Craven [8].

For convenience, we denote by8′
1.x; y/ = 8x.x; y/;9 ′

1.x; y/ = 9x.x; y/ the
partial Fréchet derivative with respect to the feasible variablex.

Now we can state sufficient optimality conditions for.P/ in the case of generalised
invexity as follows.

THEOREM 3.1 (Sufficient conditions).Let x∗∈FP, y∗∈I , z∗∈Rm
+ and .x∗; y∗; z∗/

satisfy (2.6)–(2.8). Define A.x/ = 9.x∗; y∗/8.x; y∗/ − 9.x; y∗/8.x∗; y∗/ and
B.x/ = A.x/ + 9.x∗; y∗/�.x; z∗/. If, for the giveny∗ and z∗, any one of the
following conditions holds:
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.a/ 8.·; y∗/;−9.·; y∗/ and�.·; z∗/ are invex w.r.t. the function�;

.b/ A is pseudoinvex and�.·; z∗/ is quasi-invex w.r.t.�;

.c/ A is quasi-invex and�.·; z∗/ is strictly pseudoinvex w.r.t.�;

.d/ B is pseudoinvex w.r.t.�,

thenx∗ is an optimal solution of.P/.

PROOF. If x∗ is not an optimal solution of.P/, then there is a feasible solution
u ∈ FP such that

�.x∗/ > �.u/: (3.4)

By (2.1) and (2.2),

8.x∗; y∗/
9.x∗; y∗/

= �.x∗/ > �.u/ = max
y∈ I

8.u; y/

9.u; y/
≥ 8.u; y∗/
9.u; y∗/

; y∗ ∈ I :

It follows that

A.u/ = 8.u; y∗/9.x∗; y∗/− 8.x∗; y∗/9.u; y∗/ < 0 = A.x∗/ (3.5)

and so by rearranging the above inequality, we get

9.x∗; y∗/[8.u; y∗/− 8.x∗; y∗/] −8.x∗; y∗/[9.u; y∗/− 9.x∗; y∗/] < 0: (3.6)

Sinceu ∈FP , by condition (2.6), we have

�.u; z∗/ ≤ 0 = �.x∗; z∗/: (3.7)

Consequently, (3.5) and (3.7) yield B.u/ < B.x∗/. Now if condition (a) holds, for
y∗ ∈ I , z∗ ∈ Rm

+ , employing the invexity of8.·; y∗/, −9.·; y∗/ and�.·; z∗/, we then
have the inequalities

8.u; y∗/ −8.x∗; y∗/ ≥ 8′
1.x

∗; y∗/�.u; x∗/; (3.8)

−[9.u; y∗/−9.x∗; y∗/] ≥ −9 ′
1.x

∗; y∗/�.u; x∗/; (3.9)

�.u; z∗/−�.x∗; z∗/ ≥ �′
1.x

∗; z∗/�.u; x∗/: (3.10)

Here for eachy∗ andz∗, 8′
1, 9

′
1 and�′

1 are partial Fr´echet derivatives of8.·; y∗/,
−9.·; y∗/ and�.·; z∗/ at x∗, respectively. Since9.x∗; y∗/ > 0 and8.x∗; y∗/ ≥ 0,
we multiply (3.8) by9.x∗; y∗/, (3.9) by8.x∗; y∗/ and (3.10) by9.x∗; y∗/. Adding
up the resulting inequalities, it follows from (3.6) and (3.7) that

0>
[
9.x∗; y∗/8′

1.x
∗; y∗/−8.x∗; y∗/9 ′

1.x
∗; y∗/+9.x∗; y∗/�′

1.x
∗; z∗/

]
�.u; x∗/:
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This contradicts (2.6). Hence (3.4) does not hold, and sox∗ must be optimal for.P/.
For condition (b),A is pseudoinvex and so from (3.5),

A.u/ < A.x∗/ ⇒ A′.x∗/�.u; x∗/ < 0;

that is, [
9.x∗; y∗/8′

1.x
∗; y∗/− 8.x∗; y∗/9 ′

1.x
∗; y∗/

]
�.u; x∗/ < 0: (3.11)

The identity (2.6) and inequality (3.11) yield�′
1.x

∗; z∗/9.x∗; y∗/�.u; x∗/ > 0. Since
9.x∗; y∗/ > 0, it follows that

�′
1.x

∗; z∗/�.u; x∗/ > 0: (3.12)

On the other hand, the function� in condition (b) is assumed to be quasi-invex w.r.t.�.
Thus inequality (3.12) implies�′

1.x
∗; z∗/�.u; x∗/ ≤ 0, (by (3.3)), which contradicts

(3.12). Hence (3.4) does not hold. This shows thatx∗ is optimal for.P/.
If conditions (c) or (d) hold, the optimality ofx∗ can be proved using the same

argument as that for condition (b). Hence the proof is complete.

In the next sections, we will construct some dual models.

4. The first dual model—the Wolfe type dual

Employing Theorem2.2, we will construct two parametric-free dual models. Con-
sider the Wolfe type dual problem given by

.D1/ Maximise
8.u; y/ +�.u; z/

9.u; y/

subject to.u; z/ ∈ P S.T; Rn/× Rm
+ and y ∈ I ⊂ Rm

+;

u.a/ = Þ; u.b/ = þ;

9.u; y/8′
1.u; y/− [8.u; y/ +�.u; z/]9′

1.u; y/

+9.u; y/�′
1.u; z/ = 0: (4.1)

Denote byK1 the set of all feasible solutions of problem.D1/. We assume throughout
this section that

8.u; y/+�.u; z/ ≥ 0 and 9.u; y/ > 0 for all .u; y; z/ ∈ K1: (4.2)

In what follows, we shall establish weak, strong and strict converse duality theorems
for .P/–.D1/.
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THEOREM 4.1 (Weak duality).Let x ∈FP; .u; y; z/ ∈ K1 and let

C.x/ = 9.u; y/[8.x; y/+�.x; z/] − [8.u; y/+ �.u; z/]9.x; y/:

If, for eachy andz, either one of the following conditions holds:

.a/ 8.·; y∗/, −9.·; y∗/ and�.·; z∗/ are invex w.r.t. the function� (defined as in
Definition3.1);
.b/ C is pseudoinvex w.r.t.�,

then

�.x/ ≥ 8.u; y/+�.u; z/

9.u; y/
; (4.3)

where�.x/ is defined by(2.1).

PROOF. If (4.3) were not true, then

�.x/ <
8.u; y/ +�.u; z/

9.u; y/
: (4.4)

It follows from (2.2) that for anyy ∈ I ,

8.x; y/

9.x; y/
≤ max

þ∈ I

8.x; þ/

9.x; þ/
= �.x/ <

8.u; y/ +�.u; z/

9.u; y/
;

or

8.x; y/9.u; y/− [8.u; y/+ �.u; z/]9.x; y/ < 0: (4.5)

Rewriting the above inequality, we get

[8.x; y/+�.x; z/]9.u; y/−[8.u; y/+�.u; z/]9.x; y/<�.x; z/9.u; y/: (4.6)

Since�.x; z/ ≤ 0, if x ∈ FP , z ∈ Rm
+ and9.u; y/ > 0, �.x; z/9.u; y/ ≤ 0. It

follows from (4.6) that

C.x/ < 0 = C.u/: (4.7)

Now if condition (a) holds, foreachy ∈ I , z ∈ Rm
+, the invexity of8.·; y∗/,

−9.·; y∗/ and�.·; z∗/ implies that

8.x; y/−8.u; y/ ≥ 8′
1.u; y/�.x;u/; (4.8)

−[9.x; y/−9.u; y/] ≥ −9 ′
1.u; y/�.x;u/; (4.9)

�.x; z/ −�.u; z/ ≥ �′
1.u; z/�.x;u/;
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or

−�.u; z/ ≥ −�.x; z/ +�′
1.u; z/�.x;u/: (4.10)

From (4.2), 9.u; y/ and8.u; y/ + �.u; z/ are nonnegative. Multiplying (4.8) by
9.u; y/, (4.9) by 8.u; y/ + �.u; z/ and (4.10) by 9.u; y/, and summing up the
resulting inequalities, then from (4.5) we eventually obtain that

{
9.u; y/8′

1.u; y/− [8.u; y/+ �.u; z/]9′
1.u; y/ +9.u; y/�′

1.u; z/
}
�.x;u/ < 0:

This contradicts (4.1). So (4.4) does not hold and (4.2) does hold.
From condition (b),C is pseudoinvex and (4.7) implies thatC′.u/�.x;u/ < 0, that

is,
{
9.u; y/8′

1.u; y/−[8.u; y/+�.u; z/]9′
1.u; y/+9.u; y/�′

1.u; z/
}
�.x;u/ < 0.

This contradicts (4.1). Hence (4.3) does not hold and the proof is complete.

THEOREM 4.2 (Strong duality).If x∗ is an optimal solution of.P/ satisfying the
conditions of Theorems2.2 and 4.1, then there existy∗ ∈ I and z∗ ∈ Rm

+ such that
.x∗; y∗; z∗/ is an optimal solution of.D1/ and the optimal values of.P/ and .D1/
are equal; that is,min.P/ = max.D1/.

PROOF. If x∗ is an optimal solution of.P/, then by Theorem2.2, there exist
y∗ ∈ I andz∗ ∈ Rm

+ which satisfy the constraints of.D1/, so that.x∗; y∗; z∗/ ∈ K1.
Furthermore

8.x∗; y∗/+�.x∗; z∗/
9.x∗; y∗/

= 8.x∗; y∗/
9.x∗; y∗/

= �.x∗/;

since�.x∗; z∗/ = 0. Hence.x∗; y∗; z∗/ is an optimal solution of.D1/. Consequently,
(4.3) demonstrates that.P/ and.D1/ have the same optimal values.

THEOREM 4.3 (Strict converse duality).Letx1 and.x∗; y0; z0/ be optimal solutions
for .P/ and .D1/, respectively. Assume that the assumptions of Theorem4.2 are
fulfilled, and that

C.·/ = 9.x∗; y0/[8.·; y0/ +�.·; z0/] − [8.x∗; y0/+�.x∗; z0/]9.·; y0/

is a strictly pseudoinvex function w.r.t.�. Thenx1 = x∗ is an optimal solution of.P/,
and.P/ and.D1/ have the same optimal value

�.x1/ = 8.x∗; y0/ +�.x∗; z0/

9.x∗; y0/
:
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PROOF. Suppose on the contrary thatx1 6= x∗. Then by Theorem4.2, there exist
y1 ∈ I and z1 ∈ Rm

+ such that.x1; y1; z1/ is an optimal solution of.D1) and

�.x1/ = 8.x1; y1/ +�.x1; z1/

9.x1; y1/
:

As in the proof given in Theorem4.1, we replacex by x1, and.u; y; z/ by .x∗; y0; z0/,
to derive the inequality

�.x1/ >
8.x∗; y0/ +�.x∗; z0/

9.x∗; y0/
:

This contradicts the fact that

�.x1/ = 8.x1; y1/ +�.x1; z1/

9.x1; y1/
= 8.x∗; y0/+�.x∗; z0/

9.x∗; y0/
:

Hence we conclude that

x1 = x∗ and �.x1/ = 8.x∗; y0/+�.x∗; z0/

9.x∗; y0/
:

5. The second dual model—the Mond-Weir type dual

We introduce the Mond-Weir type dual problem as follows:

.D2/ Maximise
8.u; y/

9.u; y/

subject to .u; y/ ∈ P S.T; Rn/× I ; u.a/ = Þ; u.b/ = þ;

9.u; y/8′
1.u; y/ −8.u; y/9′

1.u; y/+9.u; y/�′
1.u; z/ = 0; (5.1)

�.u; z/ ≥ 0; z ∈ Rm
+: (5.2)

Denote byK2 the set of all feasible solutions of problem.D2/. We still assume
throughout that8.u; y/ ≥ 0 and9.u; y/ > 0 for all .u; y; z/ ∈ K2. We will establish
weak, strong and strict converse duality theorems for.P/–.D2/.

THEOREM 5.1 (Weak duality).Let x ∈FP , .u; y; z/ ∈ K2 and define

D.x/ = 9.u; y/8.x; y/ −9.x; y/8.u; y/ and

E.x/ = D.x/ +9.u; y/�.x; z/:

If, for eachy ∈ I ; z ∈ Rm
+, any one of the following conditions holds:

.a/ 8.·; y/, −9.·; y/ and�.·; z/ are invex w.r.t.�;
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.b/ D is pseudoinvex and�.·; z/ is quasi-invex w.r.t.�;

.c/ D is quasi-invex and�.·; z/ is strictly pseudoinvex w.r.t.�;

.d/ E is pseudoinvex w.r.t.�,

then

�.x/ ≥ 8.u; y/

9.u; y/
: (5.3)

PROOF. Suppose the result of (5.3) were not true. Then

8.u; y/

9.u; y/
> �.x/ = max

y1∈ I

8.x; y1/

9.x; y1/
≥ 8.x; y/

9.x; y/
:

This implies that

D.x/ = 8.x; y/9.u; y/−8.u; y/9.x; y/ < 0 = D.u/: (5.4)

As x ∈ FP, z ∈ Rm
+ and�.x; z/ ≤ 0, the constraint inequality (5.2) of .D2/ yields

�.x; z/ ≤ 0 ≤ �.u; z/: (5.5)

Consequently, (5.4) and (5.5) yield

E.x/ < E.u/: (5.6)

If condition (a) holds, then by the invexity of8;−9 and�, we have

8.x; y/−8.u; y/ ≥ 8′
1.u; y/�.x;u/; (5.7)

−[9.x; y/−9.u; y/] ≥ −9 ′
1.u; y/�.x;u/; (5.8)

�.x; z/ −�.u; z/ ≥ �′.u; z/1�.x;u/: (5.9)

Since9.u; y/ and8.u; y/ are nonnegative, we multiply (5.7) by 9.u; y/, (5.8) by
8.u; y/ and (5.9) by9.u; y/, and sum up the resulting inequalities. Eventually, from
(5.4) and (5.5), we obtain the inequality

0>
[
9.u; y/8′

1.u; y/ −8.u; y/9′
1.u; y/ +9.u; y/�′

1.u; z/
]
�.x;u/:

This contradicts (5.1) in the constraint of.D2/. Hence (5.3) holds.
In condition (b),D is pseudoinvex. Thus (5.4) implies D′.u/�.x;u/ < 0, that is,

[
9.u; y/8′

1.u; y/ −8.u; y/9′
1.u; y/

]
�.x;u/ < 0: (5.10)

It follows from (5.1) and (5.10) that

−9.u; y/�′
1.u; z/�.x;u/ < 0 or �′

1.u; z/�.x;u/ > 0
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since9.u; y/ > 0. But� is quasi-invex, so the above inequality implies

�.x; z/ > �.u; z/

which contradicts (5.5). So (5.3) holds.
The proof for the cases when conditions (c) or (d) hold is similar. Hence the proof

is complete.

THEOREM 5.2 (Strong duality).If x∗ is an optimal solution of.P/ satisfying the
conditions of Theorems2.2 and 5.1, then there existy∗ ∈ I and z∗ ∈ Rm

+ such that
.x∗; y∗; z∗/ is an optimal solution of.D2/, and.P/ and.D2/ have the same optimal
values.

PROOF. If x∗ is an optimal solution of.P/, then by Theorem 2.2, there existy∗ ∈ I
and z∗ ∈ Rm

+ such that.x∗; y∗; z∗/ ∈ K2, the feasible solution of.D2/, and

�.x∗/ = 8.x∗; y∗/
9.x∗; y∗/

= max
y∈ I

8.x∗; y/

9.x∗; y/
:

It follows from Theorem 5.1 that.x∗; y∗; z∗/ is an optimal solution of.D2/ and
min.P/ = max.D2/:

THEOREM 5.3 (Strict converse duality).Letx1 and.x∗; y0; z0/ be optimal solutions
of .P/ and.D2/, respectively. Assume that the conditions of Theorem5.2are fulfilled,
and thatD.·/ = 9.x∗; y0/8.·; y0/ − 9.·; y0/8.x∗; y0/ is strictly pseudoinvex and
�.·; z0/ is quasi-invex w.r.t.�. Thenx1 = x∗ is an optimal solution of.P/, and.P/
and.D2/ have the same optimal values�.x1/ = 8.x∗; y0/=9.x∗; y0/.

PROOF. Sincex1 is an optimal solution of.P/, by Theorem5.2, there existy1 ∈ I
andz1 ∈ Rm

+ such that.x1; y1; z1/ is an optimal solution of.D2/ and

�.x1/ = 8.x1; y1/

9.x1; y1/
:

On the other hand,.x∗; y0; z0/ is an optimal solution of.D2/, with optimal value equal
to �.x1/, that is,

�.x1/ = 8.x1; y1/

9.x1; y1/
= 8.x∗; y0/

9.x∗; y0/
: (5.11)

If x1 6= x∗, we could deduce

�.x1/ >
8.x∗; y0/

9.x∗; y0/
(5.12)
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which would contradict (5.11).
Suppose (5.12) does not hold, then�.x1/ ≤ 8.x∗; y0/=9.x∗; y0/, that is,

8.x∗; y0/

9.x∗; y0/
≥ �.x1/ = max

y∈ I

8.x1; y/

9.x1; y/
≥ 8.x1; y0/

9.x1; y0/

or D.x1/ = 8.x1; y0/9.x∗; y0/−8.x∗; y0/9.x1; y0/ ≤ 0 = D.x∗/, that is,

D.x1/ ≤ D.x∗/: (5.13)

SinceD is strictly pseudoinvex, (5.13) implies D′.x∗/�.x1; x∗/ < 0, or

[
9.x∗; y0/8

′
1.x

∗; y0/ −8.x∗; y0/9
′
1.x

∗; y0/
]
�.x1; x∗/ < 0: (5.14)

By (5.1) and (5.14), we get−9.x∗; y0/�
′
1.x

∗; z0/�.x1; x∗/ < 0, that is,

�′
1.x

∗; z0/�.x1; x∗/ > 0; (5.15)

since9.x∗; y0/ > 0. By the quasi-invexity of�, (5.15) implies

�.x1; z0/ > �.x
∗; z0/: (5.16)

On the other hand,x1 ∈ FP , z0 ∈ Rm
+ and�.x1; z0/ ≤ 0. By (5.2), �.x∗; z0/ ≥ 0.

Thus�.x1; z0/ ≤ �.x∗; z0/ which contradicts (5.16). Hence (5.12) holds under
x1 6= x∗. Thereforex1 = x∗.

6. The third dual model

In this section, we employ Theorems2.2and3.1to construct a one-parameter dual
problem for.P/, and consider

.D3/ Maximise v

subject to.u; v; y; z/ ∈ P S.T; Rn/ × R+ × I × Rm
+;

u.a/ = Þ; u.b/ = þ;

8′
1.u; y/ − v9′

1.u; y/+�′
1.u; z/ = 0;

8.u; y/ − v9.u; y/ ≥ 0; �.u; z/ ≥ 0:

Denote byK3 the set of all feasible solutions of problem.D3/. Then by a proof
similar to that for Theorems5.1–5.3, we can obtain the following theorems relating
.P/ and.D3/.
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THEOREM 6.1 (Weak duality).Let x ∈FP , .u; v; y; z/ ∈ K3. Define

N.x/ = 8.x; y/− v9.x; y/ and M.x/ = N.x/ +�.x; z/:

If, for y ∈ I , z ∈ Rm
+, any one of the following conditions holds:

.a/ 8.·; y/, −9.·; y/ and�.·; z/ are invex w.r.t. the function�;

.b/ N is pseudoinvex and�.·; z/ is quasi-invex w.r.t.�;

.c/ N is quasi-invex and�.·; z/ is strictly pseudoinvex w.r.t.�;

.d/ M is pseudoinvex w.r.t.�,

then�.x/ ≥ v.

THEOREM 6.2 (Strong duality).If x∗ is an optimal solution of.P/ satisfying the
conditions of Theorems2.1and6.1, then there existy∗ ∈ I , z1∗ ∈ Rm

+ andv∗ ∈ R+,
such that.x∗; y∗; z∗; v∗/ is an optimal solution of.D3/, and.P/ and.D3/ have the
same optimal values.

THEOREM 6.3 (Strict converse duality).Let x1 and.x∗; y0; z0; v0/ be optimal solu-
tions of.P/ and.D3/, respectively, and let the conditions of Theorem6.2be fulfilled.
If L.·/ = 8.·; y0/−v09.·; y0/ is strictly pseudoinvex and�.·; z0/ is quasi-invex w.r.t.
the function�, thenx1 = x∗ is an optimal solution of.P/, and.P/ and.D3/ have the
same optimal values�.x1/ = v0.

It is remarkable that most of the fractional objectives other than the integral expres-
sion can also be employed technically as demonstrated in this paper.
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