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Abstract

In this paper we derive extremality and comparison results for explicit and implicit initial
and boundary value problems of first-order differential equations. Both the differential
equations and the boundary conditions may involve discontinuities.

1. Introduction

Recently, the existence of Caratidory solutions of the differential equation

u'(t) = g(t, u(t)), (1.2)

with given initial or boundary conditions, has been proved under various kinds of
hypotheses which allow to be discontinuous in both its variables (see for example
[1,2,4,5/6,7,8,9, 10,11, 12, 13, 14, 16, 18, 19]). A culmination in this research
was achieved ing], where existence of extremal solutions of the initial value problem
(1.2) was proved for a large class of discontinuous functignsThe results of 3]
were applied in 18] to prove existence results fot.(l) equipped with discontinuous
functional boundary conditions.

In this paper this researchis continued as follows:

(a) Existence results 0b]18] are extended to the case whért) is replacedin.l)
by de(u(t))/dt, wherep : R — R is an increasing homeomorphism.

(b) TheL!-boundedness af assumed ing] is replaced by a weaker growth condi-
tion.
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(c) Wheng is nonnegative-valued, local conditions are introduced which allow a
new type of discontinuity fog.

(d) Dependence of the extremal solutions on the funagiamd on the given initial
and boundary conditions is studied.

(e) The obtained results are applied to initial and boundary value problems of the
differential equationr’(t) = q(u(t))g(t, u(t)).

2. Existence and comparison results for initial value problems

In this section we derive existence and comparison results for extremal solutions
of first-order scalar initial value problems.

2.1. Hypotheses and main results Consider first the initial value problem

d
a(p(u(t)) =gt,u)) forae.ted=[bt], Uty = X. (2.1)

DeFINITION 2.1. A functionu : J — R is said to be dower solutionof (2.1) if u
belongstothe set = {u e C(J) | p ou € AC(J)} and if

%(p(u(t)) <g(t,u()) forae.ted, u(p <X

If the reversed inequalities hold, thenc Y is called arupper solutionof (2.1), and
a solutionof (2.1) if equalities hold. Ifu, andu* are such solutions of2(1) that
u,(t) < u() < u*(t) onJ for every solutionu of (2.1), we say thau, is theleast
solutionandu* is thegreatest solutiorof (2.1), and thatu, andu* are theextremal
solutionsof (2.1).

Ifthe functionsy : R — R andg: JxR — R satisfy the following hypotheses:

(¢0) ¢ is anincreasing homeomorphism;
(g0) for eachx € R the functiong(-, X) is measurable, and

limsupg(t, y) < g(t, x) < Iimiinf g(t,y) fora.ete J;
yix yix

(A) (2.1) has a lower solutiom and an upper solution such thau < T, andg is
L!-boundedin the se® = {(t,x) |t € J, u(t) < x <T(t)},

we prove that there exists the least and the greatest among those salutiofzs1)
for whichu(t) < u(t) <T(t) onJ. Replacing (A) by the following condition:

(9p) 19(t, )| < p®OY (Jex)]) forall x € R and a.et € J, wherep, € L1 (J),
the functiony : R, — (0, o0) is increasing and,” dx/v (x) = oo,
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we prove thatZ.1) has extremal solutions, and that they are increasing with respect to
g andxy. Wheng is nonnegative-valued we give a localised version to condition (g0),
which also allows downward jumps fgxt, -). Conditions ensuring one-sided conti-
nuities for the dependence of extremal solutions2of)(on g andx, are also given.

The obtained results are then shown to hold for the IVP

u'(t) = qu)gt,ut)) ae.ind, uh) = X,

whereq : R — (0, 00), if condition: (p0) is replaced by the following condi-
tion.

(@0) g and ¥q belong toL % (R), and [, dz/q(z) = oo.

loc
Finally, examples and counter-examples are given to illustrate the obtained results
and the need for the given hypotheses.

ReEMARKS 2.1. Conditions (g0) and (q0) allow the functiomsand g to be dis-
continuous. Condition (g0) holds, for example gifis a Caratkodory function or
if g(t, x) is measurable i for all x € R and increasing irx for a.e.t € J. Thus
sup-measurability of is not assumed.

Condition (0) ensures only continuity af o u whenu € C(J). If ¢ is locally
absolutely continuous, theriis locally Lebesgue integrable, and conditigi®) holds
if and only if ¢’ is a.e. positive-valued anjf(jtoo @' (X) dXx = £o0.

2.2. Preliminaries We begin with a result due to Hassan and Rzymowski, 1999,
which forms a basis for the proofs of our main existence result2fay. (

THEOREM 2.1 ([5, Theorem 3.1])Let f : J x R — R be anL!-bounded function
which satisfies the following condition

(HR) For eachx € R the functionf (-, x) is measurable, and

limsupf(t,y) < ft,x) < Iimiinf f(t,y) forae.teJ
y1x YvX

Then the IVP
u(t) = f(t,u®)) forae.t €J, uy) =xg (2.2)
has extremal solutions iIAC(J) for eachx, € R.

The next lemma makes conditiongguseful in proving global existence results.

LEMMA 2.1 ([12, Lemma 1.5.3]).Given J = [to, t;] and an increasing function
¥ @ Ry — (0, 00) for which [;* dx/v(x) = oo, then for all fixedp € L% (J) and
wo € R, the IVP

w' ) = py(w)) forae.ted, wl) =wy
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has a unique solutiom € AC(J). Moreover, ifv € AC(J) satisfies the inequality

t
v(t) < wo +/ p(S)¥(v(s))ds, tel,
to

thenv(t) < w(t) forall t € J.

Next we shall show tha®(1) can be converted to the IVP
V() =gt e i) ae.ind, v = @(X). (2.3)

LEmMMA 2.2. If condition (¢0) holds, thenu € Y is a lower solution, an upper
solution or a solution of(2.1) if and only ifv = ¢ o u is a lower solution, an upper
solution or a solution of the IV2.3), respectively.

PrOOF. If u € Y is a lower solution of 2.1), thenv = ¢ o u € AC(J), and

d .
V() = a(p(u(t)) < g(t,u(t)) = g, ¢ *(v(t)) a.e.ind.

Moreover, sinceu(ty) < X, andg is increasing, then(t)) = ¢U(ty)) < ¢(X),
whencev is a lower solution of the IVPZ.3).

Conversely, leb € AC(J) be alower solution ofZ.3). Thenu = ¢~tov € C(J)
by condition ¢0), andp o u = v € AC(J), whenceau € Y, and

d .
aw(U(t)) = (t) < g, e t(v(t))) = g(t, u(t)) a.e.ind.

Sincev(ty) < ¢(X) andp* isincreasing, then(ty) = ¢~ (v(t)) < ¢~ (@ (X)) = Xo.
Thusu is a lower solution of the IVPZ.1).

Similar reasoning shows thate Y is a solution or an upper solution o2.() if
and only ifv = ¢ o u is a solution or an upper solution dt.@), respectively.

2.3. Existence and comparison results Denote by< the pointwise ordering of
C@J). Ifu,ueC(J)andu <1, denotdu, U] ={ue C(J) |u<u<T}
We now prove our first existence and comparison resultZdi (

THEOREM 2.2. Assume that condition®0), (g0)and(A) hold. Then the IVR2.1)
has the least solution, and the greatest solution* in [u, U]. Moreover,

{u*(t) = min{u,(t) | uy is an upper solution of2.1) in [u, U]}, (2.4)

u*(t) = maxu_(t) | u_ is a lower solution of(2.1) in [u, U]}.
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ProOOF. Condition (A) and Lemm&.2 imply that the functiong = ¢ o u and
v = ¢ oU are lower and upper solutions of the IVRJ), and thab < v. If t € J and
X € [v(t), v(t)], theng=t(x) € [u(t),T(t)]. This result and condition (A) ensure the
existence of aM ¢ L1(J) such thatg(t, ¢~ 1(x))| < M(t) for a.e.t € J and for all
X € [v®),v(t)]. Thus the functionf : J x R — R, defined by

V' (1), X < u(t),
f(t,x) =19t ¢'(x), vt) <x=<7T(M), tel, (2.5)
(1), X > v(t),

is L1-bounded. Applying conditions (g0) angdQ) it is also easy to see thathas the
properties given in condition (HR). It then follows from Theor2rithat the IVP

V() = f(t,v)) forae.teld, v =e), (2.6)

has the least solution, and the greatest solutiost. To prove thatv, andv* are
extremal solutions of4.3) in [v, v] we show that every solution of (2.6) belongs to
the order intervalv, v]. Forifv £ v, there exisf, b € J, a < b, such that

v(@) =v(@ and v(t) <wv(t) on (a, bl. (2.7)
Sincev is a solution of 2.6) with f defined by 2.5), we obtain
() —v(H) =v @) — ft,vit) =2v1t) -2 () =0 fora.e.t e (a, b).

Thusuv(t) — v(t) = v(a) — v(a) +f;(y/(s) —/(s))ds < 0,t € (a,b], which
contradicts 2.7), and hence implies that < v. Similarly, it can be shown that if
v is a solution of 2.6), thenv < v. This and 2.5 imply that v is a solution of
(2.6) if and only if v is a solution of 2.3) in [v, v]. This proves thav, andv* are
extremal solutions of4.3) in [v, v]. Sincey!is strictly increasing, it then follows
by Lemma2.2thatu, = ¢t o v, andu* = ¢! o v* are extremal solutions o2(2) in
[u,U]. To prove @.4), letu, be an upper solution o2(1) in [u, U]. Replacingd by
u, in the above proof it follows that the IVR (1) has a solutiomu € [u, u,] C [u, T].
But u, is the least of all the solutions o2(1) in [u, U], so thatu, < u,. Similarly, it
can be shown that ifi_ is a lower solution of 2.1) in [u, U], thenu_ < u*. Noticing
also thatu, is an upper solution ang a lower solution of 2.1), we obtain 2.4).

REMARKS 2.2. In the case when

0, Xx>t,
g(t,x)={ teJ=[0,1],xeR, p(X) =x and x, =0,
1, x <t,
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condition (g0) does not hold although for thege andx, the IVP 2.1) has a unique
solutionu(t) =t,t € J (see b, Example 1.2]). However, by the proof of Theor&ré

it suffices for givenx, € R to assume that condition (g0) holds for a&ez J and

whenevewu(t) < x < U(t). This holds in the above case when we chaog&¢ = 0

andu(t) =t,t € J.

As an application of Lemmaa 1and2.2and Theoren2.2we shall now prove the
following generalisation to Theorethl

THEOREM 2.3. Assume that the functiogs: R — R andg: J x R — R satisfy
conditions(¢0), (g0) and (gy). Then the IVR2.1) has for eachx, € R the least
solutionu, and the greatest solutiom*. Moreover,

(2.8)

u,(t) = min{u,(t) | u, is an upper solution of2.1)},
u*(t) = maxu_(t) | u_ is a lower solution of(2.1)}.

PROOF. LetX, € R be given. Choosay € R so thatjp(Xy)| < wq. If v € AC(J)
is a solution of 2.3), it follows from condition (@) that

'] =gt ¢ ' wv®)))] < p®OY(v®)]) a.e.ind.
Thus

t t
[ < (o)l +/ [v'(s)|ds < wo+/ pL(S) ¥ (Jv(s)]) ds
to

to
forallt € J. This implies by Lemm&.1that|v(t)] < w(t) on J, wherew is the
solution of the IVP

w't) = peOY(w)) a.e.ind, w(t) = wo. (2.9)

Moreover, applying (g) and €.9) we obtain|g(t, ¢~ 1(x))| < p.(t) ¥ (w(t)) = w (t)
fora.e.t € J, and for allx € [—w(t), w(t)]. This implies that-w andw are lower
and upper solutions o2(3).

The above proof and Lemnfa2 imply thatu = ¢t o (—w) andl = ¢ o w
are lower and upper solutions of the IVR.D]), and that all the solutions o2(1)
belong to the order intervdl, U]. Moreover, ift € J andx € [u(t),U(t)], then
p(X) € [—w(t), w(t)], sothatfora.et € J and forallx € [u(t),tu(t)],

19, )| = 19(t, ¢ 9| < POV (W) = w/ (D).

Thus condition (A) holds, whence the IVP.{) has by Theorer.2extremal solutions
u, andu* in [u, U]. Because all the solutions o2.() belong to[u, U], thenu, and
u* are the extremal solutions 02.(1). To prove the last assertion, ket be an upper
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solution of £.1). Chooseaw, above so thatwy < ¢(u,(t)) onJ. Then—w < gou,,
whenceu < u,, so that the IVPZ.1) has by Theorerfi.2a solutionu € [u, u,]. But
u, is the least of all the solutions o2 (1), so thatu, < u,. Similarly one can show
that if u_ is a lower solution of 2.1), thenu_ < u*. Sinceu, is an upper solution and
u* a lower solution of 2.1), we obtain 2.8).

In spite of its generality, condition (g0) does not allow the functigh -) to have
jumps downwards if belongs to a complement of a fixed null-setlofHowever, ifg
is nonnegative-valued, (g0) can be replaced by a localised version which allows also
the jump-discontinuities mentioned above, as shown in the next theorem.

THEOREM 2.4. Assume thap : R — R has property(¢0), andthaty : J xR — R
satisfies the following conditions

(g01) g(., x) is measurable and nonnegative-valued for each R.

(g02) For each(s, 2) € [to, t1) x R there exist positive constandsand e such that
limsup,,, g(t,y) < g(t,x) for a.e.t € [s,s+ é] and for allx € (z,z+ €], and
g(t,x) <liminfy, g(t,y) fora.e.t € [s,s+ é] and for allx € [z, 2+ ¢€).

(a) If condition (A) holds, then the IVR2.1) has the least solutiomn, and the
greatest solutio* in the order intervalu, U], and(2.4) holds.

(b) If condition (ge) holds, then(2.1) has for eachx, € R extremal solutions,
and(2.8) holds.

ProoF. Consider first the IVP
u'(t) =g(t,u)) forae.ted, u() = X, (2.10)

whereg is bounded byp; € L% (J) and has properties (g01) and (g02), and where
Xo € R is given. Choosé > 0 ande > 0 such that (g02) holds wheg, z) = (1o, Xo),

and denotely = [to,to + 8]. We may also assume thﬁ}0 p:(t)dt < €. Thus a
function f : Jy x R — R, defined by

f(t, X) := g(t, max{Xy, min{x, Xo + €}), teJdy, XeR,

satisfies the hypotheses of Theor2riwhenJ is replaced byly, whence the IVPZ.2)
has extremal solutions, andu* on J,. Sinceg is nonnegative-valued, the above
choices 0B ande and the definitions of, and f ensure that4.2) and .10 have the
same solutions od,. In particular,u, is the least solution ofZ 10 on J,. Denote

t, = supit; € J | (2.10 has the least solutiom, on [to, ta]}.

Obviouslyt, = t;, for otherwise we could repeat the above reasoning wher) =
(t,, u,(t,)), and obtain a continuation af, to an intervalJ; = [ty, t, + §], which
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contradicts the choice df. This proves that4.10 has the least solution od, the
proof for the existence of the greatest solution being similar. The proofs of (a) and (b)
are then similar to the proofs of Theoreth& and2.3.

2.4. Dependence on data As a consequence of Theor@iwe obtain the following
result.

ProPOsITION2.1. If conditions(¢0), (g0) and (ge) hold, then the IVP

%(p(u(t)) =gt,u®)) +h) fora.e.t € J, u(y) = X, (2.11)

has for allh € L*(J) andx, € R extremal solutions and they are increasing with
respect taxy, h andg.

PROOF. Given Xy, %o € R, h,h € LY(J) andg,§ : J x R — R, assume thag
and g have properties (g0) and¢y and thatx, < %o, h < handg(-, x) < §(-, x)
for all x € R. The functions(t, X) — g(t, X) + h(t) and(t, X) — §(t, x) +ht)
satisfy condition (g0), and also conditionggwhen p, andv are replaced by —
p:(t) + |h®)| + Iht)] andz — ¥ (2) + 1, respectively. Denoting by the least
solution of the IVP

%w(ua)) = §(t,u(t)) +ht) forae.t € J, u(ty) = %o, (2.12)

it follows from the above hypotheses thiats an upper solution of(11). This and
(2.8) imply thatu, < 4. Similarly, it can be shown that i is the greatest solution of
(2.12), thenu* < (, which concludes the proof.

Next we shall prove a result concerning right-continuity of the greatest solution of
(2.2) with respect tag, andg.

PROPOSITION2.2. Letp : R — R satisfy condition(¢0), letg, : J x R — R,
n=1,2,...,be adecreasing sequence of functions which all satisfy the hypotheses
(ge) and (g0) wheng = g,, let a functiong : J x R — R have propertieggy)
and

(g1) for eachx e R the functiong(-, x) is measurable, and
limsupg(t, y) <g(t,x) = Iiin g(t,y) forae.te ],
yx yox

and assume that the following condition holds
(gn) lim sup(g.(s,X) — g(s,x)) =0 fora.e.se Jandalla,be R,a <bh.

N—00 xela,b]
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If (xn)2, is a decreasing sequence convergingde R, then the IVPs

%(p(u(t)) = gy(t,u(t)) a.e.in J, u(ty) = X, (2.13)

have greatest solutions,, which converge uniformly od to the greatest solution*
of the IVP(2.9).

ProOOF. The proof of Theorerd.3ensures that the IVP

V() = Ga(t, 9 M (0(1) ae.ind, wv(lo) = ¢(%) (2.14)

has for eacln = 1,2, ... the greatest solution,. If n < m, thenx, < x, and
Om(t, 9 1(X)) < gh(t, @ 1(X)) in J x R, so thaty,, is a lower solution of 2.14). Thus
vm < v, by Theoren.3and Lemma2.2, whence the sequence,);” ; is decreasing.
Denotew, = sup{le(X,)] | n=1,2,...}, and letw be the solution of the IVP

W) = O @t) ae.ind,  wlt) = we. (2.15)

Applying condition (@) we obtain for each = 1, 2, ... and for allt € J,

t t
[vn (D] = [@(%)] +/ 1Gn(S, ¢ (vn(8)))| ds < wo+/ P1(8)¥ (I(va(s)]) ds.
to to

This implies by Lemma2.1 that |v,(t)| < w(t) for eacht € J and for eacth =
1,2,.... Inparticular,

) € [—wty), wty)] foralln=1,2,... andt € J. (2.16)

Ifty<a<b<t,wehaveforeach=1,2,...,
b
[vn(b) — va(@)| S/ |Gn(S, ¢ (un(9)))| ds
a

b
s/ p(S)Y (w(s)ds = w(b) —w(a). (2.17)

Thus the sequende,): , is decreasing, uniformly bounded b¥.{6 and equicon-
tinuous by 2.17), whence it converges uniformly ahto a functionv which has the
property|v(b) — v(@)| < |w(b) —w(@)|, a,b € J. In particular,y € AC(J). It
follows from (2.16 whenn — oo thatv(t) € [—w(ty), w(ty)] for allt € J. Since
Oo(t, -) is by (g1) right-continuous for a.¢.€ J, since the sequende ! o v,) is
decreasing and converges uniforngly* o v, and since condition (gn) holds, then

Gn(S, @ 1 (Un(S))) = 9(S, ¢ *(v(S))) asn— oo fora.e.se J. (2.18)
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Eachv, satisfies the integral equation
t
w®) = g0+ [ G HmENds te (2.19)
to

Because, — X, andv,(t) — v(t), and since both andy~! are continuous, it follows
from (2.19 whenn — oo, applying also 2.18 and the dominated convergence
theorem, that

t
v(t) =§0(Xo)+/ g(s, ¢ Mv(s))ds, ted (2.20)
to

This implies thaw is a solution of the IVPZ.3).

Denote byb the greatest solution o2(3). Since? is a lower solution of2.14) for
eachn € N, theno(t) < v, (t),t € J,n=1,2,.... This implies whem — oo that
v(t) < v(t) onJ. The reverse inequality holds singés a solution of 2.3) and? is
its greatest solution. Thus= 9, that is,v is the greatest solution o2 (3).

The above results and Lemm2a2 imply that the functionu, = ¢~ o v, is for
eachn =1, 2,... a greatest solution of the IVR (13, and that(u,) is a decreasing
sequence which converges uniformly to the greatest solution of the2\ (This
concludes the proof.

REMARKS 2.3. The hypothesis that the sequerigg):° , is decreasing is essential.
For instance, iH is the Heaviside functionH (z) = {§ 2% , then the IVP

u(t) = H@u()) a.e.inJ, u0 =0
hasu(t) =t as its only solution, and the IVP

u,(t) = H(u,(t)) a.e.inJ, u,(0) = —-1/n

has foreacim = 1, 2, ... a unique solutiom,(t) = —1/non J, so that the sequence
(un)e2, does not converge even pointwiseuton J. This holds also for the solutions
of the IVPs

u,(t) = H(uy(t) —1/n) a.e.inJ, u,(0) =1/2n,

so that the result of Propositidh2 does not necessarily hold if, instead of (gn), we
assume that the sequen@g):’ , is increasing and converges pointwisegto

Proposition2.2has an obvious dual for left-continuity of the least solution2f
with respect to, andg.
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2.5. A special case The IVP

u'(t) =qu))gt,u)) a.e.ind, ulp) = Xo, (2.21)

can be reduced to an IVP of the for2.0) if g : R — (0, co) satisfies one of the
following conditions:

(@0) g and ¥q belong toL % (R), and [, dz/q(z) = +o0;
(91) g€ Li(R), 1/q € Lix(R) and ;™ dz/q(2) = +oc.
This is shown in the next two lemmas, the first one being an obvious consequence of

the properties assumed fgiin conditions (q0) and (q1).

LeEmmMA 2.3.If (g0)or (gq1) holds, then the functiop : R — R, defined by

X dz
(x)=/ 92 xer, 222

R ATE) (2.22)
is an increasing homeomorphism, its inveyse is locally Lipschitz continuous if
(g1) holds, and bothy and ¢~ are locally Lipschitz continuous ifq0) is valid. In
particular, ¢ satisfies conditiorig0).

LEMMA 2.4. If condition(gO) holds, theru € AC(J) is a lower solution, an upper
solution or a solution of(2.21) if and only ifu is a lower solution, an upper solution
or a solution of the IVR2.1), wherep : R — R is defined by(2.22).

PROOF. Letu be a solution ofZ.21). Thenu € AC(J), and condition (g0) ensures
that 1/q is measurable and locally essentially bounded. Thus an applicatid,of |
38.3] yields

(M) — p(u() = / 0 dz _ /‘ u(s)ds
’ ’ - v qU(s))’

u(to) ﬁ -

This implies thaty o u € AC(J), and that

t oy, /
d / u(S)dS_ u'®) = g(t,u()) a.e.in J.

d
—oU(t)) = — =
dt” dt J, aue) ~ qum)
Thusu is a solution of the IVPZ.1).

Conversely, leti € Y be a solution of 2.1). Theng o u € AC(J), and sincey!
is locally Lipschitz continuoug) € AC(J). Because

) — pu()) = / " '(2dz= / " dz _ /‘ ueds
’ ’ B u(to) Y B uto 4(2) B w qu(s)’ ’
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we obtain

a.e.in J.

(t,ut) = d () = g/t u(s)ds Ut
- ar’ ~dt J, que)  gu)

Thusu is a solution of the IVPZ.27).

The above proof shows that every solution &fX1) is a solution of 2.1) and vice
versa. Obvious modifications to the above proof show that problgia3) @nd ¢.1)
have the same upper and lower solutions.

According to Lemmag.3and2.4the results derived for the IVP&.() and @.11)
have the following consequences.

PrOPOSITION2.3. The results of Theoren2s2and2.3hold for the IVP(2.21), and
the results of Propositio&.1 hold for the IVP

u'(t) = qu) (g, u)) +h()) fora.e.t € J, u) = Xo, (2.23)
if we replace the hypothesig0) by condition(q0).

The next result is a consequence of TheoBen

PrOPOSITION2.4. Assume that the functiogs: R — (0, c0) andg: J x R — R
satisfy conditiongql), (g01), (g02)and(gy). Thenthe IVR2.21) has for eaclx, € R
extremal solutions, and they are increasing with respegpt@ndg.

PrOOF. Because is nonnegative-valued by (g01), then each solutior2a? ) is
increasing. Hence, applyingT, 38.4] one can show as in the proof of Lem#hathat
u € AC(J) is a solution of 2.21) if and only if u is a solution of the IVPZ.1), where
¢ : R — Ris defined by 2.22). The given assumptions and Lemm& ensure that
in such a case the hypotheses of Theofefrare valid, which concludes the proof.

REMARKS 2.4. The functiong : R — R, defined byp(x) = |x|P~2x, X € R,
satisfies conditionf0) for eachp > 1. But g is not locally Lipschitz continuous
if p e (1,2), andgtis not locally Lipschitz continuous ip > 2. It then follows
from Lemma2.3that the functiory defined above is of the forn2(22, whereq has
property (qO) (respectively (ql)), only whegn= 2 (respectivelyp € (1,2]). Thus
problem @.1) is more general than problerf.R1).

We can replacé (Jo(x)|) by ¥ (]x|) in condition (gp) if ¢ is Lipschitz continuous.
For if |o(X) — (YY) < K|x =y, X,y € R, for someK > 0, then|p(x)| <
KIX| + l¢(0)], x € R, and the functiorz — ¥ (KX + |¢(0)]) has the properties
given foryr in condition (@). This holds forp, defined by .22 if 1 /q is essentially
bounded.
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2.6. Examples and counter-examples

ExamvPLE 2.1. ChooselJ = [0, 1] and define a functiog : R — (0, co) by

e 2+ [KYMz] — KM _ 1
q(2) = Z Z Kkmp (2 + sin <1+ Kmz] = kl/mz>> . (2.24)

m=1 k=1

where[x] denotes the greatest integerx. It is easy to see thatis discontinuous at
n/k¥YMforalln e Z, k,m=1,2,.... Moreover, 1< q(z) < n*/6 for eachz <€ R,
so thatq has property (g0).

The function

f(t, x —
g(t,x) = Z Z ( ;mH;n/n), (2.25)

—oo n=1

where
cogl/(x—t)) +2, x>t
ft,x)={xu®), UcCJ, X =t,
cogl/(x—t) —2, x<t,
satisfies conditions (g0) and#y It then follows from Propositior2.3 that the IVP
(2.27) has extremal solutions whepis given by @.24) andg by (2.25.
If ut) =t, thenf(-,u(.)) in (2.29 is equal to the characteristic functigg of U,
which is not measurabled is nonmeasurable. The set of all the discontinuity points

ofgis{(t,t+q) |t € J,q € Q}. Thisis also the set of discontinuity points of the
functiong : J x R — R, defined by 2.25, where

(X —t)coq1l/(x —1)), x=>t,
f(t,x) =140, X =1,
cog1l/(x —t)) — 2, X <1,

which satisfies conditions ¢g and (g1), assumed in Propositigr.

ExAMPLE 2.2. The points

m k m
cNg, ..., Nyp) =1 —2"m1_ Z 2-k-m-2 ]_[ 2N _ p-am-2 ]_[ 27N
k=0 j=0 j=0

m, N, ..., Ny, € N, form a well-ordered set of rational numbers with mi€ = 0
and supC = 1 (see 2, Example 1.1.1]). Define
z—c(ng,...,nNn
f(z) = (No m) ’
C(nO’---,nm+1)_C(no’---,nm)

cng,...,Np) <z<cng,...,Nnu+1, mng,...,npeN
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andg(t,x) = ft+x—[t+x]),t € J =[0,1], x € R. Itis easy to see tha has
properties (g01), (g02) and«g, so that the IVP

%(lu(t)lp’zu(t)) =ft+u®) —[t+u®] ae.ind, x@0 =x
has by Theorerd.4and Remark.3 extremal solutions whexy € R andp > 1.
The IVP
u'(t) =g(t,u()) a.e.ind, x0) =0
has no solution od = [0, T] foranyT > 0 if g is one of the functions

2, X <t,
1/2, x=>t,

1, x<0,
- ted.

,X) =
9(t. ) { 0, x>0,

g(t, x) ={

This illustrates the need of the property lim sy (t, y) <g(t, x) <liminf, g(t, y)
for all x € R and for a.et € J, at least between assumed lower or upper solutions
(see RemarR.2) or locally (see Theorerd.4).

The functionsp : R — Randg: J x R — R, defined by

e(x) =x3, gt,x)=2tx*¥%/3, teJ xeR

satisfy conditions¢0) and (g0) but not condition (9. Whent, = 0 andx, = 1, the
IVP (2.1) can be rewritten in this case as

u'(t) = 2tu(t)®> a.e.in J =[0,t;], u(0) = 1.

This IVP does not have any solution ®C(J) if t; > 1, since the only possible

solution isu(t) = 1/(1 — t?). Thus condition (g) cannot be omitted in general.
The IVP

%u?’(t) = 3t?cos(n/t) +tcod(mw/t)sin(x/t) a.e.inJ =[0,T], u@ =0

is of the form @.1), where
e(x) = X3, g(t, x) = 3t?cos(w/t) +tcod(n/t)sin(x/t), te I xeR.

Hereg andg satisfy conditions 0), (g0O) and (@). It is easy to see that the only
possible solution is

W) = {t cogn/t), te (0TI,
0, t=0.
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Sinceu € C(J) andg ou = U® € AC(J), thenu € Y, whenceu is a solution in the
sense of Definitior2.1 Sinceu is not of bounded variation, and hence not absolutely
continuous onJ = [0, T] for any T > 0, this example justifies the choice of the
solution sety in Definition 2.1to be a subset a (J).

Constant multiples of the Cantor function (sé&&,[page 334]) are solutions to the
problem

%ue’(t) =0 a.e.inJ=[0,1], u(0) =0,

which then has a continuum of solutions which are continuous and monotone, having

no extremal solutions. This justifies the conditipre u € AC(J) in Definition2.1.
Existence and comparison results derivedinZ, 4, 5, 6, 8, 12, 13, 16, 18, 19|

for initial value problems are special cases of the results derived abovegnibehe

identity function.

3. Existence results for first-order boundary value problems

In this section we present existence and comparison results for first-order discon-
tinuous differential equations equipped with discontinuous, implicit and functional
boundary conditions. Some results of Secttaare used in the proofs.

3.1. Hypotheses and preliminaries Consider the boundary value problem

d .
aw(ua)) =g(t,u(t)) a.e.inJ =t t;], B(u(t),u) =0, (3.1)

whereg: J xR —> R,¢p: R— RandB: R x C(J) — R. We assume that(J)
is equipped with the pointwise ordering

DEeFINITION 3.1. We say that a functiom € C(J) is alower solutionof (3.1) if
poue AC(J) and

%w(ua)) <g(t,u()) ae.inJ, B(u(),u) <0,

and anupper solutiorof (3.1) if the reversed inequalities hold. If equalities hold, we
say thatu is asolutionof (3.1).

The following hypotheses are imposed on the functipng andB:

(¢0) ¢ is anincreasing homeomorphism;
(90) For eactx € R the functiong(:, X) is measurable and limspg g(t, y) <
g(t,x) <liminfy . g(t,y) fora.et € J;
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(BO) For eachx e R the functionB(x, -) is decreasing and limigf, B(y, u) >
B(x,u) > limsup,, B(y, u) forallu € C(J).

Moreover, if

(A) (3.1 has a lower solutiom and an upper solution such thau < T, andg is
L!-boundedin the se® = {(t,x) € J x R | u(t) < x <T(t)},
we prove that there exists the least and the greatest among those soluti@ng of (
which belong to the orderinterv@, U] = {ue C(J) |u <u <}
If condition (A) is repbced by conttions
(9p) 19(t, )| < PO Y (Jex)]) forallx € Randfora.et € J,wherep, € L1 (J),
the functiony : R, — (0, o0) is increasing and,” dx/v (x) = oo;
(B1) |x — B(x,v)| < c|x|+d forall (x,v) € R x C(J), wherec € [0,1) and
d >0,
we prove thatd.1) has extremal solutions, that is, the least and the greatest of all its
solutions, and that they are increasing with respect &md decreasing with respect
to B.
These results are then applied to the BVP

u'(t) = qu))g(t, u)) a.e.ind, B(u(y),u) =0. (3.2)

Existence of the extremal solutions &.) is also proved under growth conditions
which are different to (g) and (B1). Examples are given to illustrate the obtained
results.

RemMARK 3.1. No continuity hypotheses are imposed abovey@mdB.

The following two lemmas are used in the proof of our first existence result.

LEmMMA 3.1. Assume that conditio(B0) holds. Ifu, ..., u, are solutions of the
BVP (3.1), thenmaxus, ..., u,} is a lower solution of(3.1), andmin{uy, ..., u,} is
an upper solution of3.1).

PrOOF. Assume thati, ..., u, are solutions of the BVP3(1). Sinceu; € C(J)
andg o u; € AC(J) for eachi = 1,...,n, and sincep is strictly increasing, then
U= maxU,..., U} belongs taC(J) andyp ou = max{¢ o Uy, ..., ¢ o Uy} belongs
to AC(J). Moreover, it is easy to show that

d .
a(p(u(t)) = g(t,u(t)) a.e.in J.
Condition (BO) implies that ifi; (to) = maxX{u;(ty), ..., Un(tp)}, then
B(u(to), u) = B(ui(tp), u) < B(ui(t), u;) = 0.
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Thusu = maxu,, ..., u,} is a lower solution of the BVP3.1). The proof that
min{ug, ..., U,} is an upper solution of31) is similar.

LeEmmA 3.2. If the hypothese&0), (¢0) and (A) are valid, and ifv and w are
lower and upper solutions df3.1) such thatu < v < w < T, then the IVR2.1) has
for eachx, € [v(ty), w(ty)] extremal solutions in the order intervil, w]. This result
holds also when conditiofgO0) is replaced by conditionég01) and (g02) given in
Theoren?.4.

PrROOF. The assertions are immediate consequences of The@.@asd2.4.

3.2. Existence of extremal solutions of3.1) in [u, U] We shall first prove that the
BVP (3.1) has at least one solution between the assumed lower and upper salutions
andu.

ProPOSITIONS.1. If the hypothese&p0), (BO) and (A), and either(g0) or (g01)
and(g02)are valid, then the BVI3.1) has a solution in the order intervél, U].

PrROOF. The setX = {X, € [u(ty), U(ty)] | (2.1) has a solutiow € [u, U] for which
B(u(ty), u) < 0} is nonempty, becaus@.() has forx, = u(ty) a solutionu in [u, U]
by Lemma3.2, and condition (B0O) implies that

B(u(t), u) = B(u(t), u) < B(u(t),u) < 0.

Denotex* = supX, and let(x,):>, be an increasing sequenceXnwhich converges
to x*. The definition ofX allows us to choose for eache N a functionv, € [u, U]
such thatp o v, € AC(J) and

%w(vn(t)) =g(t, v (1)) a.e.inJ, vy(ty) =%, and B(uv,(tp), vn) <0. (3.3)

We may assume thaw,);2, is increasing, for otherwise we obtain an increasing
sequenceéu,); in [u, U] by definingu, = maxXuy, ..., vy}, and as in the proof of
Lemma3.1it can be shown that(3) holds wher, is replaced by,. Condition (A)
implies the existence of a functidvi € L*(J) such that

d .
la(ﬂ(vn(t))l = |g(t, va(t))| < M(t) a.e.in J,

whencg (v, (t3)) — @(uvn(t))] < ftf M) dtforallt,, t; € J,t, <t3. Thus(pov,)is
an absolutely continuous and increasing sequengedm, ¢ oU]. This and condition
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(¢0) imply that (v,) is an increasing sequence [in, U], so that it converges to a
functionv : J — R onJ. Whenn — oo in the above inequality we obtain

ts
lp(v(tz)) — (k)] < / M(t)dt forall t,,t; € J, t, <ts.

tz

This implies thatp o v € AC(J), whencev € C(J) by condition ¢0). It follows
from (3.3) thatg (v, (t3)) — (v, (t)) = ftf gt, va(t))dt foralln e N andty, t3 € J,
t, < t;. Allowing n to tend to infinity and applying Fatou’s lemma we obtain

ts

t3 d )
/ afp(v(t))dt=90(v(t3))—<p(v(tz))S lim supg(t, vn(t))dt

ty tp n— oo

forallt,, t; € J,t, < ts. In view of this inequality and condition (g0) we get

%(p(v(t)) < limsupg(t, v, (1)) < limsupg(t, y) < g(t,v)) a.e.inJ. (3.4)

n— 00 yto®)

The last inequality of §.3) and condition (BO) ensure that
B(vn(tp), v) < B(vy(tp), vy) <0 forall n e N.
These inequalities and another application of condition (BO) yields

B(v(t), v) < Iirpgln)f B(y, v) <liminf B(v,(tp), v) <0,
ytv(to n—o0

which, together with3.4), implies thatv is a lower solution of §.1).

To prove that the BVP3.1) has a solution in the order interal, t], assume first
that x* = v(ty) = U(ty). Then the IVP 2.1), with X = x*, has by Lemma.2 a
solutionu in [v,T]. Sinceu(ty) = v(ty) = U(t) andv < u < U, condition (BO)
implies that

0= B(v(t), v) = B(u(t), u) = BU(L),U) = 0.

ThusB(u(ty), u) = 0, and sinceu is a solution of 2.1) whenx, = x*, thenu is also
a solution of 8.2) in [v, U] C [u, U].

Assume next that* = v(ty) < U(ty), and choose a decreasing sequeiygefrom
[x*, U(ty)] which converges ta*. Dual arguments to those used in the construction
of the sequencév,) above show the existence of a decreasing sequengedn the
order intervalv, U] such that each o w, belongs toAC(J) and

%(ﬂ(wn(t)) =g(t, wn(1) a.e.inJ, wn(to) =X, and B(wn(to), wn) = 0,

and which converges od to an upper solutiom of (3.1). Sincev(t)) = w(ty) and
v < w, then replacing@ by w in the above reasoning wherit;) = U(ty) one can
prove that the BVP3.1) has a solution iriv, w] C [u, U]. This concludes the proof.
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Now we are ready to prove the main result of this subsection.

THEOREM 3.1. If the hypotheseg0), (BO) and (A), and either(g0) or (g01)and
(g02) are valid, then the BVR3.1) has extremal solutions, and u* in the order
interval [u, U]. Moreover,

u,(t) = min{u,(t) | uy is an upper solution of3.1) in [u, U]}, (3.5)
u*(t) = maxu_(t) | u_ is a lower solution of(3.1) in [u, U]}. '

ProOF. DenoteS = {u € C(J) | u is a solution of the BVP3.1) in [u, U]}, and
define a mapping : J — R by w(t) := supsu(t),t € J. LetD = {t;};cn be a
dense subset af, and choose for eache N a sequencev,i)ﬁ‘;o from the solution
set S such that lim_ v,i(tj) = w(tj), ] € N. It follows from Lemma3.1 that the
functionsv, : J — R, n € N, defined byv,(t) = maxXv.(t) | j.k € {1,....n}},

t € J, are lower solutions of31). Moreover,(v,);, iS an increasing sequence in
[u,U]. It can be shown as in the proof of Propositidri that the sequencen ),
converges onJ to a lower solutiorv of (3.1). The above construction implies also
thatv € [u, U], and that

v(t)) = w(t)) = supu(tj) foreachj e N. (3.6)
uesS
In particular, the hypotheses of Propositi®ii hold whenu is replaced by, whence
the BVP @.1) has a solutioru® in [v,T]. Thusu* € Sandv < u*. These relations
imply by (3.6) that if u is any solution of 8.1) in [u, U], then

ut) < w(t) =u't), jeN.

SinceD = {t;},cv is @ dense subset df it then follows thatu(t) < u*(t) onJ. Thus
u* is the greatest solution of the BVB.{) in [u, U].

The proof that the BVP3.1) has the least solutiom, in [u, U] is similar. To prove
(3.5), letu, be an upper solution of3(2) in [u, U]. Replacingd by u, in the above
proof it follows that the BVP §.1) has a solutionu € [u, u,] C [u, U]. Butu, is the
least of all the solutions of3(1) in [u, U], so thatu, < u,. Similarly, it can be shown
that if u_ is a lower solution of §.1) in [u, U], thenu_ < u*. Becausel, is an upper
solution andu* a lower solution of 8.1), we obtain 8.5).

3.3. Existence of extremal solutions of3.1) As an application of Lemma.1
and Theoren3.1we now prove a result which guarantees the existence of least and
greatest solutions among all the solutions of probl&r)(
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THEOREM 3.2. Assume that the functions : R — R, g : J x R — R and
B: R x C(J) — R satisfy conditiongy0), (g0), (g¢), (BO) and(B1). Then problem
(3.2) has the least solution, and the greatest solutiom*. Moreover,

{u*(t) = min{u,(t) | uy is an upper solution o{3.1)}, (3.7)

u*(t) = maxu_(t) | u_ is a lower solution of(3.1)}.

These results hold also when conditig®)is replaced by conditiong@01)and(g02).

PrOOF. Assume first thati is a solution of 8.1). Applying (3.1) and conditions
(B1) and (@) we obtain

[u(to)| = |u(t)) — B(u(tp), w)| < clu(ty)| +d, thatis, [u(t)| <d/(1-o0c),
and

d .
a(ﬂ(u(t))l =gt u®)| = POV (eu®)]) a.e.inJ.

By choosingwg € R so that—wg < ¢(—d/(1 — ¢)), (d/(1 — C)) < wy, We obtain

t t
lpu)] = leu(h))] +/ P1(S)Y (lp(u(s))) ds < wp +/ Pi(8)¥ (lp(u(s)|) ds
to to

forallt € J. This implies by Lemm&.1that|e(u(t))| < w(t) onJ, wherew is the
solution of the IVP

w'(t) = p)Y (w(t), a.e.ind, w(t) = wo. (3.8)

Defining
ut) = (—w), ted, and T1) =¢ Y(wt), ted, (3.9)
the above considerations, choicewf and condition ¢0) imply thatu € [u, U].
Next we shall show that andu are lower and upper solutions d3.(). Sincew,
as a solution of .8), belongs toAC(J), it follows from (3.9 thatp ou = —w

andg o U = w belong toAC(J). Thusu andu belong toC(J) by condition ¢0).
Applying (ge), (3.8) and 3.9 we obtain

d

a(ﬂ(g(t)) =—-wt) = -—pOY(wt)) = —pOV(eu®)]) < g(t,ut))
and

d

a(ﬂ(U(t)) =w' () = pOY(w) = pO Y (eTt)]) = g(t,T(t)),

for a.e.t € J. The choice ofv, and monotonicity ofp~* imply that

U(t) = ¢ *(—wp) < —d/(1—0), d/(1—0) < ¢ (wo) =T(lo).
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Hence

—B(U(), U) =U(t) — BU(%), U) — U(tp)
< ClU(ty)| +d —U(tp) = cl(ty) +d —T() <0
and
Bu(to), W) = u(t) + B(U(t), u) — U(to)
< clu(to)| +d + u(t) = —cu(to) +d + u(tp) < 0.

Moreover, applying (@), (3.8) and 3.9, we see that
1gt, ¥)| < pOY (X)) < pOY (w(t)) = w(t)

fora.e.t € J, andfor allx € [u(t), U(t)], whence condition (A) holds.

The above proof shows that the hypotheses of Thed@édrare satisfied, whence
problem @B.1) has extremal solutiong, andu* in [u, U]. Because all the solutions
of (3.1) belong to[u, U], thenu, andu* are the extremal solutions oB.(). To
prove @.7), let u. be an upper solution of3(1). Choosed in condition (B1) so
that—d/(1 —c¢) < ¢(u,.(t)) onJ. Then—w < ¢ o u,, whenceu < u,, so that
problem @.1) has by Theorer3.1a solutionu € [u, u,]. Butu, is the least of all the
solutions of B.1), whenceu, < u,. Similarly, it can be shown that ifi_ is a lower
solution of @.1), thenu_ < u*. Noticing also thau, is an upper solution ana* a
lower solution of 8.1), we obtain 8.7).

As a consequence of Theoren2 we obtain the following result.

PrOPOSITION3.2. If conditions (¢0), (BO), (B1), (g0) and (g¢) hold, then the
problem

%(p(u(t)) =g(t,u(t)) +h@) fora.e.t €J, B(u(p),u =0 (3.10)

has for allh € L(J) extremal solutions and they are increasing with respebtaod
decreasing with respect tB.

PROOF. Givenh,h € L1(J) andB,B : J x C(J) — R, assume thaB and
B have properties (B0) and (B1), and that< h and B(x,u) > B(x, u) for all
(X, u) € R xC(J). The functiongt, x) — g(t, x) +h(t) and(t, x) — §(t, X) +h(t)
satisfy condition (g0), and also conditionggwhen p, andy are replaced by —
p:(t) + |h®)| + Iht)| andz ¥ (2) + 1, respectively. Denoting by the least
solution of the problem

%(p(u(t)) =§(t,ut)) +ht) forae.t € J, B(u(t),u) =0,
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thend is an upper solution of3(10. This and 8.7) imply thatu, < 0. Similarly, it
can be shown that i is the greatest solution 08(10), thenu* < 4, which concludes
the proof.

ExamPLE 3.1. Chooseld = [0, 1] and consider the problem

t) = - _u®I -
WO =Hu® -4+ TS inJ,
[u(0)] 2 [fol u(s) dS] (3.11)

YO = o T 1, [J5 usrds]|

whereH is the Heaviside function anik] denotes the greatest integer less than or
equal tox. Problem 8.11) is of the form @.1) with

[x]
1+ 11

] 2[5 uwd]
IR 1+ Hfolu(t)dt”

g(t, x) = H(x — 4t) + teJ xeR,

B(x,u) = x , XeR,ueC@).

It is easy to see that the hypotheses of TheaoBeihold, whence problen3(11)
has the least solutiom, and the greatest solutiari. These extremal solutions can be
determined by using numerical integration methods and inference. Denotigg by
the characteristic function oV c R, we get the following representations foy
andu*:

u.(t) = (=9/4—-3t/4) xpoyt), teld,
u*(t) = (13/6 + 5t/3) xj0,1/2/(1) + (17/8+ 7t/4) x11/2,17/18(1)
+ (221/72+ 3t/4) X[17/13,1](t), teld

The functionu(t) = 0 is also a solution of3(11).

3.4. Special cases In this subsection we shall consider solvability of the B\BRZY(
whereg: J xR - R, g: R — (0,00) andB : R x C(J) — R. A function
u € AC(J) is said to be dower solutionof the BVP 3.2) if

u'(t) < qu)gdt, u()) fora.et € J, and B(u(p),u) <0,

and anupper solutiorif the reversed inequalities hold. If equalities hold, we say that
u is asolutionof the BVP (.2).
Lemma2.3and the proof of Lemma.4imply the following result.
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LEMMA 3.3. Assume that : R — (0, co) satisfies the following condition
(@0) g and1/q belong toL%.(R) and [, dz/q(z) = +oo.
Thenu € AC(J) is a lower solution, an upper solution or a solution ¢3.2) if
and only ifu is a lower solution, an upper solution or a solution of the B{R),

respectively, where : R — R is defined by

* dz
(p(X) = A ﬁ’ X € R. (312)

Moreover,p satisfies conditiorfp0).

In view of Lemma3.3we obtain the following result.

PrROPOSITION3.3. The results of Theorents1 and 3.2 hold for problem(3.2) if
condition(¢0) is replaced by conditiofq0).

The next result gives another sufficient condition for the existence of extremal
solutions of the BVP{.2).

THEOREM 3.3. Assume that functiorgs B andq have propertie$g0), (BO) and

(92) g, x)] < M) + p(H)|x] for a.e.t € J and allx € R, wherep;, M €
LL(D);
(g2) gis measurable and essentially bounded én’sl locally essentially bounded.

Assume also the existence of such constantsO andb, ¢ > 0 and a bounded and
nonnegative linear functiondl on C(J) such that

(B2) |B(x,u) —ax+bl(u)| <cforall x € Randu e C(J);
(A1) a > bl(e”), whereP(t) = [, [qll.pu(S)ds, t € J.

Then the BVR3.2) has extremal solutions, and all the solutiong8f2) lie within the
order interval[—w, w], where
c+bl (7> f ™" gl M(s)ds)

a— bl (ePV)

t
+ / e"V "9 gl M(s)ds. (3.13)

to

w(t) = e

ProOF. It follows from Lemma3.3that we can replacg(x) by min{q(x), |0},
and hence assume thgix) < ||q|l. for all x € R. Itis elementary to verify that,
given by @.13), is a unique solution of the BVP

w't) = 0lle(M®) + pHw(t)) ae.ind, aw(l) —bl(w)=c.  (3.14)
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Applying conditions (gq2) and (g2) we obtain, for ates J,
w' () = 1qlle(M@®) + prOw®) > qw®)g(t, w(t))
and
—w' () = [qllee(=M®) — pr(Dw(t)) < q(—w(t)g(t, —w(t)).
The boundary condition 0f3(14) and condition (B2) imply that

B(w(tp), w) = B(w(t), w) —aw(ly) +bl(w)+c=>0
and

B(—w(t), —w) = B(-w(t), —w) —a(-w(b)) + bl (-w) —c=0.

Thusu = —w is a lower solution and = w is an upper solution of3(2). Moreover
lgt,w)| < M) + pu(Hw(t) for a.e.t € J and for allu € [—w(t), w(t)], so that
g is L*-bounded in®2. Thus condition (A) holds when = —w andl = w. Since
conditions (g0) and (BO) are assumed to hold, and since (g2) implies the validity of
condition (g0), then the BVR3(2) has by Propositio8.3extremal solutionsl, andu*
in[—w, w].

If uis a solution of 8.2), it follows from (3.2) and (gp) that

u'(s) — 19l PL(S)U(S) < [IdllM(s) a.e.in J. (3.15)

Multiplying both sides of 8.15 by e P® and integrating front, to t, we obtain

t
uet) < ep<t>u(t0)+/ ePO=PO| gl M(s)ds, teJ. (3.16)

to

In view of condition (B2) and the boundary condition &f%), we have
au(to) — bl (u) = au(t) — bl () — Bu(b),u) <c.
This and B8.16 imply that
c > au(ty) — bl (u)

> au(ty) — bl (u(t)e”’) — bl (r > / e" PO gllL.M(s) dS> :

to

so that

c+bl (2> [ ™" gl M(s)ds)
a— bl (ePV)

It then follows from (8.13), (3.16 and @.17) thatu(t) < w(t) for eacht € J, that s,

u < w. Similarly one can show thatw < u, so thatu € [—w, w].

The above proof shows that all the solutions 82 belong to the order interval
[—w, w], whenceu, andu* are least and greatest of all the solutions).

u(ty) < (3.17)



[25] First-order discontinuous IVPs and BVPs 537
In the case wheB(x, u) = ax — bu(t;) — candlu = u(t;), we get the following
consequence of Theoredxs.

ProOPOSITIONS.4. If the functiongy andq have propertieg0), (g2) and(g2), and
if positive constanta andb satisfyft;1 p:(s)ds < (1/]19lls) In(a/b), then the BVP

u'(t) = qu)g(,u@)) a.e.ind =[t,t], auty) —buy) =c, (3.18)
has for eactt € R extremal solutions.

ExampPLE 3.2. Let the functiongg : R — Randg: Jx R — R, J = [0, 1],
be defined byZ.24) and @.29. It follows from Example2.1 thatq and g satisfy
conditions (g2), (g0) and (g2) whemn (t) = 0 andM (t) = 9.

The function

= e u(X —m/n, u) 1—[fJu(t)dt]
B =2X —
(X, U) = 2X /J“(t)d““ 2. D "G 1+ ][/, uydt]]’

m=—o0 n=1
where
cogl/x) —2, x>0,
n(x) = {0, X =0,
cogl/x)+2, x<0,

satisfies conditions (BO) and (B2) whan=2,b =1,c =9 andl (u) = fJ u(t) dt.
Also condition (Al) holds. Thus the BVRB(9) has for these functiong, g and B
extremal solutions by Theoregn3.

REMARKS 3.2. The results of this section generalise those derivedinl2, 14] for
periodic boundary value problems, i, [LO] for problems with nonlinear boundary
conditions, and in9g, 18] for problems with functional boundary conditions when
(X) = X, except that the lower and upper solutions are of a more general typg in [
than in Definition3.1
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