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Abstract

In this paper we derive extremality and comparison results for explicit and implicit initial
and boundary value problems of first-order differential equations. Both the differential
equations and the boundary conditions may involve discontinuities.

1. Introduction

Recently, the existence of Carath´eodory solutions of the differential equation

u′.t/ = g.t;u.t//; (1.1)

with given initial or boundary conditions, has been proved under various kinds of
hypotheses which allowg to be discontinuous in both its variables (see for example
[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19]). A culmination in this research
was achieved in [5], where existence of extremal solutions of the initial value problem
(1.1) was proved for a large class of discontinuous functionsg. The results of [5]
were applied in [18] to prove existence results for (1.1) equipped with discontinuous
functional boundary conditions.

In this paper this research is continued as follows:

(a) Existence results of [5,18] are extended to the case whenu′.t/ is replaced in (1.1)
by d'.u.t//=dt , where' : R → R is an increasing homeomorphism.
(b) TheL1-boundedness ofg assumed in [5] is replaced by a weaker growth condi-

tion.
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(c) Wheng is nonnegative-valued, local conditions are introduced which allow a
new type of discontinuity forg.
(d) Dependence of the extremal solutions on the functiong and on the given initial

and boundary conditions is studied.
(e) The obtained results are applied to initial and boundary value problems of the

differential equationu′.t/ = q.u.t//g.t;u.t//.

2. Existence and comparison results for initial value problems

In this section we derive existence and comparison results for extremal solutions
of first-order scalar initial value problems.

2.1. Hypotheses and main results Consider first the initial value problem

d

dt
'.u.t// = g.t;u.t// for a.e. t ∈ J = [t0; t1]; u.t0/ = x0: (2.1)

DEFINITION 2.1. A function u : J → R is said to be alower solutionof (2.1) if u
belongs to the setY = {u ∈ C.J/ | ' ◦ u ∈ AC.J/} and if

d

dt
'.u.t// ≤ g.t;u.t// for a.e. t ∈ J; u.t0/ ≤ x0:

If the reversed inequalities hold, thenu ∈ Y is called anupper solutionof (2.1), and
a solution of (2.1) if equalities hold. Ifu∗ andu∗ are such solutions of (2.1) that
u∗.t/ ≤ u.t/ ≤ u∗.t/ on J for every solutionu of (2.1), we say thatu∗ is the least
solutionandu∗ is thegreatest solutionof (2.1), and thatu∗ andu∗ are theextremal
solutionsof (2.1).

If the functions' :R→ Randg : J×R→R satisfy the following hypotheses:

('0) ' is an increasing homeomorphism;
(g0) for eachx ∈ R the functiong.·; x/ is measurable, and

lim sup
y↑x

g.t; y/ ≤ g.t; x/ ≤ lim inf
y↓x

g.t; y/ for a.e.t ∈ J;

(A) (2.1) has a lower solutionu and an upper solutionu such thatu ≤ u, andg is
L1-bounded in the set� = {.t; x/ | t ∈ J; u.t/ ≤ x ≤ u.t/},
we prove that there exists the least and the greatest among those solutionsu of (2.1)
for whichu.t/ ≤ u.t/ ≤ u.t/ on J. Replacing (A) by the following condition:

(g') |g.t; x/| ≤ p1.t/ .|'.x/|/ for all x ∈ R and a.e.t ∈ J, wherep1 ∈ L1
+.J/,

the function : R+ → .0;∞/ is increasing and
∫ ∞

0 dx= .x/ = ∞,
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we prove that (2.1) has extremal solutions, and that they are increasing with respect to
g andx0. Wheng is nonnegative-valued we give a localised version to condition (g0),
which also allows downward jumps forg.t; ·/. Conditions ensuring one-sided conti-
nuities for the dependence of extremal solutions of (2.1) on g andx0 are also given.

The obtained results are then shown to hold for the IVP

u′.t/ = q.u.t//g.t;u.t// a.e. in J; u.t0/ = x0;

where q : R → .0;∞/, if condition: ('0) is replaced by the following condi-
tion.

(q0) q and 1=q belong toL∞
loc.R/, and

∫ ±∞
0 dz=q.z/ = ±∞.

Finally, examples and counter-examples are given to illustrate the obtained results
and the need for the given hypotheses.

REMARKS 2.1. Conditions (g0) and (q0) allow the functionsg and q to be dis-
continuous. Condition (g0) holds, for example, ifg is a Carath´eodory function or
if g.t; x/ is measurable int for all x ∈ R and increasing inx for a.e.t ∈ J. Thus
sup-measurability ofg is not assumed.

Condition ('0) ensures only continuity of' ◦ u whenu ∈ C.J/. If ' is locally
absolutely continuous, then' ′ is locally Lebesgue integrable, and condition ('0) holds
if and only if ' ′ is a.e. positive-valued and

∫ ±∞
0 ' ′.x/dx = ±∞.

2.2. Preliminaries We begin with a result due to Hassan and Rzymowski, 1999,
which forms a basis for the proofs of our main existence results for (2.1).

THEOREM 2.1 ([5, Theorem 3.1]).Let f : J ×R → R be anL1-bounded function
which satisfies the following condition:

(HR) For eachx ∈ R the functionf .·; x/ is measurable, and

lim sup
y↑x

f .t; y/ ≤ f .t; x/ ≤ lim inf
y↓x

f .t; y/ for a.e. t ∈ J:

Then the IVP

u′.t/ = f .t;u.t// for a.e. t ∈ J; u.t0/ = x0 (2.2)

has extremal solutions inAC.J/ for eachx0 ∈ R.

The next lemma makes condition (g') useful in proving global existence results.

LEMMA 2.1 ([12, Lemma 1.5.3]).Given J = [t0; t1] and an increasing function
 : R+ → .0;∞/ for which

∫ ∞
0 dx= .x/ = ∞, then for all fixedp ∈ L1

+.J/ and
w0 ∈ R+ the IVP

w′.t/ = p.t/ .w.t// for a.e. t ∈ J; w.t0/ = w0
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has a unique solutionw ∈ AC.J/. Moreover, ifv ∈ AC.J/ satisfies the inequality

v.t/ ≤ w0 +
∫ t

t0

p.s/ .v.s//ds; t ∈ J;

thenv.t/ ≤ w.t/ for all t ∈ J.

Next we shall show that (2.1) can be converted to the IVP

v′.t/ = g.t; '−1.v.t/// a.e. in J; v.t0/ = '.x0/: (2.3)

LEMMA 2.2. If condition .'0/ holds, thenu ∈ Y is a lower solution, an upper
solution or a solution of(2.1) if and only ifv = ' ◦ u is a lower solution, an upper
solution or a solution of the IVP(2.3), respectively.

PROOF. If u ∈ Y is a lower solution of (2.1), thenv = ' ◦ u ∈ AC.J/, and

v′.t/ = d

dt
'.u.t// ≤ g.t;u.t// = g.t; '−1.v.t/// a.e. inJ:

Moreover, sinceu.t0/ ≤ x0 and' is increasing, thenv.t0/ = '.u.t0// ≤ '.x0/,
whencev is a lower solution of the IVP (2.3).

Conversely, letv ∈ AC.J/ be a lower solution of (2.3). Thenu = '−1 ◦ v ∈ C.J/
by condition ('0), and' ◦ u = v ∈ AC.J/, whenceu ∈ Y, and

d

dt
'.u.t// = v′.t/ ≤ g.t; '−1.v.t/// = g.t;u.t// a.e. inJ:

Sincev.t0/ ≤ '.x0/ and'−1 is increasing, thenu.t0/= '−1.v.t0// ≤ '−1.'.x0//= x0.
Thusu is a lower solution of the IVP (2.1).

Similar reasoning shows thatu ∈ Y is a solution or an upper solution of (2.1) if
and only ifv = ' ◦ u is a solution or an upper solution of (2.3), respectively.

2.3. Existence and comparison results Denote by≤ the pointwise ordering of
C.J/. If u;u ∈ C.J/ andu ≤ u, denote[u;u] = {u ∈ C.J/ | u ≤ u ≤ u}.

We now prove our first existence and comparison result for (2.1).

THEOREM 2.2. Assume that conditions.'0/, (g0)and(A) hold. Then the IVP(2.1)
has the least solutionu∗ and the greatest solutionu∗ in [u;u]. Moreover,

{
u∗.t/ = min{u+.t/ | u+ is an upper solution of(2.1) in [u;u]};
u∗.t/ = max{u−.t/ | u− is a lower solution of(2.1) in [u;u]}: (2.4)
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PROOF. Condition (A) and Lemma2.2 imply that the functionsv = ' ◦ u and
v = ' ◦ u are lower and upper solutions of the IVP (2.3), and thatv ≤ v. If t ∈ J and
x ∈ [v.t/; v.t/], then'−1.x/ ∈ [u.t/;u.t/]. This result and condition (A) ensure the
existence of anM ∈ L1.J/ such that|g.t; '−1.x//| ≤ M.t/ for a.e.t ∈ J and for all
x ∈ [v.t/; v.t/]. Thus the functionf : J × R → R, defined by

f .t; x/ :=



v′.t/; x < v.t/;

g.t; '−1.x//; v.t/ ≤ x ≤ v.t/;

v′.t/; x > v.t/;

t ∈ J; (2.5)

is L1-bounded. Applying conditions (g0) and ('0) it is also easy to see thatf has the
properties given in condition (HR). It then follows from Theorem2.1that the IVP

v′.t/ = f .t; v.t// for a.e. t ∈ J; v.t0/ = '.x0/; (2.6)

has the least solutionv∗ and the greatest solutionv∗. To prove thatv∗ andv∗ are
extremal solutions of (2.3) in [v; v] we show that every solutionv of (2.6) belongs to
the order interval[v; v]. For if v 6≤ v, there exista;b ∈ J, a < b, such that

v.a/ = v.a/ and v.t/ < v.t/ on .a;b]: (2.7)

Sincev is a solution of (2.6) with f defined by (2.5), we obtain

v′.t/− v′.t/ = v′.t/ − f .t; v.t// = v′.t/ − v′.t/ = 0 for a.e. t ∈ .a;b/:

Thus v.t/ − v.t/ = v.a/ − v.a/ + ∫ t

a .v
′.s/ − v′.s//ds ≤ 0, t ∈ .a;b], which

contradicts (2.7), and hence implies thatv ≤ v. Similarly, it can be shown that if
v is a solution of (2.6), thenv ≤ v. This and (2.5) imply that v is a solution of
(2.6) if and only if v is a solution of (2.3) in [v; v]. This proves thatv∗ andv∗ are
extremal solutions of (2.3) in [v; v]. Since'−1 is strictly increasing, it then follows
by Lemma2.2thatu∗ = '−1 ◦ v∗ andu∗ = '−1 ◦ v∗ are extremal solutions of (2.1) in
[u;u]. To prove (2.4), let u+ be an upper solution of (2.1) in [u;u]. Replacingu by
u+ in the above proof it follows that the IVP (2.1) has a solutionu ∈ [u;u+] ⊆ [u;u].
But u∗ is the least of all the solutions of (2.1) in [u;u], so thatu∗ ≤ u+. Similarly, it
can be shown that ifu− is a lower solution of (2.1) in [u;u], thenu− ≤ u∗. Noticing
also thatu∗ is an upper solution andu∗ a lower solution of (2.1), we obtain (2.4).

REMARKS 2.2. In the case when

g.t; x/ =
{

0; x > t;

1; x ≤ t;
t ∈ J = [0;1]; x ∈ R; '.x/ ≡ x and x0 = 0;
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condition (g0) does not hold although for theseg, ' andx0 the IVP (2.1) has a unique
solutionu.t/ = t , t ∈ J (see [5, Example 1.2]). However, by the proof of Theorem2.2
it suffices for givenx0 ∈ R to assume that condition (g0) holds for a.e.t ∈ J and
wheneveru.t/ ≤ x ≤ u.t/. This holds in the above case when we chooseu.t/ = 0
andu.t/ = t , t ∈ J.

As an application of Lemmas2.1and2.2and Theorem2.2we shall now prove the
following generalisation to Theorem2.1.

THEOREM 2.3. Assume that the functions' : R → R andg : J × R → R satisfy
conditions.'0/, (g0) and (g'). Then the IVP(2.1) has for eachx0 ∈ R the least
solutionu∗ and the greatest solutionu∗. Moreover,{

u∗.t/ = min{u+.t/ | u+ is an upper solution of(2.1)};
u∗.t/ = max{u−.t/ | u− is a lower solution of(2.1)}: (2.8)

PROOF. Let x0 ∈ R be given. Choosew0 ∈ R so that|'.x0/| ≤ w0. If v ∈ AC.J/
is a solution of (2.3), it follows from condition (g') that

|v′.t/| = |g.t; '−1.v.t///| ≤ p1.t/ .|v.t/|/ a.e. inJ:

Thus

|v.t/| ≤ |'.x0/| +
∫ t

t0

|v′.s/| ds ≤ w0 +
∫ t

t0

p1.s/ .|v.s/|/ds

for all t ∈ J. This implies by Lemma2.1 that |v.t/| ≤ w.t/ on J, wherew is the
solution of the IVP

w′.t/ = p1.t/ .w.t// a.e. inJ; w.t0/ = w0: (2.9)

Moreover, applying (g') and (2.9) we obtain|g.t; '−1.x//| ≤ p1.t/ .w.t// = w′.t/
for a.e.t ∈ J, and for allx ∈ [−w.t/;w.t/]. This implies that−w andw are lower
and upper solutions of (2.3).

The above proof and Lemma2.2 imply that u = '−1 ◦ .−w/ andu = '−1 ◦ w
are lower and upper solutions of the IVP (2.1), and that all the solutions of (2.1)
belong to the order interval[u;u]. Moreover, if t ∈ J and x ∈ [u.t/;u.t/], then
'.x/ ∈ [−w.t/;w.t/], so that for a.e.t ∈ J and for allx ∈ [u.t/;u.t/],

|g.t; x/| = |g.t; '−1.'.x//| ≤ p1.t/ .w.t// = w′.t/:

Thus condition (A) holds, whence the IVP (2.1) has by Theorem2.2extremal solutions
u∗ andu∗ in [u;u]. Because all the solutions of (2.1) belong to[u;u], thenu∗ and
u∗ are the extremal solutions of (2.1). To prove the last assertion, letu+ be an upper
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solution of (2.1). Choosew0 above so that−w0 ≤ '.u+.t// on J. Then−w ≤ '◦u+,
whenceu ≤ u+, so that the IVP (2.1) has by Theorem2.2a solutionu ∈ [u;u+]. But
u∗ is the least of all the solutions of (2.1), so thatu∗ ≤ u+. Similarly one can show
that if u− is a lower solution of (2.1), thenu− ≤ u∗. Sinceu∗ is an upper solution and
u∗ a lower solution of (2.1), we obtain (2.8).

In spite of its generality, condition (g0) does not allow the functiong.t; ·/ to have
jumps downwards ift belongs to a complement of a fixed null-set ofJ. However, ifg
is nonnegative-valued, (g0) can be replaced by a localised version which allows also
the jump-discontinuities mentioned above, as shown in the next theorem.

THEOREM 2.4. Assume that' : R → R has property('0), and thatg : J ×R → R

satisfies the following conditions:

(g01) g.·; x/ is measurable and nonnegative-valued for eachx ∈ R.
(g02) For each.s; z/ ∈ [t0; t1/ × R there exist positive constantsŽ andž such that
lim supy↑x g.t; y/ ≤ g.t; x/ for a.e. t ∈ [s; s + Ž] and for all x ∈ .z; z + ž], and
g.t; x/ ≤ lim inf y↓x g.t; y/ for a.e.t ∈ [s; s + Ž] and for all x ∈ [z; z+ ž/.

(a) If condition (A) holds, then the IVP(2.1) has the least solutionu∗ and the
greatest solutionu∗ in the order interval[u;u], and(2.4) holds.
(b) If condition (g') holds, then(2.1) has for eachx0 ∈ R extremal solutions,

and (2.8) holds.

PROOF. Consider first the IVP

u′.t/ = g.t;u.t// for a.e. t ∈ J; u.t0/ = x0; (2.10)

whereg is bounded byp1 ∈ L1
+.J/ and has properties (g01) and (g02), and where

x0 ∈ R is given. ChooseŽ > 0 andž > 0 such that (g02) holds when.s; z/ = .t0; x0/,
and denoteJ0 = [t0; t0 + Ž]. We may also assume that

∫
J0

p1.t/dt < ž. Thus a
function f : J0 ×R → R, defined by

f .t; x/ := g.t;max{x0;min{x; x0 + ž}/; t ∈ J0; x ∈ R;
satisfies the hypotheses of Theorem2.1whenJ is replacedbyJ0, whence the IVP (2.2)
has extremal solutionsu∗ and u∗ on J0. Sinceg is nonnegative-valued, the above
choices ofŽ andž and the definitions ofJ0 and f ensure that (2.2) and (2.10) have the
same solutions onJ0. In particular,u∗ is the least solution of (2.10) on J0. Denote

t2 = sup{t3 ∈ J | (2.10) has the least solutionu∗ on [t0; t3]}:
Obviouslyt2 = t1, for otherwise we could repeat the above reasoning when.s; z/ =
.t2;u∗.t2//, and obtain a continuation ofu∗ to an intervalJ1 = [t0; t2 + Ž], which
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contradicts the choice oft2. This proves that (2.10) has the least solution onJ, the
proof for the existence of the greatest solution being similar. The proofs of (a) and (b)
are then similar to the proofs of Theorems2.2and2.3.

2.4. Dependence on data As a consequenceof Theorem2.3we obtain the following
result.

PROPOSITION2.1. If conditions.'0/, (g0)and (g') hold, then the IVP

d

dt
'.u.t// = g.t;u.t// + h.t/ for a.e. t ∈ J; u.t0/ = x0; (2.11)

has for all h ∈ L1.J/ and x0 ∈ R extremal solutions and they are increasing with
respect tox0, h andg.

PROOF. Given x0; x̂0 ∈ R, h; ĥ ∈ L1.J/ andg; ĝ : J × R → R, assume thatg
and ĝ have properties (g0) and (g'), and thatx0 ≤ x̂0, h ≤ ĥ andg.·; x/ ≤ ĝ.·; x/
for all x ∈ R. The functions.t; x/ 7→ g.t; x/ + h.t/ and .t; x/ 7→ ĝ.t; x/ + ĥ.t/
satisfy condition (g0), and also condition (g') when p1 and are replaced byt →
p1.t/ + |h.t/| + |ĥ.t/| and z →  .z/ + 1, respectively. Denoting bŷu the least
solution of the IVP

d

dt
'.u.t// = ĝ.t;u.t// + ĥ.t/ for a.e. t ∈ J; u.t0/ = x̂0; (2.12)

it follows from the above hypotheses thatû is an upper solution of (2.11). This and
(2.8) imply thatu∗ ≤ û. Similarly, it can be shown that if̂u is the greatest solution of
(2.12), thenu∗ ≤ û, which concludes the proof.

Next we shall prove a result concerning right-continuity of the greatest solution of
(2.1) with respect tox0 andg.

PROPOSITION2.2. Let ' : R → R satisfy condition.'0/, let gn : J × R → R,
n = 1;2; : : : , be a decreasing sequence of functions which all satisfy the hypotheses
(g') and (g0) wheng = gn, let a functiong : J × R → R have properties(g')
and

(g1) for eachx ∈ R the functiong.·; x/ is measurable, and

lim sup
y↑x

g.t; y/ ≤ g.t; x/ = lim
y↓x

g.t; y/ for a.e. t ∈ J;

and assume that the following condition holds:

(gn) lim
n→∞

sup
x∈[a;b]

.gn.s; x/− g.s; x// = 0 for a.e.s ∈ J and alla;b ∈ R, a ≤ b.
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If .xn/
∞
n=1 is a decreasing sequence converging tox0 ∈ R, then the IVPs

d

dt
'.u.t// = gn.t;u.t// a.e. in J; u.t0/ = xn (2.13)

have greatest solutionsun, which converge uniformly onJ to the greatest solutionu∗

of the IVP(2.1).

PROOF. The proof of Theorem2.3ensures that the IVP

v′.t/ = gn.t; '
−1.v.t/// a.e. in J; v.t0/ = '.xn/ (2.14)

has for eachn = 1;2; : : : the greatest solutionvn. If n < m, then xm ≤ xn and
gm.t; '−1.x// ≤ gn.t; '−1.x// in J ×R, so thatvm is a lower solution of (2.14). Thus
vm ≤ vn by Theorem2.3and Lemma2.2, whence the sequence.vn/

∞
n=1 is decreasing.

Denotew0 = sup{|'.xn/| | n = 1;2; : : : }, and letw be the solution of the IVP

w′.t/ = p1.t/ .w.t// a.e. in J; w.t0/ = w0: (2.15)

Applying condition (g') we obtain for eachn = 1;2; : : : and for allt ∈ J,

|vn.t/| ≤ |'.xn/| +
∫ t

t0

|gn.s; '
−1.vn.s///| ds ≤ w0 +

∫ t

t0

p1.s/ .|.vn.s/|/ds:

This implies by Lemma2.1 that |vn.t/| ≤ w.t/ for eacht ∈ J and for eachn =
1;2; : : : . In particular,

vn.t/ ∈ [−w.t1/;w.t1/] for all n = 1;2; : : : and t ∈ J: (2.16)

If t0 ≤ a ≤ b ≤ t1, we have for eachn = 1;2; : : : ,

|vn.b/ − vn.a/| ≤
∫ b

a

|gn.s; |'−1.vn.s///| ds

≤
∫ b

a

p.s/ .w.s/ds = w.b/ −w.a/: (2.17)

Thus the sequence.vn/
∞
n=1 is decreasing, uniformly bounded by (2.16) and equicon-

tinuous by (2.17), whence it converges uniformly onJ to a functionv which has the
property|v.b/ − v.a/| ≤ |w.b/ − w.a/|, a;b ∈ J. In particular,v ∈ AC.J/. It
follows from (2.16) whenn → ∞ thatv.t/ ∈ [−w.t1/;w.t1/] for all t ∈ J. Since
g0.t; ·/ is by (g1) right-continuous for a.e.t ∈ J, since the sequence.'−1 ◦ vn/ is
decreasing and converges uniformly'−1 ◦ v, and since condition (gn) holds, then

gn.s; '
−1.vn.s/// → g.s; '−1.v.s/// as n → ∞ for a.e. s ∈ J: (2.18)
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Eachvn satisfies the integral equation

vn.t/ = '.xn/ +
∫ t

t0

gn.s; '
−1.vn.s///ds; t ∈ J: (2.19)

Becausexn → x0 andvn.t/ → v.t/, and since both'and'−1 are continuous, it follows
from (2.19) when n → ∞, applying also (2.18) and the dominated convergence
theorem, that

v.t/ = '.x0/ +
∫ t

t0

g.s; '−1.v.s///ds; t ∈ J: (2.20)

This implies thatv is a solution of the IVP (2.3).
Denote byv̂ the greatest solution of (2.3). Sincev̂ is a lower solution of (2.14) for

eachn ∈ N, thenv̂.t/ ≤ vn.t/, t ∈ J, n = 1;2; : : : . This implies whenn → ∞ that
v̂.t/ ≤ v.t/ on J. The reverse inequality holds sincev is a solution of (2.3) andv̂ is
its greatest solution. Thusv = v̂, that is,v is the greatest solution of (2.3).

The above results and Lemma2.2 imply that the functionun = '−1 ◦ vn is for
eachn = 1;2; : : : a greatest solution of the IVP (2.13), and that.un/ is a decreasing
sequence which converges uniformly to the greatest solution of the IVP (2.1). This
concludes the proof.

REMARKS 2.3. The hypothesis that the sequence.xn/
∞
n=1 is decreasing is essential.

For instance, ifH is the Heaviside function:H .z/ = {
1; z≥0;
0; z<0 , then the IVP

u′.t/ = H .u.t// a.e. in J; u.0/ = 0

hasu.t/ = t as its only solution, and the IVP

u′
n.t/ = H .un.t// a.e. in J; un.0/ = −1=n

has for eachn = 1;2; : : : a unique solutionun.t/ ≡ −1=n on J, so that the sequence
.un/

∞
n=1 does not converge even pointwise tou on J. This holds also for the solutions

of the IVPs

u′
n.t/ = H .un.t/ − 1=n/ a.e. in J; un.0/ = 1=2n;

so that the result of Proposition2.2 does not necessarily hold if, instead of (gn), we
assume that the sequence.gn/

∞
n=1 is increasing and converges pointwise tog.

Proposition2.2has an obvious dual for left-continuity of the least solution of (2.1)
with respect tox0 andg.
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2.5. A special case The IVP

u′.t/ = q.u.t//g.t;u.t// a.e. in J; u.t0/ = x0; (2.21)

can be reduced to an IVP of the form (2.1) if q : R → .0;∞/ satisfies one of the
following conditions:

(q0) q and 1=q belong toL∞
loc.R/, and

∫ ±∞
0 dz=q.z/ = ±∞;

(q1) q ∈ L∞
loc.R/, 1=q ∈ L1

loc.R/ and
∫ ±∞

0 dz=q.z/ = ±∞.

This is shown in the next two lemmas, the first one being an obvious consequence of
the properties assumed forq in conditions (q0) and (q1).

LEMMA 2.3. If (q0)or (q1) holds, then the function' : R → R, defined by

'.x/ =
∫ x

0

dz

q.z/
; x ∈ R; (2.22)

is an increasing homeomorphism, its inverse'−1 is locally Lipschitz continuous if
(q1) holds, and both' and'−1 are locally Lipschitz continuous if(q0) is valid. In
particular, ' satisfies condition.'0/.

LEMMA 2.4. If condition(q0)holds, thenu ∈ AC.J/ is a lower solution, an upper
solution or a solution of(2.21) if and only ifu is a lower solution, an upper solution
or a solution of the IVP(2.1), where' : R → R is defined by(2.22).

PROOF. Let u be a solution of (2.21). Thenu ∈ AC.J/, and condition (q0) ensures
that 1=q is measurable and locally essentially bounded. Thus an application of [17,
38.3] yields

'.u.t// − '.u.t0// =
∫ u.t/

u.t0/

dz

q.z/
=

∫ t

t0

u′.s/ds

q.u.s//
; t ∈ J:

This implies that' ◦ u ∈ AC.J/, and that

d

dt
'.u.t// = d

dt

∫ t

t0

u′.s/ds

q.u.s//
= u′.t/

q.u.t//
= g.t;u.t// a.e. in J:

Thusu is a solution of the IVP (2.1).
Conversely, letu ∈ Y be a solution of (2.1). Then' ◦ u ∈ AC.J/, and since'−1

is locally Lipschitz continuous,u ∈ AC.J/. Because

'.u.t// − '.u.t0// =
∫ u.t/

u.t0/

' ′.z/dz =
∫ u.t/

u.t0/

dz

q.z/
=

∫ t

t0

u′.s/ds

q.u.s//
; t ∈ J;
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we obtain

g.t;u.t// = d

dt
'.u.t// = d

dt

∫ t

t0

u′.s/ds

q.u.s//
= u′.t/

q.u.t//
a.e. in J:

Thusu is a solution of the IVP (2.21).
The above proof shows that every solution of (2.21) is a solution of (2.1) and vice

versa. Obvious modifications to the above proof show that problems (2.21) and (2.1)
have the same upper and lower solutions.

According to Lemmas2.3and2.4the results derived for the IVPs (2.1) and (2.11)
have the following consequences.

PROPOSITION2.3. The results of Theorems2.2and2.3hold for the IVP(2.21), and
the results of Proposition2.1hold for the IVP

u′.t/ = q.u.t//.g.t;u.t // + h.t// for a.e. t ∈ J; u.t0/ = x0; (2.23)

if we replace the hypothesis.'0/ by condition(q0).

The next result is a consequence of Theorem2.4.

PROPOSITION2.4. Assume that the functionsq : R → .0;∞/ andg : J ×R → R

satisfy conditions(q1), (g01), (g02)and(g'). Then the IVP(2.21) has for eachx0 ∈ R
extremal solutions, and they are increasing with respect tox0 andg.

PROOF. Becauseg is nonnegative-valued by (g01), then each solution of (2.21) is
increasing. Hence, applying [17, 38.4] one can show as in the proof of Lemma2.4that
u ∈ AC.J/ is a solution of (2.21) if and only if u is a solution of the IVP (2.1), where
' : R → R is defined by (2.22). The given assumptions and Lemma2.3ensure that
in such a case the hypotheses of Theorem2.4are valid, which concludes the proof.

REMARKS 2.4. The function' : R → R, defined by'.x/ = |x|p−2x, x ∈ R,
satisfies condition ('0) for eachp > 1. But ' is not locally Lipschitz continuous
if p ∈ .1;2/, and'−1 is not locally Lipschitz continuous ifp > 2. It then follows
from Lemma2.3that the function' defined above is of the form (2.22), whereq has
property (q0) (respectively (q1)), only whenp = 2 (respectivelyp ∈ .1;2]). Thus
problem (2.1) is more general than problem (2.21).

We can replace .|'.x/|/ by .|x|/ in condition (g') if ' is Lipschitz continuous.
For if |'.x/ − '.y/| ≤ K |x − y|, x; y ∈ R, for some K > 0, then |'.x/| ≤
K |x| + |'.0/|, x ∈ R, and the functionz 7→  .K x + |'.0/|/ has the properties
given for in condition (g'). This holds for', defined by (2.22) if 1=q is essentially
bounded.
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2.6. Examples and counter-examples

EXAMPLE 2.1. ChooseJ = [0;1] and define a functionq : R → .0;∞/ by

q.z/ =
∞∑

m=1

∞∑
k=1

.2 + [k1=mz] − k1=mz/

.km/2

(
2 + sin

(
1

1+ [k1=mz] − k1=mz

))
; (2.24)

where[x] denotes the greatest integer≤ x. It is easy to see thatq is discontinuous at
n=k1=m for all n ∈ Z, k;m = 1;2; : : : . Moreover, 1≤ q.z/ ≤ ³4=6 for eachz ∈ R,
so thatq has property (q0).

The function

g.t; x/ =
∞∑

m=−∞

∞∑
n=1

f .t; x − m=n/

2|m|+n
; (2.25)

where

f .t; x/ =




cos.1=.x − t//+ 2; x > t;

�U .t/; U ⊂ J; x = t;

cos.1=.x − t//− 2; x < t;

satisfies conditions (g0) and (g'). It then follows from Proposition2.3 that the IVP
(2.21) has extremal solutions whenq is given by (2.24) andg by (2.25).

If u.t/ ≡ t , then f .·;u.·// in (2.25) is equal to the characteristic function�U of U ,
which is not measurable ifU is nonmeasurable. The set of all the discontinuity points
of g is {.t; t + q/ | t ∈ J;q ∈ Q}. This is also the set of discontinuity points of the
functiong : J ×R → R, defined by (2.25), where

f .t; x/ =



.x − t/ cos.1=.x − t//; x > t;

0; x = t;

cos.1=.x − t// − 2; x < t;

which satisfies conditions (g') and (g1), assumed in Proposition2.2.

EXAMPLE 2.2. The points

c.n0; : : : ;nm/ = 1− 2−m−1 −
m∑

k=0

2−k−m−2
k∏

j =0

2−nj − 2−2m−2
m∏

j =0

2−nj ;

m;n0; : : : ;nm ∈ N, form a well-ordered setC of rational numbers with minC = 0
and supC = 1 (see [12, Example 1.1.1]). Define

f .z/ = z− c.n0; : : : ;nm/

c.n0; : : : ;nm + 1/− c.n0; : : : ;nm/
;

c.n0; : : : ;nm/ ≤ z< c.n0; : : : ;nm + 1/; m;n0; : : : ;nm ∈ N
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andg.t; x/ = f .t + x − [t + x]/, t ∈ J = [0;1], x ∈ R. It is easy to see thatg has
properties (g01), (g02) and (g'), so that the IVP

d

dt
.|u.t/|p−2u.t// = f .t + u.t/ − [t + u.t/]/ a.e. in J; x.0/ = x0

has by Theorem2.4and Remark2.3extremal solutions whenx0 ∈ R and p > 1.

The IVP

u′.t/ = g.t;u.t// a.e. in J; x.0/ = 0

has no solution onJ = [0;T] for anyT > 0 if g is one of the functions

g.t; x/ =
{

2; x < t;

1=2; x ≥ t;
g.t; x/ =

{
1; x ≤ 0;

0; x > 0;
t ∈ J:

This illustrates the need of the property lim supy↑x g.t; y/≤ g.t; x/≤ lim inf y↓x g.t; y/
for all x ∈ R and for a.e.t ∈ J, at least between assumed lower or upper solutions
(see Remark2.2) or locally (see Theorem2.4).

The functions' : R → R andg : J ×R → R, defined by

'.x/ = x1=3; g.t; x/ = 2t x4=3=3; t ∈ J; x ∈ R
satisfy conditions ('0) and (g0) but not condition (g'). Whent0 = 0 andx0 = 1, the
IVP (2.1) can be rewritten in this case as

u′.t/ = 2tu.t/2 a.e. in J = [0; t1]; u.0/ = 1:

This IVP does not have any solution inAC.J/ if t1 ≥ 1, since the only possible
solution isu.t/ = 1=.1− t2/. Thus condition (g') cannot be omitted in general.

The IVP

d

dt
u3.t/ = 3t2 cos3.³=t/ + t cos2.³=t/ sin.³=t/ a.e. in J = [0;T]; u.0/ = 0

is of the form (2.1), where

'.x/ = x3; g.t; x/ = 3t2 cos3.³=t/ + t cos2.³=t/ sin.³=t/; t ∈ J; x ∈ R:
Here' andg satisfy conditions ('0), (g0) and (g'). It is easy to see that the only
possible solution is

u.t/ =
{

t cos.³=t/; t ∈ .0;T ];
0; t = 0:
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Sinceu ∈ C.J/ and' ◦ u = u3 ∈ AC.J/, thenu ∈ Y, whenceu is a solution in the
sense of Definition2.1. Sinceu is not of bounded variation, and hence not absolutely
continuous onJ = [0;T] for any T > 0, this example justifies the choice of the
solution setY in Definition 2.1to be a subset ofC.J/.

Constant multiples of the Cantor function (see [15, page 334]) are solutions to the
problem

d

dt
u3.t/ = 0 a.e. in J = [0;1]; u.0/ = 0;

which then has a continuum of solutions which are continuous and monotone, having
no extremal solutions. This justifies the condition' ◦ u ∈ AC.J/ in Definition2.1.

Existence and comparison results derived in [1, 2, 4, 5, 6, 8, 12, 13, 16, 18, 19]
for initial value problems are special cases of the results derived above when' is the
identity function.

3. Existence results for first-order boundary value problems

In this section we present existence and comparison results for first-order discon-
tinuous differential equations equipped with discontinuous, implicit and functional
boundary conditions. Some results of Section2 are used in the proofs.

3.1. Hypotheses and preliminaries Consider the boundary value problem

d

dt
'.u.t// = g.t;u.t// a.e. in J = [t0; t1]; B.u.t0/;u/ = 0; (3.1)

whereg : J × R → R, ' : R → R andB : R× C.J/ → R. We assume thatC.J/
is equipped with the pointwise ordering≤.

DEFINITION 3.1. We say that a functionu ∈ C.J/ is a lower solutionof (3.1) if
' ◦ u ∈ AC.J/ and

d

dt
'.u.t// ≤ g.t;u.t// a.e. in J; B.u.t0/;u/ ≤ 0;

and anupper solutionof (3.1) if the reversed inequalities hold. If equalities hold, we
say thatu is asolutionof (3.1).

The following hypotheses are imposed on the functions', g andB:

('0) ' is an increasing homeomorphism;
(g0) For eachx ∈ R the functiong.·; x/ is measurable and lim supy↑x g.t; y/ ≤

g.t; x/ ≤ lim inf y↓x g.t; y/ for a.e.t ∈ J;
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(B0) For eachx ∈ R the functionB.x; ·/ is decreasing and lim infy↑x B.y;u/ ≥
B.x;u/ ≥ lim supy↓x B.y;u/ for all u ∈ C.J/.

Moreover, if

(A) (3.1) has a lower solutionu and an upper solutionu such thatu ≤ u, andg is
L1-bounded in the set� = {.t; x/ ∈ J ×R | u.t/ ≤ x ≤ u.t/},
we prove that there exists the least and the greatest among those solutions of (3.1)
which belong to the order interval[u;u] = {u ∈ C.J/ | u ≤ u ≤ u}.

If condition (A) is replaced by conditions

(g') |g.t; x/| ≤ p1.t/ .|'.x/|/ for all x ∈ Rand for a.e.t ∈ J, wherep1 ∈ L1
+.J/,

the function : R+ → .0;∞/ is increasing and
∫ ∞

0 dx= .x/ = ∞;
(B1) |x − B.x; v/| ≤ c|x| + d for all .x; v/ ∈ R × C.J/, wherec ∈ [0;1/ and

d ≥ 0,

we prove that (3.1) has extremal solutions, that is, the least and the greatest of all its
solutions, and that they are increasing with respect tog and decreasing with respect
to B.

These results are then applied to the BVP

u′.t/ = q.u.t//g.t;u.t// a.e. in J; B.u.t0/;u/ = 0: (3.2)

Existence of the extremal solutions of (3.2) is also proved under growth conditions
which are different to (g') and (B1). Examples are given to illustrate the obtained
results.

REMARK 3.1. No continuity hypotheses are imposed above ong andB.

The following two lemmas are used in the proof of our first existence result.

LEMMA 3.1. Assume that condition(B0) holds. Ifu1; : : : ;un are solutions of the
BVP (3.1), thenmax{u1; : : : ;un} is a lower solution of(3.1), andmin{u1; : : : ;un} is
an upper solution of(3.1).

PROOF. Assume thatu1; : : : ;un are solutions of the BVP (3.1). Sinceui ∈ C.J/
and' ◦ ui ∈ AC.J/ for eachi = 1; : : : ;n, and since' is strictly increasing, then
u = max{u1; : : : ;un} belongs toC.J/ and' ◦ u = max{' ◦ u1; : : : ; ' ◦ un} belongs
to AC.J/. Moreover, it is easy to show that

d

dt
'.u.t// = g.t;u.t// a.e. in J:

Condition (B0) implies that ifui .t0/ = max{u1.t0/; : : : ;un.t0/}, then

B.u.t0/;u/ = B.ui .t0/;u/ ≤ B.ui .t0/;ui / = 0:
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Thus u = max{u1; : : : ;un} is a lower solution of the BVP (3.1). The proof that
min{u1; : : : ;un} is an upper solution of (3.1) is similar.

LEMMA 3.2. If the hypotheses(g0), ('0) and (A) are valid, and ifv andw are
lower and upper solutions of(3.1) such thatu ≤ v ≤ w ≤ u, then the IVP(2.1) has
for eachx0 ∈ [v.t0/;w.t0/] extremal solutions in the order interval[v;w]. This result
holds also when condition(g0) is replaced by conditions(g01) and (g02) given in
Theorem2.4.

PROOF. The assertions are immediate consequences of Theorems2.2and2.4.

3.2. Existence of extremal solutions of(3.1) in [u;u] We shall first prove that the
BVP (3.1) has at least one solution between the assumed lower and upper solutionsu
andu.

PROPOSITION3.1. If the hypotheses('0), (B0) and (A), and either(g0) or (g01)
and (g02)are valid, then the BVP(3.1) has a solution in the order interval[u;u].

PROOF. The setX = {x0 ∈ [u.t0/;u.t0/] | (2.1) has a solutionu ∈ [u;u] for which
B.u.t0/;u/ ≤ 0} is nonempty, because (2.1) has forx0 = u.t0/ a solutionu in [u;u]
by Lemma3.2, and condition (B0) implies that

B.u.t0/;u/ = B.u.t0/;u/ ≤ B.u.t0/;u/ ≤ 0:

Denotex∗ = supX, and let.xn/
∞
n=0 be an increasing sequence inX which converges

to x∗. The definition ofX allows us to choose for eachn ∈ N a functionvn ∈ [u;u]
such that' ◦ vn ∈ AC.J/ and

d

dt
'.vn.t// = g.t; vn.t// a.e. in J; vn.t0/ = xn and B.vn.t0/; vn/ ≤ 0: (3.3)

We may assume that.vn/
∞
n=0 is increasing, for otherwise we obtain an increasing

sequence.un/
∞
n=0 in [u;u] by definingun = max{v0; : : : ; vn}, and as in the proof of

Lemma3.1 it can be shown that (3.3) holds whenvn is replaced byun. Condition (A)
implies the existence of a functionM ∈ L1.J/ such that∣∣∣∣ d

dt
'.vn.t//

∣∣∣∣ = |g.t; vn.t//| ≤ M.t/ a.e. in J;

whence|'.vn.t3//−'.vn.t2//| ≤ ∫ t3
t2

M.t/dt for all t2; t3 ∈ J, t2 ≤ t3. Thus.' ◦vn/ is
an absolutely continuous and increasing sequence in[' ◦u; ' ◦u]. This and condition
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('0) imply that .vn/ is an increasing sequence in[u;u], so that it converges to a
functionv : J → R on J. Whenn → ∞ in the above inequality we obtain

|'.v.t3//− '.v.t2//| ≤
∫ t3

t2

M.t/dt for all t2; t3 ∈ J; t2 ≤ t3:

This implies that' ◦ v ∈ AC.J/, whencev ∈ C.J/ by condition ('0). It follows
from (3.3) that'.vn.t3// − '.vn.t2// = ∫ t3

t2
g.t; vn.t//dt for all n ∈ N andt2; t3 ∈ J,

t2 ≤ t3. Allowing n to tend to infinity and applying Fatou’s lemma we obtain∫ t3

t2

d

dt
'.v.t//dt = '.v.t3// − '.v.t2// ≤

∫ t3

t2

lim sup
n→∞

g.t; vn.t//dt

for all t2; t3 ∈ J, t2 ≤ t3. In view of this inequality and condition (g0) we get

d

dt
'.v.t// ≤ lim sup

n→∞
g.t; vn.t// ≤ lim sup

y↑v.t/
g.t; y/ ≤ g.t; v.t// a.e. in J: (3.4)

The last inequality of (3.3) and condition (B0) ensure that

B.vn.t0/; v/ ≤ B.vn.t0/; vn/ ≤ 0 for all n ∈ N:
These inequalities and another application of condition (B0) yields

B.v.t0/; v/ ≤ lim inf
y↑v.t0/

B.y; v/ ≤ lim inf
n→∞

B.vn.t0/; v/ ≤ 0;

which, together with (3.4), implies thatv is a lower solution of (3.1).
To prove that the BVP (3.1) has a solution in the order interval[v;u], assume first

that x∗ = v.t0/ = u.t0/. Then the IVP (2.1), with x0 = x∗, has by Lemma3.2 a
solution u in [v;u]. Sinceu.t0/ = v.t0/ = u.t0/ andv ≤ u ≤ u, condition (B0)
implies that

0 ≥ B.v.t0/; v/ ≥ B.u.t0/;u/ ≥ B.u.t0/;u/ ≥ 0:

ThusB.u.t0/;u/ = 0, and sinceu is a solution of (2.1) whenx0 = x∗, thenu is also
a solution of (3.1) in [v;u] ⊂ [u;u].

Assume next thatx∗ = v.t0/ < u.t0/, and choose a decreasing sequence.yn/ from
[x∗;u.t0/] which converges tox∗. Dual arguments to those used in the construction
of the sequence.vn/ above show the existence of a decreasing sequence.wn/ in the
order interval[v;u] such that each' ◦ wn belongs toAC.J/ and

d

dt
'.wn.t// = g.t;wn.t// a.e. in J; wn.t0/ = xn and B.wn.t0/;wn/ ≥ 0;

and which converges onJ to an upper solutionw of (3.1). Sincev.t0/ = w.t0/ and
v ≤ w, then replacingu by w in the above reasoning whenv.t0/ = u.t0/ one can
prove that the BVP (3.1) has a solution in[v;w] ⊂ [u;u]. This concludes the proof.
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Now we are ready to prove the main result of this subsection.

THEOREM 3.1. If the hypotheses('0), (B0) and (A), and either(g0) or (g01)and
(g02) are valid, then the BVP(3.1) has extremal solutionsu∗ and u∗ in the order
interval [u;u]. Moreover,

{
u∗.t/ = min{u+.t/ | u+ is an upper solution of(3.1) in [u;u]};
u∗.t/ = max{u−.t/ | u− is a lower solution of(3.1) in [u;u]}: (3.5)

PROOF. DenoteS = {u ∈ C.J/ | u is a solution of the BVP (3.1) in [u;u]}, and
define a mappingw : J → R by w.t/ := supu∈S u.t/, t ∈ J. Let D = {t j } j ∈N be a
dense subset ofJ, and choose for eachj ∈ N a sequence.v j

k /
∞
k=0 from the solution

set S such that limk→∞ v
j
k .t j / = w.t j /, j ∈ N. It follows from Lemma3.1 that the

functionsvn : J → R, n ∈ N, defined byvn.t/ = max{v j
k .t/ | j; k ∈ {1; : : : ;n}},

t ∈ J, are lower solutions of (3.1). Moreover,.vn/
∞
n=0 is an increasing sequence in

[u;u]. It can be shown as in the proof of Proposition3.1 that the sequence.vn/
∞
n=0

converges onJ to a lower solutionv of (3.1). The above construction implies also
thatv ∈ [u;u], and that

v.t j / = w.t j / = sup
u∈S

u.t j / for each j ∈ N: (3.6)

In particular, the hypotheses of Proposition3.1hold whenu is replaced byv, whence
the BVP (3.1) has a solutionu∗ in [v;u]. Thusu∗ ∈ S andv ≤ u∗. These relations
imply by (3.6) that if u is any solution of (3.1) in [u;u], then

u.t j / ≤ w.t j / = u∗.t j /; j ∈ N:

SinceD = {t j } j ∈N is a dense subset ofJ, it then follows thatu.t/ ≤ u∗.t/ on J. Thus
u∗ is the greatest solution of the BVP (3.1) in [u;u].

The proof that the BVP (3.1) has the least solutionu∗ in [u;u] is similar. To prove
(3.5), let u+ be an upper solution of (3.1) in [u;u]. Replacingu by u+ in the above
proof it follows that the BVP (3.1) has a solutionu ∈ [u;u+] ⊆ [u;u]. But u∗ is the
least of all the solutions of (3.1) in [u;u], so thatu∗ ≤ u+. Similarly, it can be shown
that if u− is a lower solution of (3.1) in [u;u], thenu− ≤ u∗. Becauseu∗ is an upper
solution andu∗ a lower solution of (3.1), we obtain (3.5).

3.3. Existence of extremal solutions of(3.1) As an application of Lemma2.1
and Theorem3.1 we now prove a result which guarantees the existence of least and
greatest solutions among all the solutions of problem (3.1).
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THEOREM 3.2. Assume that the functions' : R → R, g : J × R → R and
B : R× C.J/ → R satisfy conditions('0), (g0), (g'), (B0) and (B1). Then problem
(3.1) has the least solutionu∗ and the greatest solutionu∗. Moreover,{

u∗.t/ = min{u+.t/ | u+ is an upper solution of(3.1)};
u∗.t/ = max{u−.t/ | u− is a lower solution of(3.1)}: (3.7)

These results hold also when condition(g0) is replaced by conditions(g01)and(g02).

PROOF. Assume first thatu is a solution of (3.1). Applying (3.1) and conditions
(B1) and (g') we obtain

|u.t0/| = |u.t0/− B.u.t0/;u/| ≤ c|u.t0/| + d; that is, |u.t0/| ≤ d=.1 − c/;

and ∣∣∣∣ d

dt
'.u.t//

∣∣∣∣ = |g.t;u.t//| ≤ p1.t/ .|'.u.t//|/ a.e. in J:

By choosingw0 ∈ R so that−w0 ≤ '.−d=.1 − c//; '.d=.1 − c// ≤ w0, we obtain

|'.u.t//| ≤ |'.u.t0//| +
∫ t

t0

p1.s/ .|'.u.s//|/ds ≤ w0 +
∫ t

t0

p1.s/ .|'.u.s/|/ds

for all t ∈ J. This implies by Lemma2.1that|'.u.t//| ≤ w.t/ on J, wherew is the
solution of the IVP

w′.t/ = p1.t/ .w.t//; a.e. in J; w.t0/ = w0: (3.8)

Defining

u.t/ = '−1.−w.t//; t ∈ J; and u.t/ = '−1.w.t//; t ∈ J; (3.9)

the above considerations, choice ofw0 and condition ('0) imply that u ∈ [u;u].
Next we shall show thatu andu are lower and upper solutions of (3.1). Sincew,
as a solution of (3.8), belongs toAC.J/, it follows from (3.9) that ' ◦ u = −w
and' ◦ u = w belong toAC.J/. Thusu andu belong toC.J/ by condition ('0).
Applying (g'), (3.8) and (3.9) we obtain

d

dt
'.u.t// = −w′.t/ = −p1.t/ .w.t// = −p1.t/ .|'.u.t//|/ ≤ g.t;u.t//

and
d

dt
'.u.t// = w′.t/ = p1.t/ .w.t// = p1.t/ .|'.u.t//|/ ≥ g.t;u.t//;

for a.e.t ∈ J. The choice ofw0 and monotonicity of'−1 imply that

u.t0/ = '−1.−w0/ ≤ −d=.1 − c/; d=.1 − c/ ≤ '−1.w0/ = u.t0/:
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Hence

−B.u.t0/;u/ = u.t0/ − B.u.t0/;u/− u.t0/

≤ c|u.t0/| + d − u.t0/ = cu.t0/+ d − u.t0/ ≤ 0

and

B.u.t0/;u/ = u.t0/ + B.u.t0/;u/− u.t0/

≤ c|u.t0/| + d + u.t0/ = −cu.t0/+ d + u.t0/ ≤ 0:

Moreover, applying (g'), (3.8) and (3.9), we see that

|g.t; x/| ≤ p1.t/ .|'.x/|/ ≤ p1.t/ .w.t// = w′.t/

for a.e.t ∈ J, and for allx ∈ [u.t/;u.t/], whence condition (A) holds.
The above proof shows that the hypotheses of Theorem3.1 are satisfied, whence

problem (3.1) has extremal solutionsu∗ andu∗ in [u;u]. Because all the solutions
of (3.1) belong to[u;u], then u∗ and u∗ are the extremal solutions of (3.1). To
prove (3.7), let u+ be an upper solution of (3.1). Choosed in condition (B1) so
that −d=.1 − c/ ≤ '.u+.t// on J. Then−w ≤ ' ◦ u+, whenceu ≤ u+, so that
problem (3.1) has by Theorem3.1a solutionu ∈ [u;u+]. But u∗ is the least of all the
solutions of (3.1), whenceu∗ ≤ u+. Similarly, it can be shown that ifu− is a lower
solution of (3.1), thenu− ≤ u∗. Noticing also thatu∗ is an upper solution andu∗ a
lower solution of (3.1), we obtain (3.7).

As a consequence of Theorem3.2we obtain the following result.

PROPOSITION3.2. If conditions ('0), (B0), (B1), (g0) and (g') hold, then the
problem

d

dt
'.u.t// = g.t;u.t// + h.t/ for a.e. t ∈ J; B.u.t0/;u/ = 0 (3.10)

has for allh ∈ L1.J/ extremal solutions and they are increasing with respect toh and
decreasing with respect toB.

PROOF. Given h; ĥ ∈ L1.J/ and B; B̂ : J × C.J/ → R, assume thatB and
B̂ have properties (B0) and (B1), and thath ≤ ĥ and B.x;u/ ≥ B̂.x;u/ for all
.x;u/ ∈ R×C.J/. The functions.t; x/ 7→ g.t; x/+h.t/ and.t; x/ 7→ ĝ.t; x/+ĥ.t/
satisfy condition (g0), and also condition (g') when p1 and are replaced byt 7→
p1.t/ + |h.t/| + |ĥ.t/| and z 7→  .z/ + 1, respectively. Denoting bŷu the least
solution of the problem

d

dt
'.u.t// = ĝ.t;u.t// + ĥ.t/ for a.e. t ∈ J; B̂.u.t0/;u/ = 0;
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thenû is an upper solution of (3.10). This and (3.7) imply thatu∗ ≤ û. Similarly, it
can be shown that if̂u is the greatest solution of (3.10), thenu∗ ≤ û, which concludes
the proof.

EXAMPLE 3.1. ChooseJ = [0;1] and consider the problem


u′.t/ = H .u.t/ − 4t/+ [u.t/]
1 + |[u.t/]| a.e. inJ;

u.0/ = [u.0/]
1 + |[u.0/]| +

2
[∫ 1

0 u.s/ds
]

1 +
∣∣∣[∫ 1

0 u.s/ds
]∣∣∣ ;

(3.11)

whereH is the Heaviside function and[x] denotes the greatest integer less than or
equal tox. Problem (3.11) is of the form (3.1) with



g.t; x/ = H .x − 4t/+ [x]
1 + |[x]|; t ∈ J; x ∈ R;

B.x;u/ = x − [x]
1 + |[x]| −

2
[∫ 1

0 u.t/dt
]

1 +
∣∣∣[∫ 1

0 u.t/dt
]∣∣∣ ; x ∈ R;u ∈ C.J/:

It is easy to see that the hypotheses of Theorem3.2 hold, whence problem (3.11)
has the least solutionu∗ and the greatest solutionu∗. These extremal solutions can be
determined by using numerical integration methods and inference. Denoting by�W

the characteristic function ofW ⊂ R, we get the following representations foru∗
andu∗: 


u∗.t/ = .−9=4 − 3t=4/ �[0;1].t/; t ∈ J;

u∗.t/ = .13=6 + 5t=3/ �[0;1=2].t/ + .17=8+ 7t=4/ �[1=2;17=18].t/

+ .221=72+ 3t=4/ �[17=18;1].t/; t ∈ J:

The functionu.t/ ≡ 0 is also a solution of (3.11).

3.4. Special cases In this subsection we shall consider solvability of the BVP (3.2)
whereg : J × R → R, q : R → .0;∞/ and B : R × C.J/ → R. A function
u ∈ AC.J/ is said to be alower solutionof the BVP (3.2) if

u′.t/ ≤ q.u.t//g.t;u.t// for a.e.t ∈ J, and B.u.t0/;u/ ≤ 0;

and anupper solutionif the reversed inequalities hold. If equalities hold, we say that
u is asolutionof the BVP (3.2).

Lemma2.3and the proof of Lemma2.4 imply the following result.
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LEMMA 3.3. Assume thatq : R → .0;∞/ satisfies the following condition:

(q0) q and1=q belong toL∞
loc.R/ and

∫ ±∞
0 dz=q.z/ = ±∞.

Thenu ∈ AC.J/ is a lower solution, an upper solution or a solution of(3.2) if
and only ifu is a lower solution, an upper solution or a solution of the BVP(3.1),
respectively, where' : R → R is defined by

'.x/ =
∫ x

0

dz

q.z/
; x ∈ R: (3.12)

Moreover,' satisfies condition('0).

In view of Lemma3.3we obtain the following result.

PROPOSITION3.3. The results of Theorems3.1 and 3.2 hold for problem(3.2) if
condition.'0/ is replaced by condition(q0).

The next result gives another sufficient condition for the existence of extremal
solutions of the BVP (3.2).

THEOREM 3.3. Assume that functionsg, B andq have properties(g0), (B0)and

(g2) |g.t; x/| ≤ M.t/ + p1.t/|x| for a.e. t ∈ J and all x ∈ R, where p1;M ∈
L1

+.J/;
(q2) q is measurable and essentially bounded and1

q
is locally essentially bounded.

Assume also the existence of such constantsa > 0 andb; c ≥ 0 and a bounded and
nonnegative linear functionalI on C.J/ such that

(B2) |B.x;u/− ax + bI .u/| ≤ c for all x ∈ R andu ∈ C.J/;
(A1) a > bI .eP.·//, whereP.t/ = ∫ t

t0
‖q‖∞ p1.s/ds; t ∈ J.

Then the BVP(3.2) has extremal solutions, and all the solutions of(3.2) lie within the
order interval[−w;w], where

w.t/ = eP.t/
c + bI

(
− 7→ ∫ −

t0
eP.−/−P.s/‖q‖∞M.s/ds

)
a − bI .eP.·//

+
∫ t

t0

eP.t/−P.s/‖q‖∞ M.s/ds: (3.13)

PROOF. It follows from Lemma3.3that we can replaceq.x/ by min{q.x/; ‖q‖∞},
and hence assume thatq.x/ ≤ ‖q‖∞ for all x ∈ R. It is elementary to verify thatw,
given by (3.13), is a unique solution of the BVP

w′.t/ = ‖q‖∞.M.t/+ p1.t/w.t// a.e. in J; aw.t0/− bI .w/ = c: (3.14)
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Applying conditions (q2) and (g2) we obtain, for a.e.t ∈ J,

w′.t/ = ‖q‖∞.M.t/ + p1.t/w.t// ≥ q.w.t//g.t;w.t //

and

−w′.t/ = ‖q‖∞.−M.t/ − p1.t/w.t// ≤ q.−w.t//g.t;−w.t//:
The boundary condition of (3.14) and condition (B2) imply that

B.w.t0/;w/ = B.w.t0/;w/ − aw.t0/+ bI .w/ + c ≥ 0

and

B.−w.t0/;−w/ = B.−w.t0/;−w/ − a.−w.t0// + bI .−w/ − c ≤ 0:

Thusu = −w is a lower solution andu = w is an upper solution of (3.2). Moreover
|g.t;u/| ≤ M.t/ + p1.t/w.t/ for a.e.t ∈ J and for allu ∈ [−w.t/;w.t/], so that
g is L1-bounded in�. Thus condition (A) holds whenu = −w andu = w. Since
conditions (g0) and (B0) are assumed to hold, and since (q2) implies the validity of
condition (q0), then the BVP (3.2) has by Proposition3.3extremal solutionsu∗ andu∗

in [−w;w].
If u is a solution of (3.2), it follows from (3.2) and (g') that

u′.s/− ‖q‖∞ p1.s/u.s/ ≤ ‖q‖∞M.s/ a.e. in J: (3.15)

Multiplying both sides of (3.15) by e−P.s/ and integrating fromt0 to t , we obtain

u.t/ ≤ eP.t/u.t0/+
∫ t

t0

eP.t/−P.s/‖q‖∞ M.s/ds; t ∈ J: (3.16)

In view of condition (B2) and the boundary condition of (3.2), we have

au.t0/− bI .u/ = au.t0/− bI .u/ − B.u.t0/;u/ ≤ c:

This and (3.16) imply that

c ≥ au.t0/ − bI .u/

≥ au.t0/ − bI
(
u.t0/e

P.·/) − bI

(
− 7→

∫ −

t0

eP.−/−P.s/‖q‖∞M.s/ds

)
;

so that

u.t0/ ≤
c + bI

(
− 7→ ∫ −

t0
eP.−/−P.s/‖q‖∞M.s/ds

)
a − bI .eP.·//

: (3.17)

It then follows from (3.13), (3.16) and (3.17) thatu.t/ ≤ w.t/ for eacht ∈ J, that is,
u ≤ w. Similarly one can show that−w ≤ u, so thatu ∈ [−w;w].

The above proof shows that all the solutions of (3.2) belong to the order interval
[−w;w], whenceu∗ andu∗ are least and greatest of all the solutions of (3.2).
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In the case whenB.x;u/ = ax − bu.t1/− c and Iu = u.t1/, we get the following
consequence of Theorem3.3.

PROPOSITION3.4. If the functionsg andq have properties(g0), (g2)and(q2), and
if positive constantsa andb satisfy

∫ t1
t0

p1.s/ds< .1=‖q‖∞/ ln.a=b/, then the BVP

u′.t/ = q.u.t//g.t;u.t// a.e. inJ = [t0; t1]; au.t0/− bu.t1/ = c; (3.18)

has for eachc ∈ R extremal solutions.

EXAMPLE 3.2. Let the functionsq : R → R and g : J × R → R, J = [0;1],
be defined by (2.24) and (2.25). It follows from Example2.1 that q and g satisfy
conditions (q2), (g0) and (g2) whenp1.t/ ≡ 0 andM.t/ ≡ 9.

The function

B.x;u/ = 2x −
∫

J

u.t/dt +
∞∑

m=−∞

∞∑
n=1

¼.x − m=n;u/

2|m|+n

1 − [∫
J u.t/dt

]
1 + ∣∣[∫

J u.t/dt
]∣∣ ;

where

¼.x/ =




cos.1=x/− 2; x > 0;

0; x = 0;

cos.1=x/+ 2; x < 0;

satisfies conditions (B0) and (B2) whena = 2, b = 1, c = 9 andI .u/ = ∫
J u.t/dt.

Also condition (A1) holds. Thus the BVP (3.2) has for these functionsq, g and B
extremal solutions by Theorem3.3.

REMARKS 3.2. The results of this section generalise those derived in [11, 12, 14] for
periodic boundary value problems, in [7, 10] for problems with nonlinear boundary
conditions, and in [9, 18] for problems with functional boundary conditions when
'.x/ ≡ x, except that the lower and upper solutions are of a more general type in [18]
than in Definition3.1.
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[7] S. Heikkilä, “Notes on first-order discontinuous differential equations with nonlinear boundary
conditions”,Proc. Dynamic Sys. Appl.2 (1996) 255–260.
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[12] S. Heikkilä and V. Lakshmikantham,Monotone iterative techniques for discontinuous nonlinear
differential equations(Marcel Dekker, New York, 1994).
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