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Abstract

A variation-of-constants formula is obtained for a linear abstract evolution equation in
Hilbert space with unbounded perturbation and free term. As an application, the state of
the abstract controlled system with unbounded mixed controls is explicitly given.

1. Introduction and main results

In this paper, we consider the following equation in some Hilbert spaceX:

y.t/ = e−Atx +
∫ t

0

AÞe−A.t−s/8y.s/ds +
∫ t

0

AÞe−A.t−s/9u.s/ds; (1.1)

where the parameters in (1.1) satisfy the following hypothesis:

(H) −A generatesan analytic semigroupe−A· on X with fractional powerA
 being
well-defined for all
 ∈ R, Þ ∈ [0;1/ is fixed,8 ∈ L .X/, 9 ∈ L .U; X/ with U
being another Hilbert space,x ∈ X andu.·/ ∈ L1

loc.0;∞; U /, the set of all locally
integrable functions taking values inU . WhenÞ = 0, e−At is only assumed to be
a C0-semigroup and is not necessarily analytic. The second and third terms on the
right-hand side of (1.1) are called the perturbation and free terms respectively.

In control theory, people sometimes consider the control variable in the form of
a state feedback plus another new control variable. The resulting inhomogeneous
equation will have not only a perturbation but also a free term. The system will
take the form of (1.1), in whichÞ = 0 corresponds to the bounded control case and
Þ ∈ .0;1/ corresponds to the unbounded control case. For the bounded control case,
[1, 6] (among others) established a variation-of-constants formula for (1.1).
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The controlled second-order parabolic equations in a bounded domain� ⊂ Rn can
be represented by

y.t/ = e−Atx +
∫ t

0

AÞe−A.t−s/Bv.s/ds; (1.2)

whereB ∈ L .U; X/, and the relevant values of the constantÞare as follows (see [4,6],
for example):Þ = 3=4+", ∀" > 0, for Dirichlet boundary control withU = L2.@�/,
X = L2.�/; Þ = 1=4+", ∀" > 0, for Neumann boundary control withU = L2.@�/,
X = L2.�/; andn=4< Þ < 1, for pointwise control withU = H−2Þ.�/, X = L2.�/.
Let v.·/ = K y.·/ + u.·/ in (1.2). Then (1.2) becomes (1.1). A natural step is to
represent the statey.·/ in terms of the new control variableu.·/.

In this paper, we will establish a variation-of-constants formula for the linear
abstract evolution equation (1.1).

The following notation will be used hereafter:−A+8AÞ also (see [3, 8]) generates
an analytic semigroupG.·/ , e.−A+8AÞ /·. For a given analytic semigroupe−2· with
infinitesimal generator−2, there exists some½0 > 0 such that20 , ½0I +2 admits
fractional powers2


0 for any
 ∈ R.
Our main result can be stated as follows.

THEOREM. Assume that the hypothesis(H) holds.

.I/ The equation

y.t/ = e−Atx +
∫ t

0

AÞe−A.t−s/8y.s/ds (1.3)

admits a unique solutiony.·/ ∈ C.[0;∞/; X/ for any initial conditionx ∈ X. Define

S.t/x , y.t/; ∀x ∈ X; t ∈ [0;∞/: (1.4)

ThenS.·/ is also an analytic semigroup with infinitesimal generator−Ã satisfying{ −Ã, AÞ.−A1−Þ +8/;

D.Ã/ ,
{

x ∈ D.A1−Þ/ | .A1−Þ −8/x ∈ D.AÞ/
}
:

(1.5)

Moreover, it holds that

S.t/ = AÞG.t/A−Þ; ∀t ∈ [0;∞/: (1.6)

.II / For any givenþ ∈ .Þ;1/, the solution of(1.2) can be expressed as

y.t/ = e− Ãt x +
∫ t

0

Ãþ

0e− Ã.t−s/E.Þ; þ/9u.s/ds; (1.7)

whereE.Þ; þ/ is the extension of̃A−þ
0 AÞ on X.
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In the above, (1.7) is called a variation-of-constants formula for the abstract evolu-
tion equation (1.1).

The remainder of this paper is organized as follows. In Section2 we prove (I) while
in Section3 we prove (II).

2. Some linear homogeneous equations

In this section, we will establish the unique existence of and obtain regularity
properties for the solution of some homogeneous equations. These results will be
later used to prove (I).

For any
 > 0, there exists ac
 > 0 such that (see [8])

‖A
e−At‖ ≤ c
 t−
 ; ∀ t > 0: (2.1)

All the above properties also hold for the adjointA∗ of A.

LEMMA 2.1. It holds that

D.A
+"/ ⊂ D.[A −8AÞ]
0 / ⊂ D.A
−"/; ∀
 ∈ [0;1/; " > 0: (2.2)

For any givenþ ∈ .Þ;1/, there exists adþ > 0 such that

‖AÞG.t/‖ ≤ dþt−þ; ∀t > 0: (2.3)

PROOF. From a corollary of Lemma 2.1 in [5], (2.2) and (2.3) follow.

LEMMA 2.2. Suppose thatS1.·/ = eA1· and S2.·/ = eA2· are C0-semigroups. If
A1 ⊆ A2, thenA1 = A2 and S1.·/ = S2.·/.

PROOF. By the Hille-Yosida theorem, we have fromA1 ⊆ A2 that there exists a
½∗ > 0 such that, for Re½ ≥ ½∗,

.½I − A1/
−1 = .½I − A2/

−1: (2.4)

Therefore Corollary 7.5 in [8, p. 29] implies thatA1 and A2 generate the sameC0-
semigroup.

LEMMA 2.3. For any given¾ ∈ X,

z.t/ = e−At¾ +
∫ t

0

e−A.t−−/8AÞz.−/d−; t ≥ 0; (2.5)
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admits a unique solutionz.·/ = G.·/¾ . Moreover,

G.t − s/¾ = e−A.t−s/¾ +
∫ t

s

e−A.t−r /8AÞG.r − s/¾ dr

= e−A.t−s/¾ +
∫ t

s

G.t − r /8AÞe−A.r −s/¾ dr; ∀ 0 ≤ s ≤ t : (2.6)

PROOF. DefineT , ..1 − Þ/=2cÞ‖8‖/Þ−1 and

F : L1.0;T ; D.AÞ// → L1.0;T ; D.AÞ//

as follows:

[F f .·/].·/ , e−A·¾ +
∫ ·

0

e−A.·−s/8AÞ f .s/ds; ∀ f .·/ ∈ L1.0;T ; D.AÞ//: (2.7)

It follows from (2.1) and the Fubini theorem that

‖F f1.·/ − F f2.·/‖L1.0;T ;D.AÞ /

≤ cÞ‖8‖
∫ T

0

∫ t

0

‖ f1.s/ − f2.s/‖D.AÞ /

|t − s|Þ ds dt

= cÞ‖8‖
∫ T

0

∫ T

s

1

|t − s|Þ dt‖ f1.s/ − f2.s/‖D.AÞ / ds

≤ 1

2
‖ f1.·/ − f2.·/‖L1.0;T ;D.AÞ /; ∀ f1.·/; f2.·/ ∈ L1.0;T ; D.AÞ//: (2.8)

The contraction mapping principle implies that (2.5) admits a unique solution
z.·; ¾/ ∈ C.[0;T]; X/. Applying this principle in the same manner to[T;2T],
[2T;3T], and so forth, we have that (2.5) admits a unique solutionz.·; ¾/ ∈
C.[0;∞/; X/. Define the operatorsZ.t/ as follows:

Z.t/¾ , z.t ; ¾/; ∀¾ ∈ X; t ∈ [0;∞/: (2.9)

ThenZ.·/ satisfies the semigroup property. By (2.1), it holds that, for allt ≥ 0,

‖z.t ; ¾/‖D.AÞ / ≤ cÞt−Þ‖¾‖ + cÞ‖8‖
∫ t

0

.t − −/−Þ‖z.− ; ¾/‖D.AÞ / d−: (2.10)

Thus, by the singular Gronwall inequality ([2, Lemma 7.1.1]),we obtainZ.t/ ∈ L .X/
for t ∈ .0;∞/, which implies thatZ.·/ is aC0-semigroup.

On the other hand, for any given¾ ∈ D.AÞ/, it follows from (2.5) that, for all
t ≥ 0,

‖z.t ; ¾/‖D.AÞ / ≤ ‖e−At‖‖¾‖D.AÞ / + cÞ‖8‖
∫ t

0

.t − −/−Þ‖z.− ; ¾/‖D.AÞ / d−: (2.11)
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The singular Gronwall inequality and (2.5) implies thatz.·; ¾/ ∈ C.[0;∞/; D.AÞ //.
Furthermore, for any¾ ∈ D.−A +8AÞ/ (= D.A/), (2.5) yields that

lim
t→0+

Z.t/¾ − ¾

t
= −A¾ +8AÞ¾: (2.12)

Thus we have from Lemma2.2thatz.·; ¾/ = G.·/¾ .
Next, lets be fixed and define

w.t/ , e−A.t−s/¾ +
∫ t

s

G.t − r /8AÞe−A.r −s/¾ dr: (2.13)

By the Fubini theorem and (2.5), it holds that∫ t

s

e−A.t−r /8AÞw.r /dr

=
∫ t

s

e−A.t−r /8AÞe−A.r −s/¾ dr

+
∫ t

s

e−A.t−r /8AÞ

∫ r

s

G.r − ¦/8AÞe−A.¦−s/¾ d¦ dr

=
∫ t

s

e−A.t−r /8AÞe−A.r −s/¾ dr

+
∫ t

s

∫ t

¦

e−A.t−r /8[AÞG.r − ¦/]8AÞe−A.¦−s/¾ dr d¦

=
∫ t

s

e−A.t−r /8AÞe−A.r −s/¾ dr

+
∫ t

s

[G.t − ¦/ − e−A.t−¦ /]8AÞe−A.¦−s/¾ d¦

=
∫ t

s

G.t − ¦/8AÞe−A.¦−s/¾ d¦ = w.t/ − e−A.t−s/¾ : (2.14)

Then the uniqueness of the solution to (2.5) yields (2.6).

Now we will prove the analyticity ofS.·/ in (1.4).

LEMMA 2.4. For any initial conditionx ∈ X, (1.3) admits a unique solutiony.·/ ∈
C.[0;∞/; X/. Moreover,S.·/ in (1.4) is an analytic semigroup with infinitesimal
generator−Ã satisfying(1.5).

PROOF. We can easily have from (2.1) and the singular Gronwall inequality that
(1.3) admits a unique solutiony.·/ ∈ C.[0;∞/; X/. On the other hand (see [5, Theo-
rem 2.2]),S.t/ is aC0-semigroup with infinitesimal generator−Ã satisfying (1.5).
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By the perturbation theory of analytic semigroups ( see [3, 8] ),

A1 , −A∗ +8∗.A∗/Þ (2.15)

also generates an analytic semigroup. In addition,D.A1/ = D.A∗/.
By (1.5), it holds that

〈−Ãx; y〉 = 〈x; A1y〉; ∀ x ∈ D.Ã/; y ∈ D.A1/: (2.16)

Thus A1 ⊆ .−Ã/∗. It follows from Lemma2.2 that A1 = .−Ã/∗ and−Ã generates
an analytic semigroup.

PROOF OF(I). Combining Theorem 2.2 in [5] and Lemma2.4yields (I).

3. A variation-of-constants formula

In this section, we will prove (II) so as to establish a variation-of-constants formula
for the evolution equation (1.1).

LEMMA 3.1. For any initial condition¾ ,

z.t/ = e−At¾ +
∫ t

0

e−A.t−s/8AÞz.s/ds +
∫ t

0

e−A.t−s/9u.s/ds (3.1)

admits a unique solutionz.·/ ∈ L1
loc[0;∞; D.AÞ//. Moreover, the solution can be

represented by

z.t/ = G.t/¾ +
∫ t

0

G.t − s/9u.s/ds; ∀ t ∈ [0;∞/: (3.2)

PROOF. The first part of the lemma can be proved similarly to Lemma2.3. Define

z̄.t/ , G.t/¾ +
∫ t

0

G.t − s/9u.s/ds; ∀ t ∈ [0;∞/: (3.3)

By (2.1) and Lemma2.1, we have that̄z.·/ ∈ L1
loc[0;∞; D.AÞ//. Therefore (3.3),

Lemma2.3and the Fubini theorem imply that∫ t

0

e−A.t−s/8AÞ z̄.s/ds =
∫ t

0

e−A.t−s/8AÞG.s/¾ ds

+
∫ t

0

∫ t

r

e−A.t−s/8AÞG.s − r /9u.r /ds dr

= [G.t/ − e−At]¾ +
∫ t

0

[G.t − r /− e−A.t−r /]9u.r /dr

= z̄.t/ − e−At¾ −
∫ t

0

e−A.t−s/9u.s/ds: (3.4)

By the uniqueness of the solution to (3.1), (3.2) follows from (3.4).
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LEMMA 3.2. For any givenþ ∈ .Þ;1/, there exists someCþ > 0 such that

‖ Ã−þ
0 AÞx‖ ≤ Cþ‖x‖; ∀x ∈ D.AÞ/: (3.5)

Denote byE.Þ; þ/ the extension of the operator̃A−þ
0 AÞ on X. Then it holds that

AÞG.t/ = Ãþ

0 AÞG.t/A−ÞE.Þ; þ/; ∀ t ∈ .0;∞/: (3.6)

PROOF. It has been proved from the proof of Lemma2.4 that Ã∗ = A∗ − 8∗ A∗Þ.
Lemma 2.1 in [5] implies A∗Þ Ã−þ

0 ∈L .X/. Obviously

〈Ã−þ
0 AÞx; y〉 = 〈x; A∗Þ[A∗ −8∗ A∗Þ]−þ0 y〉; ∀x ∈ D.AÞ/; y ∈ X; (3.7)

which yields (3.5). By (1.5) and (1.6), it holds that

AÞG.t/x = AÞG.t/A−Þ Ãþ

0 Ã−þ
0 AÞx = S.t/Ãþ

0 E.Þ; þ/x

= Ãþ

0 S.t/E.Þ; þ/x; ∀ x ∈ D.AÞ/; t ∈ .0;∞/: (3.8)

Due to the density ofx ∈ D.AÞ/ in X, (3.6) follows from (3.8).

PROOF OF(II). For any givenx ∈ X, let ¾ = A−Þx. Lemma3.1 tells us that (3.1)
admits a unique solutionz.·/ ∈ L1

loc[0;∞; D.AÞ//. ThusAÞz.·/ is the unique solution
to (1.1). Combining (1.6), (3.2) and (3.6) yields (II).
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