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Abstract

In this paper, we present a method for the construction of a robust observer-basedH∞
controller for an uncertain time-delay system. Cases of both single and multiple delays are
considered. The parameter uncertainties are time-varying and norm-bounded. Observer
and controller are designed to be such that the uncertain system is stable and a disturbance
attenuation is guaranteed, regardless of the uncertainties. It has been shown that the above
problem can be solved in terms of two linear matrix inequalities (LMIs). Finally, an
illustrative example is given to show the effectiveness of the proposed techniques.

1. Introduction

The dynamic behaviour of many physical processes inherently contains time delays
and uncertainties. Since time delays are often the main cause of the instability of
control systems, there has been increasing interest in research into robust stabilisation
for uncertain time-delay systems (see for example [3, 12, 14, 15]). Recently, by
extending state-spaceH∞ controller design methods, several authors have proposed
H∞ control methods for linear systems with delay (see for example [5, 10, 11, 13]).
Furthermore, since system uncertainties and exogenous disturbance input are unavoid-
able in modelling, theH∞ robust control problem has been studied for many years
(see for example [4, 6]). Most of these works mentioned above are based on the
assumption that the system states available are such that a memoryless state feedback
controller can be constructed to stabilise the proposed systems. However, in many
cases, it may be impossible to measure all the states of the system. Hence the problem
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of designing an observer-based robust controller for time-delay systems has received
some attention in recent years (see for example [2, 3, 16, 17]). However, to the best
of the authors’ knowledge, the problem ofH∞ control for time-delay systems using
observer techniques has not yet been fully investigated.

In this paper, we first consider the problem of designing a robustH∞ observer for
time-delay uncertain systems. We aim to design the linear state observers such that,
for all admissible parameter uncertainties, the observation process remains robustly
stable and the transfer function from exogenous disturbances to error state output
meets the prespecifiedH∞-norm upper bound constraint independently of the time
delay. The uncertainties are time-varying but allowed to meet a certain structure.
They appear in all the matrices of the state-space model.

By introducing a state observer, a memoryless controller is constructed based on
the observer states. The proof of our main results shows that the controller can not
only stabilise the proposed system but also guarantee a requiredH∞ property. A
new and simple algebraic parameterised approach is proposed, which enables us to
characterise both the existence conditions and the set of expected robustH∞ observers
for time-delay uncertain systems. We show that a desired solution is related to two
LMIs which can be solved very efficiently by the algorithms proposed by Boydet
al. [1].

2. Problem description and some preliminaries

Consider the time-delay uncertain system of the form


ẋ.t/ = [ A +1A.t/] x.t/ + [ Ad +1Ad.t/] x.t − −/

+ [B +1B.t/] u.t/ + D!.t/;

y.t/ =C1x.t/ + D1!.t/;

z.t/ = [C +1C.t/] x.t/;

(2.1)

wherex.t/ ∈ Rn is the state,u.t/ ∈ Rm is the control input,y.t/ ∈ Rr is the measurable
output, z.t/ ∈ Rs is the control output,!.t/ ∈ Ru is exogenous disturbance which
belongs toL2[0;∞/, A, Ad, B, C, C1 and D, D1 are known real constant matrices
of appropriate dimensions. Here− is a positive integer for the unknown time delay.
Also1A.t/, 1Ad.t/, 1B.t/ and1C.t/ are real-valued continuous matrix functions
representing the time-varying parameter uncertainties which satisfy the following
constraints:

1A.·/ = H1F1.·/E1; 1Ad.·/ = H2F2.·/E2;

1B.·/ = H3F3.·/E3; 1C.·/ = H4F4.·/E4;
(2.2)
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whereHi and Ei (i = 1;2;3;4) are constant matrices with appropriate dimensions.
The properly dimensioned matricesFi .·/ (i = 1;2;3;4) are unknown but norm-
bounded as

F T
i .t/Fi ≤ I ; i = 1;2;3;4:

We consider the state observer and the linear memoryless observer state feedback
control law given by

˙̄x.t/ = Ax̄.t/+ Bu.t/ + L [y.t/ − C1x̄.t/] ; (2.3)

u.t/ = −K x̄.t/; (2.4)

wherex̄.t/ ∈ Rn is the observer state,L is the observer gain matrix andK is the
controller gain matrix. Now we need to design observer (2.3) and controller (2.4)
such that the following objectives can be achieved:

.i/ the closed-loop system is asymptotically stable;
.ii/ under the zero initial state condition and for arbitrary!.t/ ∈ L2[0;∞/, z.t/

satisfies‖z.t/‖2 ≤  ‖!.t/‖2, where is a predefined constant and‖ · ‖2 denotes the
L2[0;∞/ norm.

If the above-mentioned conditions can be satisfied, then system (2.1) is said to be
asymptotically stable with anH∞-norm bound .

Before ending this section, we recall three lemmas which will be used in the proof
of our main results.

LEMMA 2.1. For anyx; y ∈ Rn, we have

±2xT y ≤ xT x + yT y: (2.5)

LEMMA 2.2. Assume that a matrixF satisfiesF T F ≤ I , then for anyz; y ∈ Rn,
we have

2zT Fy ≤ zT z + yT y: (2.6)

LEMMA 2.3 ([8]). Let A, D, E and F be real matrices of appropriate dimensions
with ‖F‖ ≤ 1. Then for any matrixP = PT > 0 and scalarž > 0 such that
P − žDDT > 0, we have

.A + DF E/T P−1.A + DF E/ ≤ AT
(
P − žDDT

)−1
A + 1

ž
ET E: (2.7)
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3. Main results

By introducing observer errore.t/ , x.t/ − x̄.t/, we get an augmented system
given by

[
ẋ.t/
ė.t/

]
=

[
A +1A.t/ − BK −1B.t/K .B +1B.t//K

1A.t/ −1B.t/K A − LC1 +1B.t/K

]

×
[

x.t/
e.t/

]
+

[
Ad +1Ad

Ad +1Ad

]
x.t − −/ +

[
D

D − L D1

]
!.t/: (3.1)

Our aim is to derive sufficient conditions for system (2.1) to be a robust stabilisation
with an H∞-norm bound .

We consider the following controller gain and observer gain:

K = BT Pc; L = P−1
o CT

1 ; (3.2)

wherePc andPo are the positive-definite matrices defined in the Lyapunov function

V [x.t/;e.t/] =
[

x.t/
e.t/

]T [
Pc 0
0 Po

][
x.t/
e.t/

]
+

∫ t

t−−
xT .s/Rx.s/ds; (3.3)

whereR is an semi-positive definite matrix.

THEOREM 3.1. Consider system(2.1) and the control parameters given by(3.2).
For a given constant >

√
2, if the following LMIs have positive-definite solutions

Pc and Po,[
AT Pc + Pc A + N1 Pc

Pc −M−1
1

]
< 0;

[
AT Po + Po A + N2 Po

Po −M−1
2

]
< 0; (3.4)

then system(2.1) is asymptotically stable with anH∞-norm bound , whereM1, M2,
N1 and N2 are defined by

M1 = H1H T
1 + H2 H T

2 + 2H3H T
3 − B BT + Ad AT

d + B ET
3 E3BT + DDT

 2 − 2
;

M2 = H1H T
1 + H2 H T

2 + H3H T
3 + Ad AT

d ;

N1 = 2ET
1 E1 + 2I + ET

2 E2 + CT
(
I − žH4 H T

4

)−1
C + 1

ž
ET

4 E4;

N2 = −2CT
1 C1 + CT

1 D1 DT
1 C1 + PT

c B
(
I + 2ET

3 E3

)
BT Pc;

wherež is a positive scalar satisfyingI − žH4 H T
4 > 0.
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PROOF. First, we consider the asymptotic stability of system (2.1). Assume that
!=0. Take the time derivative of the Lyapunov function (3.3) along the trajectory
of the augmented system (3.1) and apply Lemmas2.1 and 2.2, then after a few
manipulations, we have

V̇[x.t/;e.t/] ≤ xT .t/
[
.A − BK/T Pc + Pc.A − BK/+ Pc.B BT + AT

d Ad

+ H1H T
1 + H2H T

2 + 2H3H T
3 /Pc + K T ET

3 E3K + 2ET
1 E1 + R

]
x.t/

+ eT.t/
[
.A − LC1/

T Po + Po.A − LC1/+ Po.H1 H T
1 + H2 H T

2

+ H3H T
3 + Ad AT

d /Po + K T.I + 2ET
3 E3/K

]
e.t/

+ xT.t − −/.2I + ET
2 E2 − R/x.t − −/: (3.5)

In order to simplify the above inequality, we setR = 2I + ET
2 E2 and apply the control

parameters (3.2) to (3.5). Equation (3.5) then becomes

V̇ [x.t/;e.t/] ≤ xT.t/S1x.t/+ eT.t/S2e.t/; (3.6)

whereS1, S2 are given by

S1 = AT Pc + Pc A + Pc

(
AT

d Ad + H1H T
1 + H2H T

2

+ 2H3H T
3 − B BT + B ET

3 E3BT
)
Pc + 2ET

1 E1 + R;

S2 = AT Po + Po A + Po

(
H1H T

1 + H2 H T
2 + H3H T

3 + Ad AT
d

)
Po

+ PcB
(
I + 2ET

3 E3

)
BT Pc − 2CT

1 C1:

It is obvious that ifS1 andS2 are negative-definite then system (2.1) is asymptotically
stable.

Now we want to show that if the linear matrix inequalities (3.4) are satisfied, then
system (2.1) is asymptotically stable with anH∞-norm bound .

Consider the index

J =
∫ ∞

0

[
zT.t/z.t/ −  2!T.t/!.t/

]
dt: (3.7)

From the above-mentioned proof, we know that system (2.1) is asymptotically stable
if S1 andS2 are negative-definite. So we can conclude that for any nonzero!.t/ ∈
L2[0;∞/, the following equation can be obtained:

J =
∫ ∞

0

[
zT.t/z.t/ −  2!T.t/!.t/ + V̇[x.t/;e.t/]] dt − P∞ − Q∞; (3.8)

whereP∞ andQ∞ are defined as follows

P∞ =
[

x.∞/

e.∞/

]T [
Pc 0
0 Po

][
x.∞/

e.∞/

]
; Q∞ = lim

t→∞

∫ t

t−−
x.s/T Rx.s/ds:
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Obviously 0≤P∞ < ∞ and 0≤ Q∞ < ∞. Equation (3.8) then becomes

J ≤
∫ ∞

0

[
xT.t/.C + 1C.t//T .C +1C.t//x.t/ − 2!T.t/!.t/

+ xT.t/S1x.t/+ eT.t/S2e.t/+ 2xT.t/Pc D!.t/

+ 2eT.t/Po.D − L D1/!.t/
]

dt:

Using Lemma2.3, we have

J ≤ −
∫ ∞

0

[
x.t/
!.t/

]T

M

[
x.t/
!.t/

]
dt

+
∫ ∞

0

{
eT.t/

[
S2 + Po.DDT + L D1 DT

1 L/Po

]
e.t/

}
dt; (3.9)

whereM is defined by

M =
[− [

S1 + CT .I − žH4 H T
4 /

−1C + 1
ž

ET
4 E4

] −PcD
−DT Pc . 2 − 2/I

]

andž is a positive scalar satisfyingI − žH4 H T
4 > 0. Hence if{

M > 0;

S2 + Po

(
DDT + L D1DT

1 LT
)

Po < 0
(3.10)

are satisfied, thenJ ≤ 0 holds. Therefore‖z.t/‖2 ≤  ‖!.t/‖2 is proved.
According to [7], M > 0 is equivalent to


 2 − 2> 0;

I − žH4 H T
4 > 0;

S1 + CT
(
I − žH4 H T

4

)−1
C + 1

ž
ET

4 E4 + 1

 2 − 2
PcDDT Pc < 0:

(3.11)

Hence Theorem3.1 can be obtained from (3.10) and (3.11) using Schur comple-
ments [1]. Thus we complete the proof.

Next we consider a multi-delay uncertain system of the form


ẋ.t/ =[A +1A.t/t]x.t/ +
l∑

i =1

[Ai +1Ai .t/]x.t − hi /

+ [B + 1B.t/]u.t/ + D!.t/;

y.t/ =C1x + D1!.t/;

z.t/ =[C +1C.t/]x.t/;

(3.12)
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wherex.t/ ∈ Rn is the state,u.t/ ∈ Rm is the control input,y.t/ ∈ Rr is the measurable
output, z.t/ ∈ Rs is the control output,!.t/ ∈ Ru is exogenous disturbance which
belongs toL2[0;∞/, A, Ai , B;C;C1 andD; D1 are known real constant matrices of
appropriate dimensions. Herehi (i = 1;2; : : : ; l ) are positive integers for the time
delay. Also1A.t/, 1Ai .t/, 1B.t/ and1C.t/ are real-valued continuous matrix
functions representing the time-varying parameter uncertainties which satisfy the
following constraints:

1A.·/ = U1T1.·/V1; 1B.·/ = U2T2.·/V2;

1Ai .·/ = Hi Fi .·/Ei ; 1C.·/ = U3T3.·/V3;

whereUi , Vi , Hi and Ei are known constant matrices with appropriate dimensions.
Properly dimensioned matricesT1, T2, T3 andFi are time-varying unknown but norm-
bounded as

T T
i .t/Ti .t/ ≤ I ; i = 1;2;3; F T

i .t/Fi .t/ ≤ I ; i = 1;2; : : : ; l :

Using the same state observer and observer state feedback control law as (2.3)
and (2.4), we have the following theorem.

THEOREM 3.2. Consider system(3.12) and the control parameters given by(3.2).
For a given constant >

√
2, if the following LMIs have positive-definite solutions

Pc and Po,[
AT Pc + Pc A + N1 Pc

Pc −M−1
1

]
< 0;

[
AT Po + Po A + N2 Po

Po −M−1
2

]
< 0; (3.13)

then system(3.12) is asymptotically stable with anH∞-norm bound , whereM1, M2,
N1 and N2 are defined by

M1 = U1U
T
1 + 2U2U

T
2 +

l∑
i =1

Ai AT
i +

l∑
i =1

Hi H T + B.2V T
2 V2 − I /BT ;

M2 = U1U
T
1 + 2U2U

T
2 +

l∑
i =1

Ai AT
i +

l∑
i =1

Hi H T
i + DDT;

N1 = 2V T
1 V1 + 2

l∑
i =1

ET
i Ei + 1

ž
V T

3 V3 + CT .I − žU4U T
4 /

−1C + 2I ;

N2 = PT
c B.I + VT

2 V2/B
T Pc + CT

1 .−2I + D1DT
1 /C1;

wherež is a positive scalar satisfyingI − žU4U T
4 > 0.
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PROOF. the proof can be carried out essentially following the same lines as were
used for Theorem3.1, except we need to choose a Lyapunov function of the form

V[x.t/;e.t/] =
[

x.t/
e.t/

]T [
Pc 0
0 Po

][
x.t/
e.t/

]

+
l∑

i =1

∫ t

t−hi

[
x.s/
e.s/

]T [
2I + 2ET

i Ei 0
0 0

][
x.s/
e.s/

]
ds:

REMARK. Note that Theorems3.1and3.2 offer sufficient conditions for the exis-
tence of the expectedH∞ robust observer design method for single and multi-delay
uncertain systems due to Lyapunov theory. The result may be conservative mainly due
to the introduction of the lemmas. However, the conservativeness in Theorems3.1
and3.2 can be reduced by the design of parameterž. A delay-dependent algorithm
(see [9], for example) is expected to be developed in order to reduce the relevant
conservativeness.

4. Example

A numerical example is provided below to illustrate our main results. Assume that
the parameters of a multi-delay uncertain system (3.12) are given by

A =
[
6 2
2 5

]
; A1 =

[
1 0:2

0:1 0:4

]
; A2 =

[
0:3 0:4
0:85 0:1

]
;

1A.t/ =
[
0:06 cost 0
0:02 cost 0

]
; 1A1.t/ =

[
0 0:1 cost
0 0:05 cost

]
;

1A2.t/ =
[
0:01 sin.t/ 0
0:04 sin.t/ 0

]
; B =

[
0:8
0:5

]
; 1B.t/ =

[
0:02 sint
0:01 sint

]
;

C = [1:2;2]; 1C.t/ = [0:05 sint;0:04 sint];
C1 = [1;2:3]; D =

[
0:6
0:5

]
; D1 = [1;1:2]:

According to (2.2), decompose the uncertainties1A.t/,1Ad.t/,1B.t/and1C.t/.
We then have

Ti .t/ =
{

cost i = 1;

sint i = 2;3;
U1 =

[
0:3
0:1

]
; U2 =

[
0:2
0:1

]
;

U3 = [0:5;0:4]; V1 = [0:2;0]; V2 = V3 = 0:1;

H1 =
[
2
1

]
; H2 =

[
0:05
0:2

]
; E1 = [0;0:5]; E2 = [0:2;0]:
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Let  = 2:5 andž = 1. By Theorem3.2, solve the LMIs (3.13). We have

Pc =
[

0:7276 −0:2192
−0:2192 0:2598

]
and Po =

[
0:7835 −0:1135

−0:1135 0:6065

]
:

It is obvious thatPc and Po are positive-definite. By Theorem3.2, system (2.1) is
asymptotically stable with anH∞-norm bound .

5. Conclusion

In this paper, we have proposed a method to obtain the robustH∞ observer for linear
systems with time delays and uncertainties. We have obtained sufficient conditions
for the existence of the observer and controller by solving two LMIs. The controller
guarantees not only the asymptotic stability of the closed-loop system but also the
H∞-norm bound.
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