
ANZIAM J.45(2003), 145–152

A TWO-SIDED ITERATIVE METHOD
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Abstract

In several recent papers, a one-sided iterative process for computing positive definite solu-
tions of the nonlinear matrix equationX + A?X−1 A = Q, whereQ is positive definite, has
been studied. In this paper, a two-sided iterative process for the same equation is investi-
gated. The novel idea here is that the two sequences obtained by starting at two different
values provide (a) an interval in which the solution is located, that is,Xk ≤ X ≤ Yk for all
k and (b) a better stopping criterion. Some properties of solutions are discussed. Sufficient
solvability conditions on a matrixA are derived. Moreover, when the matrixA is normal
and satisfies an additional condition, the matrix equation has smallest and largest positive
definite solutions. Finally, some numerical examples are given to illustrate the effectiveness
of the algorithm.

1. Introduction

We consider the nonlinear matrix equation

X + A?X−1 A = Q; (1.1)

where Q is a positive definite matrix of ordern and A is a nonsingular matrix of
ordern. Equation (1.1) can be reduced to

X + A?X−1 A = I (1.2)

(see [6, 11]), whereI is the identity matrix. We can see that (1.1) is a special case of
a discrete-time algebraic Riccati equation

0 = Q + F?X F − X − .F?X B + A?/.R + B?X B/−1.B?X F + A/;
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whereQ is a positive definite matrix, see [9]. This equation can be reduced to (1.1),
by settingF = 0, B = I andR = 0.

The existence of positive definite solutions of (1.1) arises in a number of applica-
tions such as system theory, control theory, ladder networks, dynamic programming,
stochastic filtering and statistics, see [10] and references therein. Finding an efficient
numerical solution for (1.1) is a problem which has been extensively studied by sev-
eral authors (see [1, 5, 6] for example). Zhan and Xie [11] obtained necessary and
sufficient conditions for the existence of the positive definite solution of (1.2). Zhan
[10] discussed a new algorithm that avoids matrix inversion for solving (1.2). Guo
and Lancaster [7] studied several iterative forms to find the maximal positive definite
solutions of the two matrix equations (1.2) and X − A?X−1 A = Q. In [8], some
properties of a positive definite solution of the equationX + A?X−2 A = I were inves-
tigated. A set of equations of the formX + A?F.X/A = Q, whereF maps positive
definite matrices either into positive or negative definite matrices, and satisfies some
monotonicity property were studied in [4]. It was proved that the iteration method
converges to a positive definite solution under some conditions. The properties of a
positive definite solution of the matrix equationX − A?X−n A = I were investigated
in [3].

In this paper we continue to discuss (1.2) with a two-sided iterative process starting
with two different values. In Section2, we obtain a sufficient condition for the
existence of a positive definite solution (1.2). In Section3, we find a sufficient
condition for the existence of the smallest and largest positive definite solutions (1.2),
when the matrixA is normal. Some numerical examples are given in Section4
to illustrate the effectiveness of the algorithm. Conclusions drawn from the results
obtained in this paper are in Section5.

The notationX > 0 is here taken to mean thatX is a positive definite matrix and
A > B is used to indicate thatA − B > 0. Throughout the paper,‖:‖ will be the
spectral norm for square matrices unless otherwise noted.

2. The existence solution of the general case

In this section, we will obtain a sufficient condition for the existence of solutions
of the matrix equation (1.2). Also, we will prove that the two iterative processes
converge to the same limit.

THEOREM 2.1. If the spectral normq = ‖A‖ < 1=2, then (1.2) has a positive
definite solutionX, which is a limit of a two-sided iterative process.

PROOF. Let us consider the following two iterative sequences:

Xk+1 = I − A?X−1
k A; X0 = .1=2/I ; (2.1)
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Yk+1 = I − A?Y−1
k A; Y0 = I ; (2.2)

wherek = 0;1;2; : : : .
In order to prove the theorem, we shall show that

Xk < Xk+1 < Yk+1 < Yk; k = 0;1;2; : : : and (2.3)

‖Yk − Xk‖ → 0 if k → ∞: (2.4)

Let us begin with (2.1). We haveX1 = I − 2A?A. But since‖A‖ = q < 1=2, we
haveX1 > X0 = .1=2/I .

Suppose that for a fixedk the inequalityXk−1 < Xk is fulfilled. Then, using the
inductive argument and the fact thatXk > 0 for anyk, we have

X−1
k−1 > X−1

k ; I − A?X−1
k−1 A > I − A?X−1

k A:

Then we getXk < Xk+1. We can prove thatYk+1 < Yk [6] in a similar manner.
Next we shall show that

Xk < Yk and ‖Yk − Xk‖ < 1

2

(
q2

.1 − 2q2/2

)k

; (2.5)

whenk = 0;1;2; : : : . Indeed,

Y0 − X0 = .1=2/I > 0; that is, X0 < Y0;

Y1 − X1 = A?A > 0; that is, X1 < Y1:

Let us assume that for a fixedk > 1, we haveYk−1 − Xk−1 > 0. Thus we have
Yk − Xk = A?

(
X−1

k−1 − Y−1
k−1

)
A > 0, that is,Xk < Yk. Now we have

‖Yk − Xk‖ = ‖A?X−1
k−1 .Yk−1 − Xk−1/Y−1

k−1 A‖
≤ ‖A‖2‖X−1

1 ‖2‖Yk−1 − Xk−1‖
≤ q2 1

.1 − 2q2/2
‖Yk−1 − Xk−1‖

≤
(

q2

.1 − 2q2/2

)k

‖Y0 − X0‖

= 1

2

(
q2

.1 − 2q2/2

)k

;

sinceq2=.1 − 2q2/2 < 1.
So we have proved (2.3) and (2.4) hold. This implies that

lim
k→∞

Xk = lim
k→∞

Yk = X = I − A?X−1 A > 0:

The theorem is proved.
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3. The existence solution of the special case

In this section, we propose in addition thatAA? = A?A, that is, that the matrixA
is normal.

LEMMA 3.1. If the matrix A is normal, thenAX = X A, whereX is the solution
of (1.2).

PROOF. From [3, Lemma 4], we haveAXs = Xs A, s = 0;1; : : : , where the
sequence{Xs} is generated from (2.1) or (2.2). Furthermore, from Theorem2.1 the
matrix X is the limit of Xs andYs. Then the lemma is proved.

In this special case, by some matrix manipulation it can be shown that

X∞ = I + √
I − 4A?A

2
and X−∞ = I − √

I − 4A?A

2
(3.1)

are always positive definite if‖A‖ ≤ 1=2. These expressions clearly generalize the
scalar case.

THEOREM 3.2. If q = ‖A‖ < 1=2 and A is a normal matrix, then the two iterative
processes(2.1) and (2.2) converge toX∞.

PROOF. To prove the theorem, it is sufficient to show thatXk < X∞ < Yk for every
k ≥ 0 and to apply Theorem2.1.

Indeed, we have

X0 = I

2
<

I + √
I − 4A?A

2
= X∞:

Suppose that for a fixedk ≥ 1, we haveXk−1 < X∞. Hence

X−1
k−1 > X−1

∞ ;

A?X−1
k−1 A > A?X−1

∞ A;

I − A?X−1
k−1 A < I − A?X−1

∞ A:

Then we getXk < X∞. So, by induction, we have proved thatXk < X∞.
Similarly we can prove thatX∞ < Yk, k = 0;1;2; : : : . From these properties of

the two sequencesXk andYk and Theorem2.1, we getXk → X∞ andYk → X∞.
This concludes the proof of the theorem.
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If we know that X∞ (X−∞), it is easy to findX−∞ (X∞) from X∞ X−∞ =
X−∞.X∞/ = A?A or from X−∞ = I − X∞. Nevertheless it is interesting to construct
a two-sided iterative process for finding the positive definite solutionX−∞ of (1.2). In
order to do this, we rewrite (1.2) in the form

X = A.I − X/−1 A?: (3.2)

Now we shall show that

Xk+1 = A.I − Xk/
−1 A?; k = 0;1;2; : : : ; X0 = 0; (3.3)

Yk+1 = A.I − Yk/
−1 A?; k = 0;1;2; : : : ; Y0 = I =2; (3.4)

give a two-sided iterative process, which tends toX−∞.

THEOREM 3.3. If q = ‖A‖ < 1=2 and A is a normal matrix, then the two iterative
processes(3.3) and (3.4) tend toX−∞.

PROOF. In order to prove the theorem, it suffices to show that

Xk < Xk+1 < X−∞ < Yk+1 < Yk;

for k = 0;1;2; : : : . Let us start to prove thatXk < Xk+1. We have from (3.3) that

X1 = AA? > 0 = X0;

since detA 6= 0. If we now assume that for a fixedk we haveXk−1 < Xk, it is easy
to show thatXk < Xk+1 by Theorem2.1. So we get that the last inequality will be
fulfilled for everyk.

Continue withXk < X−∞. Fork = 0, the last inequality holds, becauseX0 = 0<
X−∞. Let us now suppose that for a fixedk, we haveXk−1 < X−∞. From the last
inequality we get

.I − Xk−1/
−1 < .I − X−∞/−1;

A.I − Xk−1/
−1 A? < A.I − X−∞/

−1 A?:

This leads toXk < X−∞. In such a way we prove thatXk < Xk+1 < X−∞. The proof
for X−∞ < Yk+1 < Yk is similar. The proof of Theorem3.3 is now complete.

REMARK 1. IF ‖A‖ = 1=2, it is easy to prove that

.i/ The two iterative processes (2.1) and (2.2) converge to the largest solution
which is X∞ = X0 = .1=2/I .
.ii/ If we use the two iterative processes (3.3) and (3.3), they converge to the

smallest solution which isX−∞ = Y0 = .1=2/I .
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4. Numerical experiments

In this section, the numerical examples in [10] are given to illustrate the effectiveness
of the present algorithms. In the following tables we denote".X/ = ‖X + AT X−1 A−
I ‖∞, "Xk

= ‖X∞ − Xk‖∞ and" = ‖Xk − Yk‖∞. First, we will obtain the solutionX
by the iterative methods (2.1) and (2.2) in the general case (that is,A is nonnormal).

EXAMPLE 1. We define the nonnormal matrix

A = 1

40




2 −1 3 4
7 6 −5 9
4 8 10 6

−3 5 2 8


 :

The maximum solution is

X∞ =




:946873 −:0448677 −:00670385 −:0571869
−:0448677 :898174 −:0431112 −:119047
−:00670385 −:0431112 :90855 −:0354448
−:0571869 −:119047 −:0354448 :827281


 :

Experimentally, if a scalar multiple of the matrixA is less than 35, then the equation
has no positive definite solution, but if it is greater than or equal to 36, then the equation
has a positive definite solution. Table1 gives the error analysis of Example1.

TABLE 1.

iter ".X/ ".Y/ "

2 2.70912E-02 1.08620E-02 2.34963E-02
6 3.66368E-04 7.14647E-05 1.64376E-04
10 1.96534E-06 3.71656E-07 8.52334E-07
14 9.99701E-09 1.88586E-09 4.32361E-09
18 5.06288E-11 9.54858E-12 2.18914E-12
22 2.56350E-13 4.84057E-14 1.10800E-13
26 1.33227E-15 2.22045E-16 5.55112E-16
30 1.38778E-17 0.0E00 1.38778E-17
34 0.0E00 0.0E00 1.38778E-17

EXAMPLE 2. We define the normal matrix

A =

 0:1 −0:15 −0:2598076

0:15 0:2125 −0:0649519
0:2598076 −0:0649519 0:1375


 :
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From (3.1), the maximum solution is

X∞ =

0:88729835 0:0 0:0

0:0 0:92158407 −0:01979489
0:0 −0:01979489 0:89872694


 :

Here we will use the iterative processes (2.1) and (2.2) to find the largest solution of
the matrix equation. We can obtain the same results by using the iterative processes
(3.3) and (3.4) to find the smallest solutionX−∞ = I − X∞.

TABLE 2.

iter "Xk
"Yk

"

2 1.58405E-03 2.01664E-04 1.78571E-03
4 2.56088E-05 3.25126E-06 2.88600E-05
6 4.14565E-07 5.50941E-08 4.65618E-07
8 3.98173E-08 4.17305E-08 7.51193E-09
10 4.14895E-08 4.15200E-08 1.21192E-10
12 4.15161E-08 4.15166E-08 1.95532E-12
14 4.15165E-08 4.15165E-08 3.15303E-14
16 4.15165E-08 4.15165E-08 4.44089E-16
18 4.15165E-08 4.15165E-08 1.11022E-16
20 4.15165E-08 4.15165E-08 1.11022E-16

5. Conclusion

In this paper we consider a nonlinear matrix equation (1.2). The equation can be
viewed as a natural extension of the scalar equationx+a2=x = 1. This scalar problem
is equivalent to equation'.x/ = a2, where'.x/ = x.1 − x/. This equation has a
positive solutionx so that 0< x < 1 if

a2 ≤ max'.x/ = ' .1=2/ :

In the case whenA is a normal matrix, (1.2) can be reduced toX2 − X + A?A = 0
using Lemma3.1. We introduce a two-sided recursion algorithm from which a
positive definite solution can be calculated. We calculate the extremal positive definite
solutions of the matrix equation. The numerical experiments demonstrate that the
described iterative methods are efficient. We observed that the iteration (2.1) is
equivalent to the iteration (3.3) whenX = I − X.
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The two-sided iteration method described above possesses some advantages. We
can computeXk+1 andYk+1 in parallel. We can obtain and prove thatX∞ and X−∞
are the solutions of the equation when the matrixA is normal, while this cannot be
proved for one-sided iteration methods. It is also easy to propose a stopping criteria,
using

max.‖Yk − X‖; ‖X − Xk‖/ < ‖Yk − Xk‖;

which is not applicable for one-sided iteration methods.
Here we consider the case whenA is a nonsingular. IfA is singular, the problem of

obtaining the extremal solutions is not solved. This problem is still a topic for future
research. The problem of how to compute the iterative positive definite solution of
(1.1) without calculating the matrix inversion is currently under consideration.
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