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A TWO-SIDED ITERATIVE METHOD
FOR COMPUTING POSITIVE DEFINITE SOLUTIONS
OF A NONLINEAR MATRIX EQUATION
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Abstract

In several recent papers, a one-sided iterative process for computing positive definite solu-
tions of the nonlinear matrix equatiof+ A*X~*A = Q, whereQ is positive definite, has

been studied. In this paper, a two-sided iterative process for the same equation is investi-
gated. The novel idea here is that the two sequences obtained by starting at two different
values provide (a) an interval in which the solution is located, thatiss X < Y for all

k and (b) a better stopping criterion. Some properties of solutions are discussed. Sufficient
solvability conditions on a matriA are derived. Moreover, when the mat#xis normal

and satisfies an additional condition, the matrix equation has smallest and largest positive
definite solutions. Finally, some numerical examples are given to illustrate the effectiveness
of the algorithm.

1. Introduction

We consider the nonlinear matrix equation
X+ AXTA=0Q, (1.1)

where Q is a positive definite matrix of order and A is a nonsingular matrix of
ordern. Equation {.1) can be reduced to

X+ AXTA= (1.2)

(see B, 11]), wherel is the identity matrix. We can see thdt]) is a special case of
a discrete-time algebraic &iati equation

0=Q+ F'XF—X—(F*XB+ A)(R+ B*XB) (B*XF + A),
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whereQ is a positive definite matrix, se@][ This equation can be reduced th ),
by settingF =0,B =1 andR = 0.

The existence of positive definite solutions afl arises in a number of applica-
tions such as system theory, control theory, ladder networks, dynamic programming,
stochastic filtering and statistics, sé€][and references therein. Finding an efficient
numerical solution forX.1) is a problem which has been extensively studied by sev-
eral authors (se€l[ 5, 6] for example). Zhan and Xiel[l] obtained necessary and
sufficient conditions for the existence of the positive definite solutiorl &) .( Zhan
[10] discussed a new algorithm that avoids matrix inversion for solving)( Guo
and Lancaster7] studied several iterative forms to find the maximal positive definite
solutions of the two matrix equationg.@) and X — A*X"*A = Q. In [8], some
properties of a positive definite solution of the equatios A*X-2A = | were inves-
tigated. A set of equations of the forki+ A*F(X)A = Q, whereF maps positive
definite matrices either into positive or negative definite matrices, and satisfies some
monotonicity property were studied id][ It was proved that the iteration method
converges to a positive definite solution under some conditions. The properties of a
positive definite solution of the matrix equatidh— A*X"A = | were investigated
in [3].

In this paper we continue to discuds?) with a two-sided iterative process starting
with two different values. In Sectio, we obtain a sufficient condition for the
existence of a positive definite solutiof.?). In Section3, we find a sufficient
condition for the existence of the smallest and largest positive definite solutidis (
when the matrixA is normal. Some numerical examples are given in Section
to illustrate the effectiveness of the algorithm. Conclusions drawn from the results
obtained in this paper are in Sectibn

The notationX > 0 is here taken to mean thatis a positive definite matrix and
A > B is used to indicate thah — B > 0. Throughout the papel,| will be the
spectral norm for square matrices unless otherwise noted.

2. The existence solution of the general case

In this section, we will obtain a sufficient condition for the existence of solutions
of the matrix equation1(.2). Also, we will prove that the two iterative processes
converge to the same limit.

THEOREM 2.1. If the spectral normg = ||A|| < 1/2, then(1.2) has a positive
definite solutionX, which is a limit of a two-sided iterative process.

PrROOF. Let us consider the following two iterative sequences:
Xigp =1 — AX A, Xo = (1/2)1, (2.1)
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Yier = | — AY A, Yo=1, (2.2)

wherek =0,1,2,....
In order to prove the theorem, we shall show that

X < Xk+1 < Yk+1 < Y, k= 0,12,... and (23)
Let us begin with 2.1). We haveX; = | — 2A*A. But since||Al = q < 1/2, we

haveX; > Xo = (1/2)1.
Suppose that for a fixekl the inequalityX,_; < Xy is fulfilled. Then, using the
inductive argument and the fact thdt > 0 for anyk, we have

XA > Xt = AXHAS T — AXA

Then we getX, < X¢, 1. We can prove that,,; < Y, [6] in a similar manner.
Next we shall show that

1 q? “
X < Yk and ||Yk — Xk” < E ((:I_——2q2)2> s (25)

whenk =0, 1, 2, .... Indeed,

YO — XO = (1/2)' > 0, that iS, XO < Yo,
Y, — X =AA>0, thatis, X; < Vi

Let us assume that for a fixad > 1, we haveY,_; — X,_; > 0. Thus we have
Yi — Xe = A*(X 2 — Vi) A > 0, that is, Xk < Yi. Now we have

Ve — Xl = 1A X2, (Yier — Xien) YL A
< ITAIPIXT 2 Y s — Xl

1
< gP——————|IVe1 — Xp
<q (1_2q2)2|| k-1 k-1l

?
= <(1_—2q2)2> Yo — Xoll
_i(_a Y
“2\@-2022) "
sinceq?/(1 — 29?2 < 1.
So we have proved®(3) and @.4) hold. This implies that

im Xk=k|im Yy=X=1-AX1A>0.

I
k— o0

The theorem is proved.
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3. The existence solution of the special case

In this section, we propose in addition tha = A* A, that is, that the matriXd
is normal.

LEMMA 3.1. If the matrix A is normal, thenAX = X A, where X is the solution
of (1.2).

PrROOF. From [3, Lemma 4], we haveAXs = XA, s = 0,1,..., where the
sequencég X} is generated from2 1) or (2.2). Furthermore, from Theorei1the
matrix X is the limit of X andYs. Then the lemma is proved.

In this special case, by some matrix manipulation it can be shown that

| + VT —4AA | — VT —4AA
_ IV AR and X = Y T EAA (3.1)

X
> 2 2

are always positive definite ifA|| < 1/2. These expressions clearly generalize the
scalar case.

THEOREM3.2. If g = ||A]l < 1/2and A is a normal matrix, then the two iterative
processe$2.1) and (2.2) converge toX,..

PrROOF. To prove the theorem, it is sufficient to show th&gt < X, < Y, for every
k > 0 and to apply Theorex 1
Indeed, we have

| | + 1 —4AA
Xo=z<——7 =X

Suppose that for a fixekl > 1, we haveX,_; < X,,. Hence

Xk:ll . X;ol’
AX LA > AXA,
I — AXHA< | — AX A

Then we getX, < X.. So, by induction, we have proved thét < X...

Similarly we can prove thaX,, < Yi, k =0,1,2,.... From these properties of
the two sequenceX, andY, and Theoren?.1, we getX, — X, andY, — Xg.
This concludes the proof of the theorem.
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If we know that X, (X_.), it is easy to findX_ ., (X) from X X o =
X_(Xs) = A*Aor from X_,, = | — X,,. Neverthelessiitis interesting to construct
a two-sided iterative process for finding the positive definite soluXiog of (1.2). In
order to do this, we rewritel(2) in the form

X =A(l — X)tA" (3.2)

Now we shall show that
Xepr = Al = XOtA, k=0,1,2,..., Xo=0, (3.3)
Yi= Al = YO 'A, k=012..., Yo=1/2 (3.4)

give a two-sided iterative process, which tendXtq,.

THEOREM3.3. If g = ||A]| < 1/2and A is a normal matrix, then the two iterative
processe$3.3) and (3.4) tend toX_.,.

PrOOF. In order to prove the theorem, it suffices to show that
Xk < Xip1 < Xioo < Vg1 < Yi,
fork=0,1,2,.... Let us start to prove tha&X, < X,.,. We have from8.3) that
X; = AA > 0= X,

since deA # 0. If we now assume that for a fixddwe haveX,_; < X, it is easy
to show thatX, < X1 by Theorem2.1 So we get that the last inequality will be
fulfilled for everyk.

Continue withX, < X_.. Fork = 0, the last inequality holdsgdzauseX, = 0 <
X_.- Let us now suppose that for a fixédwe haveX,_; < X_,. From the last
inequality we get

(=Xt < (=X )™
Al — X ) TA < Al = XU ) TA.

This leads toX, < X_.. In such a way we prove thad, < X1 < X_,. The proof
for X_, < Yks1 < Y is similar. The proof of Theorer®.3is now complete.

REMARK 1. IF [|A]l = 1/2, it is easy to prove that

(i) The two iterative processe&.() and @.2) converge to the largest solution
whichis X, = Xq = (1/2)1.

(i) If we use the two iterative processexd) and (3.3), they converge to the
smallest solution which iX_,, = Yo = (1/2)1.
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(6]

4. Numerical experiments

Inthis section, the numerical examplesifj[are givento illustrate the effectiveness
of the present algorithms. In the following tables we dengb) = | X + ATX 1A —
I loor €x = [ Xoo — Xklloo @aNde = || Xk — Yilloo- First, we will obtain the solutiorX
by the iterative method2(1) and @.2) in the general case (that i8,is nonnormal).

ExavPLE 1. We define the nonnormal matrix

2 -1 3
A_Lt|7 6 509
0|4 8 10 6
-3 5 2 8

The maximum solution is

946873  —.0448677 —.00670385 —.057186
X — —.0448677 .898174 —.0431112 —.119047
> | —.00670385 —.0431112  .90855 —.0354448| -
—.0571869 —.119047 —.0354448 .827281

Experimentally, if a scalar multiple of the matriis less than 35, then the equation
has no positive definite solution, but if it is greater than or equal to 36, then the equation
has a positive definite solution. Tallayives the error analysis of Example

TABLE 1.

iter

e(X)

e(Y)

&

2

2.70912E-02

1.08620E-02

2.34963E-02

6

3.66368E-04

7.14647E-05

1.64376E-04

10

1.96534E-06

3.71656E-07

8.52334E-07

14

9.99701E-09

1.88586E-09

4.32361E-09

18

5.06288E-11

9.54858E-12

2.18914E-12

22

2.56350E-13

4.84057E-14

1.10800E-13

26

1.33227E-15

2.22045E-16

5.55112E-16

30

1.38778E-17

0.0E0O0

1.38778E-17

34

0.0E00

0.0E0O0

1.38778E-17

ExavPLE 2. We define the normal matrix

|

0.1
0.15

0.2598076 —

—0.15
02125
0.0649519

—0.259807
—0.0649519] .

01375 j
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From 3.1), the maximum solution is

0.88729835 @® 0.0
Xoo = 0.0 0.92158407 —0.01979489| .
0.0 —0.01979489 (B9872694

Here we will use the iterative processeslj and @.2) to find the largest solution of
the matrix equation. We can obtain the same results by using the iterative processe

(3.3 and @3.4) to find the smallest solutioX_,, = |

TABLE 2.

~ Xa.

Exy

Ev,

&

1.58405E-03

2.01664E-04

1.78571E-03

2.56088E-05

3.25126E-06

2.88600E-05

4.14565E-07

5.50941E-08

4.65618E-07|

3.98173E-08

4.17305E-08

7.51193E-09

4.14895E-08

4.15200E-08

1.21192E-10

4.15161E-08

4.15166E-08

1.95532E-12

4.15165E-08

4.15165E-08

3.15303E-14

4.15165E-08

4.15165E-08

4.44089E-16

4.15165E-08

4.15165E-08

1.11022E-16

4.15165E-08

1.11022E-16

20 | 4.15165E-08

5. Conclusion

In this paper we consider a nonlinear matrix equatibi2)( The equation can be
viewed as a natural extension of the scalar equatipa?/x = 1. This scalar problem
is equivalent to equatiop(x) = a?, wheregp(x) = x(1 — x). This equation has a
positive solutiorx so that O< x < 1 if

a® < maxp(x) = ¢ (1/2) .

In the case wher is a normal matrix, 1.2) can be reduced tX? — X + A*A =0

using Lemma3.L We introduce a two-sided recursion algorithm from which a
positive definite solution can be calculated. We calculate the extremal positive definite
solutions of the matrix equation. The numerical experiments demonstrate that the
described iterative methods are efficient. We observed that the iter&tinig
equivalent to the iteratiorB(3) whenX = | — X.
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The two-sided iteration method described above possesses some advantages. V
can computeX,,; andY,,, in parallel. We can obtain and prove thét, and X_.,
are the solutions of the equation when the makiis normal, while this cannot be
proved for one-sided iteration methods. It is also easy to propose a stopping criteria,
using

max([|Yie — X[l [ X = Xll) < 1Yie = Xl

which is not applicable for one-sided iteration methods.

Here we consider the case whaiis a nonsingular. 1A is singular, the problem of
obtaining the extremal solutions is not solved. This problem is still a topic for future
research. The problem of how to compute the iterative positive definite solution of
(1.2) without calculating the matrix inversion is currently under consideration.

References

[1] W. N. Anderson, Jr., T. D. Morley and G. E. Trapp, “Positive solutionktc= A — BX~1B*",
Linear Algebra Appl134(1990) 53-62.

[2] B.L.Buzbee, G.H.Goluband C.W. Nielson, “On direct methods for solving Poisson’s equations”,
SIAM J. Numer. AnalZ (1970) 627—-656.

[3] S. M. El-Sayed, “On the two iteration processes for computing positive definite solutions of
equationX — A*X "A = |”, Comput. Math. Applsubmitted).

[4] S.M.El-Sayed and A. C. M. Ran, “On the iteration methods for solving a class of nonlinear matrix
equations”SIAM J. Matrix Anal. Appl(to appear).

[5] J. C. Engwerda, “On the existence of a positive definite solution of the matrix equétien
ATX1A = 1", Linear Algebra Appl194(1993) 91-108.

[6] J.C. Engwerda, A. C. M. Ran and A. L. Rijkeboer, “Necessary and sufficient conditions for the
existence of a positive definite solution of the matrix equaien A* X1 A = Q”, Linear Algebra
Appl.186(1993) 255-275.

[7] C. H. Guo and P. Lancaster, “Iterative solution of two matrix equatiofitie Mathematics of
Computatiort8 (1999) 1589-1603.

[8] I. G. Ivanov and S. M. El-Sayed, “Properties of positive definite solutions of the equitien
A*X72A = |, Linear Algebra Appl279(1998) 303-316.

[9] P. Lancaster and L. Rodmafhe algebraic Riccati equatiofOxford University Press, Oxford,
1995).

[10] X. Zhan, “Computing the extremal positive definite solutions of a matrix equat®I&\ J. Sci.
Comput.17(1996) 1167-1174.

[11] X.Zhan and J. Xie, “On the matrix equatiot- A*X"1A = |, Linear Algebra Appl247(1996)
337-345.



