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Abstract

This paper describes a SQP-type algorithm for solving a constrained maximum likelihood
estimation problem that incorporates a number of novel features. We call it MLESOL.
MLESOL maintains the use of an estimate of the Fisher information matrix to the Hessian
of the negative log-likelihood but also encompasses a secant approximationSto the second-
order part of the augmented Lagrangian function along with tests for when to use this
information. The local quadratic model used has a form something like that of Tapia’s SQP
augmented scale BFGS secant method but explores the additional structure of the objective
function. The step choice algorithm is based on minimising a local quadratic model subject
to the linearised constraints and an elliptical trust region centred at the current approximate
minimiser. This is accomplished using the Byrd and Omojokun trust region approach,
together with a special module for assessing the quality of the step thus computed. The
numerical performance of MLESOL is studied by means of an example involving the
estimation of a mixture density.

1. Introduction

There are good reasons for numerical analysts to study maximum likelihood estimation
problems. In the first place, they are a computation of primary importance in statistical
data analysis and hence in the social sciences, as well as in the more traditional areas
within the physical sciences. Many special purpose algorithms is available in the
unconstrained case, but only very few methods have been developed for the nonlinear
constrained case. Osborne [15] shows that a simple application of a Powell-Hestenes
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multiplier method, including the use of an estimate of the Fisher information matrix
while ignoring the second-order part of the constraints, retains typical features of
special purpose methods for unconstrained problems. His method has been proven to
be effective. However, there appear to us to be two important ways in which Osborne’s
method might still be improved. First, good performance of his method relies heavily
on the availability of a large number of fitting data so that the theory of large samples
can be applied. Second, the proposed fitting model is supposed to be correct. This
paper primarily attempts to improve upon Osborne’s method in these two regards
and to be more efficient than general SQP secant methods, such as Schittkowski’s
NLPQL program, which are intended for general function minimisation. The proposed
algorithm maintains the use of an estimate of the Fisher information matrix to the
Hessian of the negative log-likelihood but also encompasses a secant approximation
S to the second-order part of the augmented Lagrangian function along with tests
for when to use this information. It also uses the ideas of Tapia’s SQP augmented
scale BFGS secant method for dealing with the local quadratic model. As far as we
know, no global implementation of this kind of algorithm has yet been developed. In
this paper we include a step size control strategy to guarantee a global convergence
property. The step choice algorithm is based on minimising a local quadratic model
subject to the linearised constraints and an elliptical trust region centred at the current
approximate minimiser, together with a special module for assessing the quality of
the step thus computed. Our primary purpose here is to report the details and to give
some test results.

In Section2 we set out the problem and review some algorithms for an easy ref-
erence. Section3 briefly describes our new algorithm MLESOL. The globalisation
version of the algorithm is described in Section4, including sizing strategy for the
augmentation, model switching strategy, step size control strategy and the computa-
tion of an approximate solution to the constrained quadratic subproblem. Section5
concludes our discussion with test results.

2. Constrained maximum likelihood estimation

Computing a parameter estimate often reduces to minimising an objective function
with some constraints which incorporate additional information on the parameter
model. To be more specific, it will be useful to have a formal statement of the
problem: Letŷ1; : : : ; ŷn be independent observations, eachŷi is from a distribution
with a densityp.y | x/, where the parameterx ∈ <p is subject to the constraints
c.x/ = 0, herec.x/ = .c1.x/; c2.x/; : : : ; cm.x//T . We assume eachci .x/ is an
arbitrary twice differentiable function.

There are a variety of estimation methods which one might bring to bear on this
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problem, see Senet al. [18]. We focus on the method of maximum likelihood. In this,
one determines a maximum likelihood estimatex̂n which maximises

max
x∈<p

n∏
i =1

p.ŷi | x/ s.t. c.x/ = 0: (2.1)

For simplicity of notation, we setfi .x/ = p.ŷi | x/. Then problem equivalent to
(2.1) is

min
x∈<p

K .x/ = 1

n

n∑
i =1

− log. fi .x// s.t. c.x/ = 0: (2.2)

This is a nonlinear optimisation problem that must be solved by some iterative
technique. As is usual in many other minimisation problems we have to study the
structure of the derivatives of the objective functionK .x/ and the constraintsc.x/.

Define F.x/ = . f1.x/; : : : ; fn.x//T , T.x/ = .1= f1.x/; : : : ;1= fn.x//
T , D.x/ =

diag.1= fi .x// and letu be then-dimensional vector whose components are unity,
J.x/ be the Jacobian matrix ofF.x/ at x andM.x/ be defined by

M.x/ = 1√
n

D.x/J.x/:

Then we obtain the following expressions for∇K .x/ and∇2K .x/:

∇K .x/ = −1

n
J.x/T T.x/ = −M.x/T

(
u√
n

)
and

∇2K .x/ = M.x/T M.x/− 1

n

n∑
i =1

1

fi .x/
∇2 fi .x/: (2.3)

Most of the statistical literature only considers unconstrained problems, that is,
problems where the constraints in (2.2) are removed, see, for example, Bunch [1],
Osborne [14], Walker et al. [20], Gonglewski [8] and Gayet al. [7]. In this simple
case, two standard methods are Newton’s method and the method of scoring which
are defined by the following iterations:
Newton’s method:

xk+1 = xk − [∇2K .xk/]−1∇K .xk/; (2.4)

Method of scoring:

xk+1 = xk − [I .xk/]−1∇K .xk/; (2.5)

whereI .x/ denotes the expectationE[∇2K .x/] = E[M T.x/M.x/].
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The well-known advantage of (2.4) is that it convergesq-quadratically to the
solution if a good starting point is provided. However the methods defined by (2.4)
and (2.5) are not guaranteed to be globally convergent. Some kind of step size control
is often needed to expand the region of convergence. In optimisation algorithms, one
often exercises step size control by doing an approximate line search. Due to the
positive definiteness ofI .x/, the method of scoring yields a natural globalisation via
line search.

There are other disadvantages to (2.4) and (2.5). Newton’s method requires cal-
culation of the Hessian at each iteration, which can be quite expensive for complex
models. The method of scoring often does not have a fast local convergence property.

Despite the difficulties outlined above, many efficient special purpose computer
programs are available to solve an unconstrained maximum likelihood estimation, for
example, the structured secant DFP method by Walkeret al. [20] and the structured
secant BFGS method by Martin´ezet al. [11]. However, the situation changes if we
want to solve a constrained maximum likelihood estimation. A combination of the
Powell-Hestenes multiplier method with the method of scoring discussed above was
proposed by Osborne [15] for solving constrained parameter estimation problems.
The Powell-Hestenes multiplier method involves a sequence of minimisations of
the augmented Lagrangian function with multiplier estimates being updated after
each minimisation. The method of scoring is applied to minimise the augmented
Lagrangian function in each of the sequence of steps.

The algorithm is simple to explain and motivate. At a current iteratexk we choose
two parameters�k ∈ Rm and²k ≥ 0, and attempt to generate a new iteratexk+1 by
minimising

L P.x; �k; ²k/ = K .x/+ ²k

2
[c.x/+ �k]T[c.x/+ �k]:

The parameter�k corresponds to shifts of origin and the scalar²k controls the size of
the penalty. In the following, for simplicity of notation we will drop the subscriptsk
and replace the subscriptsk + 1 by+. Sometimes we need to use the superscript.i /
to denote thei -th component of a vector.

In fact it is more convenient to define½.i / = ²�.i /, i = 1;2; : : : ;m, and ignore the
term ²

2

∑m
i =1.�

.i //2 (independent ofx), giving the augmented Lagrangian function

L.x; ½; ²/ = K .x/+ ½Tc.x/+ ²

2
c.x/Tc.x/:

Hence, given a multiplier estimate½ ∈ Rm, the next iteratex+ can also be obtained by
solving

min
x∈Rp

L.x; ½; ²/: (2.6)
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We now discuss how to solve the subproblem (2.6) in each Powell-Hestenes
iteration. Notice that if we defineA.x/ to be the Jacobian matrix ofc.x/ by
A.x/ = (

@ci .x/=@xj

)
and using (2.3), we have the expressions for∇x L.x; ½; ²/

and∇2
x L.x; ½; ²/

∇x L.x; ½; ²/ = ∇K .x/+ A.x/T [½+ ²c.x/]
and

∇2
x L.x; ½; ²/ = ∇2K .x/+ ²A.x/T A.x/+

m∑
i =1

[½.i / + ²ci .x/]∇2ci .x/

= C.x/+ S.x; ½; ²/; (2.7)

where

C.x/ = M.x/T M.x/+ ²A.x/T A.x/ (2.8)

and

S.x; ½; ²/ = −1

n

n∑
i =1

1

fi .x/
∇2 fi .x/+

m∑
i =1

[½.i / + ²ci .x/]∇2ci .x/:

Therefore, in addition to making a precise convergence test possible, havingaccurate
Jacobian matricesJ.x/ and A.x/ means that a good approximation to a portion of
the Hessian is available as a by-product of the gradient computation. Note that the
second-order termS.x; ½; ²/ requires the calculation ofn + m (expensive) Hessian
matrices. In fact there are some problems where it is often possible to ignore the
second-order termS.x; ½; ²/ of the Hessian.

Let ½̂n be the corresponding multiplier of (2.2) at the solution̂xn. Notice that, at the
solution x̂n, ²

∑m
i =1 ci .x̂n/∇2ci .x̂n/ = 0. In addition, whenn is large and the fitting

model is correct, one can show that (see Osborne [15]) the following two probability
quantities hold:P

(
limn→∞ ½̂n = 0

) = 1 and

P

(
lim

n→∞

n∑
i =1

1

fi .x̂n/
∇2 fi .x̂n/ = 0

)
= 1:

Hence, whenx is close to the solution̂xn andn is large enough, the second-order term
S.x; ½; ²/ of the Hessian can be neglected under appropriate conditions. Based on
these arguments, Osborne [15] suggests minimising (2.6) by the iterative procedure

x0 = x; xj +1 = xj + Þ j dj ; j = 0;1;2; : : : ;

wheredj solves

C.xj /dj = −∇x L.xj ; ½; ²/ (2.9)

andÞ j is the step size by doing an approximate line search. He sets the last iteratexjk

to x+.
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It is worth mentioning thatdj produced by (2.9) is always a descent direction

dT
j ∇x L.xj ; ½; ²/ = −.∇x L.xj ; ½; ²//

TC.x/−1∇x L.xj ; ½; ²/ < 0

from the positive definiteness ofC.x/. Hence this method yields a natural globalisation
via line search.

Since (2.9) is the system of normal equations of the linear least squares problem

min
d∈Rp

∥∥∥∥[√²A.xj /

M.xj /

]
d +

[
½=

√
² + √

²c.xj /

−u=
√

n

]∥∥∥∥2

2

; (2.10)

it is better to obtaindj from a QR decomposition of the matricesM.xj / and A.xj /.
However the system (2.10) is often ill-conditioned when² is large. This is the typical
case (the recommended value for² in Osborne [15] is

√
n).

However, there are some cases in which the second-order termS.x; ½; ²/ can not
be neglected. An alternative is to approximate the Hessian via a secant update, for
example, the BFGS formula. Examination of (2.7) reveals that such an approach is
tantamount to discarding the useful first-order termC.x/ (2.8) at each step. This
may affect efficiency. Another approach is to augment the matrixC.x/ by adding
an approximation to the second-order termS.x; ½; ²/. This kind of structured secant
methods was also used by Denniset al. [3] for nonlinear unconstrained least squares
problems. Since we also need the notation of structured secant methods in order to
explain our ideas in the next section, we consider the following principle for using
additive structure; also see Engelset al. [6].

Assume that, for a functionh.x/,

∇2h.x/ = H1.x/ + H2.x/; (2.11)

whereH1.x/ is inexpensive to compute and symmetric. GivenB = H1.x/+ W as an
approximation to∇2h.x/, whereW is a secant approximate toH2.x/, let x+ = x + s.
The question is how to updateB to give B+ such thatB+ is a good approximant to
∇2h.x+/. In doing this, we first updateW by a secant approximantW+ and ask it to
satisfy the secant equationW+s = yp, whereW+ is intended to approximateH2.x+/
andyp is an approximation ofH2.x+/s. Then we choose

B+ = H1.x+/+ W+ (2.12)

as an approximation of∇2h.x+/. In order to ensure thatB+ has a property of least-
change secant update, we updateW as follows: let

y = H1.x+/s + yp (2.13)
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be an approximation of∇2h.x+/s and

Bs = H1.x+/+ W (2.14)

be an approximation of∇2h.x+/. Then we define

W+ = W + U .s; yp;W; v.s; y; Bs//; (2.15)

whereU is a secant update defined forvTs 6= 0:

U .s; y; B; v/ = .y − Bs/vT + v.y − Bs/T

vT s
− .y − Bs/T svvT

.vT s/2
: (2.16)

The scalev usually depends ons, y and B. We will have occasion to use both
the notationv andv.s; y; B/; the former will be used unless we feel it is important
to emphasise the role of the parameter. We prefer to use the BFGS update which
corresponds to the following choices:

vBFGS = vBFGS.s; y; B/ = y + ¦ Bs; ¦ =
√

yTs

sT Bs
: (2.17)

With the above procedure, one can show thatB+ defined by (2.12) has the following
update formula:B+ = Bs + U .s; y; Bs; v.s; y; Bs//.

One could apply the structure principle (2.11)–(2.17) to the Hessian of the aug-
mented Lagrangian function (2.7) with H1.x/ = C.x/, H2.x/ = S.x; ½; ²/ and aug-
mentC.x/ in (2.9) by adding an approximation to the second-order termS.x; ½; ²/.
In this paper we refer to this as the augmented version of Osborne’s method.

Exploiting this structure within the framework of the Powell-Hestenes multiplier
method may be worthwhile. However, compared with the performance of the proposed
SQP-type algorithm in the next section, the improvement from this approach looks
less attractive as explained below.

3. New algorithms based on SQP-type methods

Based on its good numerical performance, we prefer to use a SQP-type method
to solve problem (2.2). Compared with SQP-type methods, the Powell-Hestenes
multiplier method is less attractive, because at each step it may take several inner
iterations to do unconstrained minimisation in order to findx+ and hence needs more
work. Another reason lies in its slow convergence rate. Before we present our new
algorithm, we would like to introduce some known SQP methods.

Define the Lagrangian function associated with (2.2) by

l .x; ½/ = K .x/+ ½T c.x/: (3.1)
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At the current iteratex, the SQP Lagrangian secant method is characterised by the
iterative procedure

x+ = x + s; yl = ∇xl .x+; ½+/ − ∇xl .x; ½+/;

½+ = ½+ Ž½; Bl
+ = Bl + U

(
s; yl ; Bl ; vBFGS

)
;

(3.2)

whereU .s; y; B; v/ is defined as in (2.16), s andŽ½ are respectively the solution and
the multiplier associated with the solution of the quadratic program

min
s∈Rp

∇xl .x; ½/T s + 1

2
sT Bl s s.t. c.x/+ A.x/s = 0;

whereBl is intended to be an approximation to∇2
xl .x; ½/.

The deficiency of the SQP Lagrangian method is that the local convergence theory
requires∇2

xl .x̂n; ½̂n/ to be positive definite and yet satisfaction of this condition is
not guaranteed by standard assumptions, under which the updateB may lose the
positive definiteness property even if the starting matrixB0 is the identity matrix.
To circumvent the lack of positive definiteness of∇2

xl .x̂n; ½̂n/, one could replace the
Lagrangian function (3.1) with the augmented Lagrangian function. Recall that the
augmented Lagrangian function associated with (2.2) is

L.x; ½; ²/ = l .x; ½/ + ²

2
c.x/Tc.x/:

Observe that the Hessian of the augmented Lagrangian method is

∇2
x L.x; ½; ²/ = ∇2

xl .x; ½/+ ²A.x/T A.x/+ ²

m∑
i =1

ci .x/∇2ci .x/: (3.3)

At a solution.x̂n; ½̂n/, we have

∇2
x L.x̂n; ½̂n; ²/ = ∇2

xl .x̂n; ½̂n/+ ²A.x̂n/
T A.x̂n/ (3.4)

from the fact thatci .x̂n/ = 0 for i = 1; : : : ;m.
One can see from (3.4) that for any augmentation parameter² greater than a

threshold valuê², ∇2
x L.x; ½; ²/ is positive definite at the solution.x̂n; ½̂n/. Using y

as a generic term and denoting different choices ofy by different superscripts, ify
is defined to beyL = ∇x L.x+; ½+; ²/ − ∇x L.x; ½+; ²/, we can guarantee that near
the solutionsT.yL/ > 0 for ² sufficiently large such that the BFGS secant updateB
shares the hereditary positive definiteness property.

We arrive at the SQP augmented Lagrangian secant method, given by the iterative
procedure

x+ = x + s; yL = ∇x L.x+; ½+; ²/− ∇x L.x; ½+; ²/;

½+ = ½+ Ž½; BL
+ = BL + U

(
s; yL; BL; vBFGS

)
;
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whereU .s; y; B; v/ is defined as in (2.16), s andŽ½ are respectively the solution and
the multiplier associated with the solution of the quadratic program

min
s∈Rp

∇x L.x; ½; ²/Ts + 1

2
sT BLs s.t. c.x/+ A.x/s = 0: (3.5)

In (3.5), BL is intended to be an approximation to∇2
x L.x; ½; ²/.

Though theoretically attractive, this alternative has serious practical problems.
First, ²̂ is not knowna priori. Secondly, the attempt to use large² seems to present
severe numerical problems; see Tapia [19] and Nocedalet al. [12].

It is worth noting that at the solution the Hessian of the augmented Lagrangian
function (3.3) displays significant structure in that there is a clear separation between
the first- and second-order terms. The term

∑m
i =1 ci .x/∇2ci .x/ is responsible for the

bad fit in the SQP augmented Lagrangian secant methods because it is incompatible
with the satisfaction of linearised constraints, see Tapia [19]. Therefore we use
∇2

xl .x; ½/ + ²A.x/T A.x/ to approximate the Hessian of the augmented Lagrangian
∇2

x L.x; ½; ²/ by ignoring the term
∑m

i =1 ci .x/∇2ci .x/. If we relate this observation to
the structure principle (2.11)–(2.17) with H1.x/ = ²A.x/T A.x/, H2.x/ = ∇2

xl .x; ½/
and useyl defined as in (3.2) to approximate∇2

xl .x; ½/s, then we get the following
baseline algorithm (we replaceB andW by BL andBl , respectively) due to Tapia [19].

ALGORITHM 3.1 (Tapia [19]).

Step 1. Givenx, ½, Bl andBL (= Bl + ²A.x/T A.x/).
Step 2. Compute the solution.s; Ž½/ of the QP-subproblem

min
s∈Rp

∇x L.x; ½; ²/Ts + 1

2
sT BLs s.t. c.x/+ A.x/s = 0:

Step 3. Set

x+ = x + s; Bs = ²A.x+/A.x+/+ Bl ;

½+ = ½+ Ž½; vL = vBFGS.s; yLs; Bs/;

yp = yl ; Bl
+ = Bl + U .s; yp; Bl ; vL/;

yLs = yp + ²A.x+/T A.x+/s; BL
+ = Bl

+ + ²A.x+/A.x+/:

The following proposition is useful in exploiting the structure of Algorithm3.1.
We represent it to fit our present need.

PROPOSITION3.1. Suppose thatBl is positive definite onN.x/ = {s : A.x/s = 0}.
Then the SQP augmented Lagrangian secant method which uses

BLs = Bl + ²A.x/T A.x/

as an approximation to∇2
x L.x; ½; ²/ generates the same iterate as the SQP La-

grangian secant method that usesBl as an approximation to∇2
xl .x; ½/.
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Applying Proposition3.1, we know that under appropriate conditions, Algo-
rithm 3.1 is equivalent to the following Algorithm3.2 which was called the SQP
augmented scale Lagrangian secant algorithm by Tapia [19]. However, from a prac-
tical point of view, their performances can be different. The lines differing from
Algorithm 3.1are in boldface.

ALGORITHM 3.2 (Tapia [19]).

Step 1. Given x, λ, Bl .
Step 2. Compute the solution.s; Ž½/ of the QP-subproblem

min
s∈Rp

∇x l(x, λ)T s+ 1
2

sT Bl s s.t. c.x/+ A.x/s = 0:

Step 3. Set

x+ = x + s;

½+ = ½+ Ž½;

yp = yl ;

yLs = yp + ²A.x+/T A.x+/s;

Bs = ²A.x+/T A.x+/+ Bl ;

vL = v.s; yLs; Bs/;

Bl
+ = Bl + U .s; yp; Bl ; vL/:

It is worth noting that Algorithm3.2could be viewed as an SQP Lagrangian secant
method, where only the part of the secant update corresponding to scale was changed.
This change of scale seems to be important for updates which require a positive definite
Hessian approximation, which has been confirmed by our numerical experiments.

If we have additional structure in∇2
xl .x; ½/ or ∇2 f .x/, as is the case in the equality

constrained maximum likelihood estimation, we can apply the structure principle
(2.11)–(2.17) to also incorporate this available part into the algorithm to obtain a
better approximation. This idea has been exploited by Huschens [9] for solving
nonlinear least squares problems with equality constraints. However, Huschens’s
method is restricted to a local framework.

Recall from (2.7) that the Hessian of the augmented Lagrangian function consists of
two parts: one part isC.x/ = M.x/T M.x/+²A.x/T A.x/ containing first-order terms
and the other is the second-order termS.x; ½; ²/. One can apply the structure principle
(2.11)–(2.17) to this setting withH1.x/ = C.x/, H2.x/ = S.x; ½; ²/. Before we give
our main results, we have to discuss the choice ofyp that is used to approximate
S.x+; ½+; ²+/s.

Recall thatF.x/, T.x/, J.x/ andM.x/ have been defined in Section2 and

S.x; ½; ²/ = −1

n

n∑
i =1

1

fi .x/
∇2 fi .x/+

m∑
i =1

½.i /∇2ci .x/+ ²

m∑
i =1

ci .x/∇2ci .x/: (3.6)
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First, note that whenx andx+ are close to the solution̂xn,

m∑
i =1

½.i /+ ∇2ci .x+/s =
m∑

i =1

½.i /+ [∇ci .x+/− ∇ci .x/] + O.‖s‖2
2/

= [A.x+/ − A.x/]T½+ + O.‖s‖2
2/

≈ [A.x+/ − A.x/]T½+ (3.7)

and
n∑

i =1

1

fi .x+/
∇2 fi .x+/s =

n∑
i =1

1

fi .x+/
[∇ fi .x+/− ∇ fi .x/] + O.‖s‖2

2/

= [J.x+/− J.x/]T T.x/+ O.‖s‖2
2/

≈ [J.x+/− J.x/]T T.x/: (3.8)

Secondly, we have at the solutionx̂n

²

m∑
i =1

ci .x̂n/∇2ci .x̂n/ = 0: (3.9)

Substituting (3.7) and (3.8) into (3.6) and ignoring²
∑m

i =1 ci .x/∇2ci .x/ due to (3.9),
we obtain

S.x+; ½+; ²+/s ≈ −1

n
[J.x+/− J.x/]T T.x+/+ [A.x+/− A.x/]T½+:

Therefore we choose

yp
1 = −1

n
[J.x+/− J.x/]T T.x+/+ [A.x+/− A.x/]T½+

as our approximation toS.x+; ½+; ²+/s.
An alternative simple formulation for an approximation toS.x+; ½+; ²+/s is derived

by ignoring the term

1

n

n∑
i =1

1

fi .x+/
∇2 fi .x+/;

as well as the term²
∑m

i =1 ci .x/∇2ci .x/, yielding

yp
2 = [A.x+/− A.x/]T½+:

Now we are ready to state our SQP augmented Lagrangian structured secant algo-
rithm, which we call Algorithm3.3(we replaceB andW by BLs andBls, respectively).
This algorithm is analogous to Algorithm3.1 but pays attention to the structure of
the Hessian of the objective function. The lines differing from Algorithm3.2 are in
boldface.
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ALGORITHM 3.3.

Step 1. Given x, λ, Bls and BLs = Bls + M (x)T M (x) + ρ A(x)T A(x).
Step 2. Compute the solution.s; Ž½/ of the QP-subproblem

min
s∈Rp

∇x L(x, λ, ρ)T s+ 1
2

sT BLss s.t. c.x/+ A.x/s = 0:

Step 3. Set

x+ = x + s; yLs = yp + M (x)T M (x)s+ ρ A(x+)T A(x+)s;

½+ = ½+ Ž½; Bs = M (x+)T M (x+) + ρ A(x+)T A(x+) + Bls;

yp = yp
1 ; Bls

+ = Bls + U (s, yp, Bls, vLs);

vLs = v(s, yLs, Bs); B Ls
+ = Bls

+ + M (x+)T M (x+) + ρ A(x+)T A(x+):

As with Algorithm3.2, Proposition3.1motivates the following algorithm by drop-
ping the term²A.x/T A.x/ from the matrixBLs, which we call Algorithm3.4 (we
replaceW by Bls). This algorithm is analogous to the SQP augmented scale structured
Lagrangian secant method by Huschens [9]. The lines differing from Algorithm3.3
are in boldface.

ALGORITHM 3.4.

Step 1. Given x, λ, Bls and B = Bls + M (x)T M (x).
Step 2. Compute the solution.s; Ž½/ of the QP-subproblem

min
s∈Rp

∇x l(x, λ)T s+ 1
2

sT Bs s.t. c.x/+ A.x/s = 0: (3.10)

Step 3. Set

x+ = x + s; yLs = yp + M.x/T M.x/s + ²A.x+/T A.x+/s;

½+ = ½+ Ž½; Bs = M.x+/T M.x+/ + ²A.x+/T A.x+/+ Bls;

yp = yp
1 ; Bls

+ = Bls + U .s; yp; Bls; vLs;

vLs = vBFGS.s; yLs; Bs/; BLs
+ = Bls

+ + M (x+)T M (x+):

Naturally, Algorithm3.4can be interpreted as a structured version of Tapia’s SQP
augmented scale Lagrangian secant method. However, the structure of the objective
function is also exploited here. It shares the advantage that the augmentation parameter
² only appears in the scalev but also incorporates all inexpensive first-order parts
explicitly. This algorithm will be the point of interest for the rest of this work.

In Algorithm 3.4, if we set Bls ≡ 0 at each iteration, then we get a SQP Gauss-
Newton algorithm

min
x∈Rp

∇xl .x; ½/
T s + 1

2
sT [M.x/T M.x/]s s.t. c.x/+ A.x/s = 0; (3.11)
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which is akin to using the Gauss-Newton method to solve{
∇xl .x; ½/ = 0;

²c.x/ = 0;

but it pays more attention to the constraintsc.x/ if a large penalty parameter² is used.
This SQP Gauss-Newton algorithm also has a form analogous to (2.6) in Osborne’s
multiplier method, except that we now update the variablesx and½ simultaneously,
which we believe should work better.

Similar to the case of Algorithm3.2, see Tapia [19]; one can show how the positive
definiteness ofB produced by Algorithm3.4 is retained.

PROPOSITION3.2. AssumeBls + M.x+/T M.x+/ is symmetric and positive definite
on N.x+/ and [yp + M.x+/T M.x+/s]Ts > 0 for s ∈ N.x+/. Let the augmentation
parameter² be sufficiently large andvLs be such thatU .s; yLs; Bs; vLs/ can be viewed
as an update of the Broyden convex class, that is,

vLs = yLs + −Bss; − ∈
[
0;
√

sT yLs=sT Bss
]
:

Then the matrixB+ is positive definite onN.x+/.

4. Implementation of Algorithm 3.4

Our numerical experiments shows that for good performance of Algorithm3.4, a
careful implementation is needed. We implement Algorithm3.4 described above by
including several additional interesting features.

• A trust-region strategy is used to make the algorithm globally convergent.
Instead of subproblem (3.10), at each iteration the quadratic modelq.s; ½; B/

min
s∈Rp

∇xl .x; ½/T s + 1

2
sT Bs s.t. c.x/+ A.x/s = 0; ‖s‖2 ≤ 1 (4.1)

is solved for the solution.s̃; Ž½̃/, whereB = M.x/T M.x/+ Bls or B = M.x/T M.x/,
depending on which works better. A scaled trust region would clearly enhance the
performance of the inner trust region iteration, but this has not yet been implemented.
To avoid an empty feasible set because of the restricted step size, some modifications
are needed. This will be discussed in Section4.1.

• A model switching strategy is developed. Our software implementation in-
cludes two quadratic models. It sometimes uses the SQP Gauss-Newton algorithm
(3.11) instead of the augmented algorithm (4.1). Because of the above mentioned



104 Z. F. Li, M. R. Osborne and T. Prvan [14]

difficulty in approximatingS.x; ½; ²/ by finite differences and because the SQP
Gauss-Newton algorithm tends to do well initially, we use the zero matrix for the
initial matrix Bls

0 , so that initially the two algorithms are equivalent. Regardless of
which was used to make the step fromx to x+, the update ofBls to Bls

+ is always made,
but the step fromx to x+ is calculated using the algorithm whose predicted reduction
best matches the actual reduction fromx to x+. The first trial step is calculated using
the currently preferred algorithm whose predicted reduction best matches the actual
reduction in the last iteration. When the first trial step fails, we test the alternate model
to see if it would have predicted the observed failure at that point. If so, the alternate
algorithm gets a chance to make a trial step with the same trust radius. If we do not
decide to try changing models, or if the alternate algorithm fails to suggest a more
successful step with the same trust radius, then we assume for the duration of the
present iteration that our current algorithm preference is correct. We then decrease
the trust radius untilx+ is determined or the algorithm fails.

Typically, this adaptive modelling causes us to use SQP Gauss-Newton steps until
Bls builds us useful second-order information, and then to switch to augmented steps
defined by (4.1).

Finally, before each updateBls in Algorithm 3.4, Bls is multiplied by thesizing
factor

 = min

{
sT yp

sT Blss
;1

}
;

we do this as in Denniset al. [3].

4.1. Solving trust region subproblems We prefer the approach of Byrd and
Omojokun for solving the trust region subproblem (4.1). The algorithm decomposes
each constrained SQP-subproblem (4.1) into two smaller trust region subproblems
which are easier to solve. This makes the Byrd-Omojokun method attractive. This
method was also exploited for solving large scale problems by Laleeet al. [10].
However, as is well-known, restricting the size of the step by‖s‖2 ≤ 1 may preclude
us from satisfying the linear constraintsc.x/ + A.x/s = 0. Therefore Byrd and
Omojokun first compute a step that lies well within the trust region and that satisfies
the linear constraints as much as possible. This is done by defining a relaxation
parameter� ∈ .0;1/ and computing a stepv that solves the vertical (or normal)
subproblem

min
v∈Rp

‖A.x/v + c.x/‖2 s.t. ‖v‖2 ≤ �1: (4.2)

This problem can have many solutions. Among these solutions the most interesting is
that which lies in the range space ofA.x/T . This allows us to completely decouple this
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subproblem from the next one. In the following, we will use the notationA andc to
denoteA.x/ andc.x/, respectively, and the same rules carry over to other quantities.
Also we denote∇xl .x; ½/ and the matrixBls + M.x/T M.x/ or M.x/T M.x/ by g and
B, respectively.

This algorithm is designed so that the full steps need not move any closer to the
feasible manifold thanv does, so we next reformulate (4.1) as

min
s∈Rp

sT g + 1

2
sT Bs s.t. As = Av; ‖s‖2 ≤ 1: (4.3)

This problem, unlike (4.1), has a nonempty feasible region because it already con-
tainsv. We solve fors by seeking a step complementary tov. To this end, we compute
a p × .p − m/ matrix Z whose columns form the orthogonal basis for the null space
of A such thatAZ = 0 andZT Z = I , and we define the total step of the algorithm as
s = v + Zu, where the vectoru ∈ Rp−m is yet to be determined. Substituting fors in
(4.3), noting thatv andZu are orthogonal, and ignoring constant terms, we obtain

min
u∈Rp−m

uT [ZT.g + Bv/] + 1

2
uT ZT B Zu s.t. ‖u‖2 ≤

√
12 − ‖v‖2

2:

If we defineg̃ = ZT.g + Bv/, B̃ = ZT B Z and1̃ = √
12 − ‖v‖2

2, then we get the
following equivalent system

min
u∈Rp−m

h.u/ = uT g̃ + 1

2
uT B̃u s.t. ‖u‖2 ≤ 1̃: (4.4)

Note that this has the same form as a trust region step in an unconstrained algorithm.
We use the dogleg method for approximately solving the trust region problem (4.4)
because the dogleg method requires the matrixB̃ to be positive definite. Therefore,
when B̃ is not positive definite, we recommend changingB̃ to B̃ + ¼c I , where
¼c > 0 is not much larger, ideally, than the smallest¼ that will makeB̃ +¼I positive
definite and reasonably well conditioned. Procedures for doing this can be found in
Algorithm A5.5.1 of Denniset al. [4]. For simplicity of notation, we still usẽB to
denote the resulting matrix if necessary.

Cauchy point. The Cauchy pointucp of (4.4) is defined as the minimiser ofh.u/ in
the direction of steepest descent atu = 0, subject to the trust constraint. Therefore
we have

ucp = −Þ̃ g̃; (4.5)

where

Þ̃ =
{
.g̃T g̃/=.g̃T B̃g̃/ if .g̃T g̃/3=2=.g̃T B̃g̃/ ≤ 1̃;

1̃=‖g̃‖2 otherwise
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and the Newton stepun = −B̃−1g̃. The dogleg path consists of the two segments from
u = 0 tou = ucp and fromu = ucp to u = un. The dogleg method finds the minimiser
along this path subject to‖u‖2 ≤ 1̃. Sinceh decreases monotonically along the path,
we simply find the intersection point with the trust region boundary, or we use the
Newton step if the path lies entirely inside the trust region. We denote the solution of
this horizontal (or tangential) subproblem byû, and define the total step as

ŝ = v + Zû; Ž̂½ = −.AAT /−1 A.g + Bŝ/: (4.6)

We then sets = ŝ, Ž½ = Ž̂½, x+ = x + s, ½+ = ½+ Ž½, providedx+ gives a satisfying
reduction in the merit function; otherwise, we change models or retain our current
model and reduce the trust region to compute a new trial step.

Let us reiterate our strategy to solve the trust region subproblem (4.2). It is easy to
see that it is equivalent to the following problem:

min
v∈Rp

vT ATc + 1

2
vT AT Av s.t. ‖v‖2 ≤ �1: (4.7)

Comparing (4.7) with the formulation (4.4), we see thatu = v, B̃ = AT A is positive
semidefinite,1̃ = �1 and g̃ = AT c. Substituting into (4.5), we obtain the Cauchy
point vcp = −ÞAT c, where

Þ =
{

‖AT c‖2
2=
(
cT A.AT A/AT c

)
if ‖AT c‖3

2=
(
cT A.AT A/AT c

) ≤ �1;

�1=‖ATc‖2 otherwise:

To formulate a dogleg method for (4.7) we need to define the Newton step. Since we
want the solutionv to lie in the range space ofAT , we choose the Newton step as
the shortest step in the whole manifold of minimisers minv∈Rp vT AT c + 1

2v
T AT Av,

which is uniquely given byvn = −AT .AAT /−1c. Together,vcp andvn define a dogleg
method for the problem (4.7).

4.2. Merit function and choice of penalty parameterρ. Let .ŝ; Ž̂½/ be the step
computed by the above procedure using the currently preferred model; see (4.6). The
merit function is used to decide whether the stepŝ makes sufficient progress toward
the solution of the problem (2.1). We follow the idea in El-Alem [5] and use as a merit
function the augmented Lagrangian

�.x; ½; ²/ = K .x/+ ½T c.x/+ ²

2
c.x/T c.x/: (4.8)

The actual reduction in the merit function as we go from.x; ½/ to .x + ŝ; ½+ Ž̂½/

is given by ared= �.x; ½; ²/− �.x + ŝ; ½+ Ž̂½; ²/.
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We can write

ared= l .x; ½/ − l .x + ŝ; ½+ Ž̂½/+ ²

2

[‖c.x/‖2
2 − ‖c.x + ŝ/‖2

2

]
:

Let us replaceK .x/ by the model objective (4.3) with an augmentation termK which
is the estimate ofK .x/ at x and linearise the constraints in (4.8) and the multiplier½
to give the model merit function at .x; ½/

 .s; Ž½; ²/ = K + sT g + 1

2
sT Bs+ .½+ Ž½/T[c + As] + ²

2
‖c + As‖2

2:

We now define the predicted reduction pred in the model merit function by

pred=  .0;0; ²/−  .ŝ; Ž̂½; ²/

= −ŝT g − 1

2
ŝT Bŝ − Ž̂½T .c + Aŝ/+ ²

2

[‖c‖2
2 − ‖c + Aŝ‖2

2

]
:

For convenient presentation of our model switching strategy, we useq.s; ½; B/
and .s; Ž½; ²/ to denote the currently preferred model and its model merit function,
respectively. We also useqq.s; ½; Ba/ for the alternate model and a.s; Ž½; ²/ for the
corresponding model merit function.

We accept the step and setx+ = x + ŝ and½+ = ½+ Ž̂½, if

ared=pred≥ �1; (4.9)

where�1 ∈ .0;1/ is a small fixed constant.
If the step is rejected, we first test whether it might be useful to try changing models,

but only if this is the first time through (4.9) in the current iteration. If

| .ŝ; Ž̂½; ²/− �.ŝ; Ž̂½; ²/|
| a.ŝ; Ž̂½; ²/− �.ŝ; Ž̂½; ²/| > 1:5 (4.10)

then we change our model preference with the same trust radius and penalty parameter
² and return to test (4.9); otherwise we retain our current model preference and
decrease the radius of the trust region by picking

1+ ∈ [Þ1‖ŝ‖2; Þ2‖ŝ‖2

]
;

where 0< Þ1 < Þ2 < 1.
If the step is accepted, then the trust region radius is updated by comparing the

value of ared with pred. Namely, if�1 ≤ ared=pred< �2 where�2 ∈ .�1;1/, then
the radius of the trust region is updated by1+ = min[1;Þ3‖ŝ‖2], whereÞ3 > 1.
However, if ared=pred≥ �2, then we increase the radius of the trust region by setting
1+ = min[1∗;max.1; Þ3‖ŝ‖2/], where1∗ is a positive constant. This can be sum-
marised in Scheme4.1.
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SCHEME 4.1.
Step 1. Set chanmodel= false;
Step 2. If ared=pred< �1, then

If (4.10) is true and chanmodel== false, then
chanmodel= true
setq.s; ½; B/ = qa.s; ½; Ba/

recompute.ŝ; Ž̂½/ by solvingq.s; ½; B/
return to Step 2

Else
set1 ∈ [Þ1‖ŝ‖2; Þ2‖ŝ‖2]
If 1 > 10−8, then

chanmodel= true
return to Step 2

Elseexit
Else if �1 ≤ ared=pred< �2, set

x+ = x + ŝ
½+ = ½+ Ž½

1+ = min[1;Þ3‖ŝ‖2]
Elseset

x+ = x + ŝ
½+ = ½+ Ž½

1+ = min[1∗;max.1; Þ3‖ŝ‖2/]
Our numerical testing suggests that the following values give good performances:

�1 = 0:1; Þ1 = Þ2 = 0:5; 10 = 1;

�2 = 0:75; Þ3 = 1:5; 1∗ = 1000:
(4.11)

Now we describe our strategy for updating the penalty parameter². Numerical
experiments have suggested that efficient performance of the algorithm requires us to
keep the penalty parameter as small as possible. However, global convergence theory
requires that the sequence² be nondecreasing, and that the predicted reduction in
the merit function at each iteration be at least as much as a fraction of the Cauchy
decrease of the residual of the linearised constraints. The idea now is to keep the
penalty parameter as small as possible, subject to satisfying these two conditions
needed for the convergence. Hence our strategy will be to start with² = 1 and
increase it only when necessary for satisfying these two conditions. The aim can be
achieved by the following strategy.

SCHEME 4.2.
If pred≥ ²

4

[‖c‖2
2 − ‖c + Aŝ‖2

2

]
then set²+ = ².
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Else set

²+ = 4
gTŝ + 1

2 ŝT Bŝ + Ž̂½T.c + Aŝ/

‖c‖2
2 − ‖c + Aŝ‖2

2

+ 0:01:

As a consequence of the updating of², one can show that

pred≥ ²+
4

[‖c‖2
2 − ‖c + Aŝ‖2

2

]
:

The following represents the outline of our algorithm MLESOL for constrained
maximum likelihood estimation.

ALGORITHM MLESOL.

Step 0. Setx0 ∈ Rp, Bls
0 ∈ Rp×p, ½0 ∈ Rm, ²0 ≥ 0, 10 > 0, 0 < Þ1 ≤ Þ2 ≤ 1,

Þ3 > 1, 0< �1 ≤ �2 ≤ 1; ž, k = 0;
Step 1. If‖∇l .xk; ½k/‖2 = ∥∥[∇xl .xk; ½k/

T; c.x/T ]T
∥∥

2
≤ ž, then stop;

Step 2. Compute.ŝk; Ž̂½k/ according to Section4.1above;
Step 3. Update the penalty parameter according to Scheme4.2;
Step 4. Test the step, the model choice and update1k according to Scheme4.1;
Step 5. UpdateBls

k andBk as in Section3.
Step 6. Setk := k + 1 and go to Step 1.

5. Numerical results

We tested our new algorithm on the estimation of equality constrained mixture
density problem, which is defined byxT = [þ1; ¼1; ¦1; þ2; ¼2; ¦2] and

f .y | x/ = þ1√
2³¦1

exp

[
−.y − ¼1/

2

2¦ 2
1

]
+ þ2√

2³¦2

exp

[
−.y − ¼2/

2

2¦ 2
2

]
subject to the constraints

c1.x/ = þ1 − ¼1

¼1 + ¼2
= 0; c2.x/ = þ2 − ¼2

¼1 + ¼2
= 0:

Numerical results are presented for computations carried out using¼1 = 1:0 and
¼2 = 2:0 for two cases:

• ¦1 = ¦2 = 0:5;
• ¦1 = ¦2 = 0:7.

Random numbersare generatedaccording to a realisation of the assumed true model
incorporating the use of the acceptance/rejection strategy in Ripley [16]. For testing
purposes, the stopping tolerance wasž = 10−4, the values of the other parameters are
set in (4.11).
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The algorithms described above have been programmed and tested on a Sun Ultra
Sparc 5 Workstation in double precision C with compiler Sun C version 4.2. Its
operating system is Solaris 2.6. We also solved this problem with Schittkowski’s
NLPQL method [17] and Osborne’s method [15], using the same tolerance of 10−4.
In Osborne’s method, the inner scoring step was terminated when the norm of the
gradient of the augmented Lagrangian was less than 10−6 or the number of iterations
exceeded 40. In each case, both the assumed true parameters and an arbitrary point
were taken as the starting point.
For case 1, we have

(a) starting from the true parametersþ1 = 0:33,¼1 = 1:0, ¦1 = 0:5, þ2 = 0:67,
¼2 = 2:0, ¦2 = 0:5;
(b) starting from the hypothesised valuesþ1 = 0:30,¼1 = 0:6, ¦1 = 0:4, þ2 = 0:7,
¼2 = 2:4, ¦2 = 0:6.

For case 2, we have

(a) starting from the true parametersþ1 = 0:33,¼1 = 1:0, ¦1 = 0:7, þ2 = 0:67,
¼2 = 2:0, ¦2 = 0:7;
(b) starting from the hypothesised valuesþ1 = 0:30,¼1 = 0:6, ¦1 = 1:0, þ2 = 0:7,
¼2 = 2:4, ¦2 = 0:5.

The tests were run forn = 10;102;103 and 104. Typical results are reported in the
appended tables. In summary:

(1) All methods converge to the same solutions and there are no failures.
(2) The performance of MLESOL and Osborne’s method becomes better and better

as n increases. At the solution the Hessian estimates of the two methods become
closer and closer to the true Hessian. No such result exists for NLQPL. Compared
with that of Osborne’s method, the performance of MLESOL does not deteriorate
whenn decreases.
(3) MLESOL clearly outperforms Osborne’s method and NLPQL in each case.
(4) The model switching in MLESOL is not necessary whenn is sufficiently large,

so an algorithm usingBk = M.xk/
T M.xk/ would suffice. The same phenomenon was

observed for the augmented version of Osborne’s method.

Appendix: Tables

The values ofnscor andnf listed in the tables are the numbers of scoring iteration
steps and function evaluations in each Powell-Hestenes step, respectively. In the other
tables,niter andnf denote the numbers of iteration steps and function evaluations to
satisfy the stopping tolerance.
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TABLE 1. Osborne’s algorithm starting from the true parameters for case 1.

n Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
nscore 38 40 40 12 11 9 8 7 4 4 4 1 1 1
nf 41 42 44 21 19 15 13 11 6 6 6 1 1 1

102
nscore 13 3 1 1
nf 15 3 1 1

103
nscore 10 2 1
nf 11 2 1

104
nscore 11 2
nf 11 2

TABLE 2. MOA starting from the true parameters for case 1.

n Iteration 1 2 3 4 5 6 7 8 9 10 11 12

10
nscore 24 21 20 19 18 16 14 12 10 7 3 1
nf 27 21 20 19 18 16 14 12 10 7 3 1

102
nscore 11 3 2 2
nf 12 3 2 2

103
nscore 6 2 1 1
nf 7 2 1 1

104
nscore 11 2
nf 11 2

TABLE 3. Osborne’s algorithm starting from the hypothesised parameters for case 1.

n Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
nscore 40 40 40 12 11 9 8 7 4 4 4 1 1 1
nf 41 42 44 21 19 15 13 11 6 6 6 1 1 1

102
nscore 12 3 1 1
nf 14 3 1 1

103
nscore 4 2 1
nf 4 2 1

104
nscore 2 2
nf 2 2
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TABLE 4. MOA starting from the hypothesised parameters for case 1.

n Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13

10
nscore 29 21 20 20 19 18 16 14 12 10 7 3 1
nf 32 21 20 20 19 18 16 14 12 10 7 3 1

102
nscore 9 3 2 2
nf 10 3 2 2

103
nscore 4 2 1
nf 4 2 1

104
nscore 2 2
nf 2 2

TABLE 5. Osborne’s algorithm starting from the true parameters for case 2.

n Iteration 1 2 3 4 5 6 7 8 9 10

10
nscore 40 40 40 40 40 40 40 40 40 40
nf 102 115 118 125 133 136 136 136 136 135

102
nscore 7 3 2 1
nf 7 3 2 1

103
nscore 4 2 1
nf 4 2 1

104
nscore 3 2
nf 3 2

n Iteration 11 12 13 14 15 16 17

10
nscore 40 40 40 40 40 30 21
nf 136 137 136 135 136 102 71

TABLE 6. MOA starting from the true parameters for case 2.

n Iteration 1 2 3 4 5 6 7 8 9 10 11 12

10
nscore 15 16 12 13 7 6 6 6 2 2 3 1
nf 73 83 57 72 33 26 30 29 7 6 3 1

102
nscore 7 3 2 2
nf 7 3 2 2

103
nscore 4 3 1
nf 4 3 1

104
nscore 3 2
nf 3 2
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TABLE 7. Osborne’s algorithm starting from the hypothesised parameters for case 2.

n Iteration 1 2 3 4 5 6 7 8 9 10

10
nscore 20 11 11 10 9 8 6 5 3 2
nf 32 19 19 17 15 13 10 8 5 3

102
nscore 9 3 2 1
nf 9 3 2 1

103
nscore 10 2 1
nf 10 2 1

104
nscore 10 2
nf 10 2

TABLE 8. MOA starting from the hypothesised parameters for case 2.

n Iteration 1 2 3 4 5 6 7 8 9 10

10
nscore 40 39 27 26 19 14 17 10 10 4
nf 142 146 75 73 64 38 47 29 28 7

102
nscore 9 3 2 1
nf 9 3 2 1

103
nscore 13 6 2
nf 14 7 2

104
nscore 13 4
nf 13 4

TABLE 9. Comparison results of MLESOL and NLQPL: (a) starting from true parameters, (b) starting
from hypothesised values.

(a) (b)
MLESOL NLQPL MLESOL NLQPL

n niter nf niter nf niter nf niter nf

case 1 10 9 10 15 23 9 10 17 21
102 11 12 9 12 16 17 11 25
103 4 5 13 22 8 9 13 16
104 3 4 9 18 6 7 15 19

(a) (b)
MLESOL NLQPL MLESOL NLQPL

n niter nf niter nf niter nf niter nf

case 2 10 16 17 15 17 11 12 19 20
102 6 7 21 37 8 9 29 35
103 6 7 9 21 4 5 14 26
104 4 5 16 23 6 7 25 36



114 Z. F. Li, M. R. Osborne and T. Prvan [24]

References

[1] D. Bunch, “Maximum likelihood estimation of probabilistic choice models”,SIAM J. Sci. Stat.
Comput.8 (1987) 56–70.

[2] R. H. Byrd, “Robust trust region methods for constrained optimization”, inThird SIAM Conference
on Optimization, Houston, TX, May, 1987, (SIAM, 1987).

[3] J. E. Dennis, D. M. Gay and R. E. Welsch, “An adaptive nonlinear least-squares algorithm”,Trans.
Math. Software7 (1981) 348–368.

[4] J. E. Dennis and R. B. Schnabel,Numerical methods for unconstrained optimization and nonlinear
equations(Prentice-Hall, Englewood Cliffs, NJ, 1983).

[5] M. El-Alem, “A global convergence theory for the Celis-Dennis and Tapia trust region algorithm
for constrained optimization”,SIAM J. Numer. Anal.28 (1991) 266–290.

[6] J. R. Engels and H. J. Martinez, “Local and superlinear convergence for partially known quasi-
Newton methods”,SIAM J. Optim.1 (1991) 42–56.

[7] D. M. Gay and R. E. Welsch, “Maximum likelihood and quasi-likelihood for nonlinear exponential
family regression models”,J. Amer. Assoc.83 (1988) 990–998.

[8] J. D. Gonglewski, “Quasi-Newton methods for maximum-likelihood estimation”, Ph. D. Thesis,
University of Houston, TX, 1986.

[9] J. Huschens, “Exploiting additional structure in equality constrained optimization by structured
SQP secant algorithms”,J. Optim. Theory Appl.77 (1993) 382–359.

[10] M. Lalee, J. Nocedal and T. Plantenga, “On the implementation of an algorithm for large-scale
equality constrained optimization”,SIAM J. Optim.8 (1998) 682–706.
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