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Abstract

This paper describes a SQP-type algorithm for solving a constrained maximum likelihood
estimation problem that incorporates a number of novel features. We call it MLESOL.
MLESOL maintains the use of an estimate of the Fisher information matrix to the Hessian
of the negative log-likelihood but also encompasses a secant approxii8ditime second-

order part of the augmented Lagrangian function along with tests for when to use this
information. The local quadratic model used has a form something like that of Tapia’s SQP
augmented scale BFGS secant method but explores the additional structure of the objective
function. The step choice algorithm is based on minimising a local quadratic model subject
to the linearised constraints and an elliptical trust region centred at the current approximate
minimiser. This is accomplished using the Byrd and Omojokun trust region approach,
together with a special module for assessing the quality of the step thus computed. The
numerical performance of MLESOL is studied by means of an example involving the
estimation of a mixture density.

1. Introduction

There are good reasons for numerical analysts to study maximum likelihood estimation
problems. Inthe first place, they are a computation of primary importance in statistical
data analysis and hence in the social sciences, as well as in the more traditional aree
within the physical sciences. Many special purpose algorithms is available in the
unconstrained case, but only very few methods have been developed for the nonlinea
constrained case. Osborrié&] shows that a simple application of a Powell-Hestenes
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multiplier method, including the use of an estimate of the Fisher information matrix
while ignoring the second-order part of the constraints, retains typical features of
special purpose methods for unconstrained problems. His method has been proven t
be effective. However, there appearto us to be two important ways in which Osborne’s
method might still be improved. First, good performance of his method relies heavily
on the availability of a large number of fitting data so that the theory of large samples
can be applied. Second, the proposed fitting model is supposed to be correct. This
paper primarily attempts to improve upon Osborne’s method in these two regards
and to be more efficient than general SQP secant methods, suchitiko8ki's
NLPQL program, which are intended for general function minimisation. The proposed
algorithm maintains the use of an estimate of the Fisher information matrix to the
Hessian of the negative log-likelihood but also encompasses a secant approximatior
S to the second-order part of the augmented Lagrangian function along with tests
for when to use this information. It also uses the ideas of Tapia’s SQP augmented
scale BFGS secant method for dealing with the local quadratic model. As far as we
know, no global implementation of this kind of algorithm has yet been developed. In
this paper we include a step size control strategy to guarantee a global convergenc
property. The step choice algorithm is based on minimising a local quadratic model
subject to the linearised constraints and an elliptical trust region centred at the curren
approximate minimiser, together with a special module for assessing the quality of
the step thus computed. Our primary purpose here is to report the details and to give
some test results.

In Section2 we set out the problem and review some algorithms for an easy ref-
erence. SectioB briefly describes our new algorithm MLESOL. The globalisation
version of the algorithm is described in Sectihnincluding sizing strategy for the
augmentation, model switching strategy, step size control strategy and the computa
tion of an approximate solution to the constrained quadratic subproblem. S&ction
concludes our discussion with test results.

2. Constrained maximum likelihood estimation

Computing a parameter estimate often reduces to minimising an objective function
with some constraints which incorporate additional information on the parameter
model. To be more specific, it will be useful to have a formal statement of the

problem: Lety,, ..., ¥, be independent observations, edclis from a distribution
with a densityp(y | x), where the parameter € %P is subject to the constraints
c(x) = 0, herec(x) = (c;(X), Cy(X), ... ,Cn(X))T. We assume eac)(x) is an

arbitrary twice differentiable function.
There are a variety of estimation methods which one might bring to bear on this
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problem, see Seet al. [18]. We focus on the method of maximum likelihood. In this,
one determines a maximum likelihood estim&tevhich maximises

XeNP

maxl_[ Py | X) s.t. ¢(x) =0. (2.2)
i=1

For simplicity of notation, we sef;(x) = p(¥; | X). Then problem equivalent to
2.)is

: 1o
)r(rg!‘rg K(x) = - ; —log(f;(x)) s.t. ¢(x) = 0. (2.2)

This is a nonlinear optimisation problem that must be solved by some iterative
technique. As is usual in many other minimisation problems we have to study the
structure of the derivatives of the objective functikrix) and the constraints(x).

DefineF(x) = (fy(X), ..., f,0)T, T(X) = (1/fi(X), ..., 1/f,(x)", D(X) =
diag(1/ f;(x)) and letu be then-dimensional vector whose components are unity,
J(x) be the Jacobian matrix ¢f (x) atx andM (x) be defined by

1
M(x) = ED(X)J(X).

Then we obtain the following expressions @K (x) and V2K (x):

VK(X) = —%J(xﬁ(x) =M (%)

and

2 _ T _} - 1 2t
V2K (x) = M(X)TM(X) ”i; fi(x)v f.(X). (2.3)

Most of the statistical literature only considers unconstrained problems, that is,
problems where the constraints i8.2) are removed, see, for example, Bundh [
Osborne 14], Walkeret al. [20], Gonglewski B] and Gayet al. [7]. In this simple
case, two standard methods are Newton’s method and the method of scoring whict
are defined by the following iterations:

Newton’s methad

Xer1 = X — [VPK (%) ] VK (X0); (2.4)
Method of scoring

X1 = Xk — [1 (X1 VK (%), (2.5)

wherel (x) denotes the expectatidfi{ V2K (x)] = E[MT(X)M (X)].
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The well-known advantage of2(4) is that it converges-quadratically to the
solution if a good starting point is provided. However the methods define@ dy (
and @.5) are not guaranteed to be globally convergent. Some kind of step size control
is often needed to expand the region of convergence. In optimisation algorithms, one
often exercises step size control by doing an approximate line search. Due to the
positive definiteness df(x), the method of scoring yields a natural globalisation via
line search.

There are other disadvantages 204 and @.5. Newton’s method requires cal-
culation of the Hessian at each iteration, which can be quite expensive for complex
models. The method of scoring often does not have a fast local convergence property

Despite the difficulties outlined above, many efficient special purpose computer
programs are available to solve an unconstrained maximum likelihood estimation, for
example, the structured secant DFP method by Wadket. [20] and the structured
secant BFGS method by Marénét al. [11]. However, the situation changes if we
want to solve a constrained maximum likelihood estimation. A combination of the
Powell-Hestenes multiplier method with the method of scoring discussed above was
proposed by Osbornel ] for solving constrained parameter estimation problems.
The Powell-Hestenes multiplier method involves a sequence of minimisations of
the augmented Lagrangian function with multiplier estimates being updated after
each miimisation. The method of scoring is applied to minimise the augmented
Lagrangian function in each of the sequence of steps.

The algorithm is simple to explain and motivate. At a current itexai@e choose
two parameterg, € R™ andp, > 0, and attempt to generate a new itergte by
minimising

LP (X, . ;) = K (X) + %{c(x) +6dTICX) + Bl

The parametef, corresponds to shifts of origin and the scadacontrols the size of
the penalty. In the following, for simplicity of notation we will drop the subscripts
and replace the subscrigtst 1 by +. Sometimes we need to use the superscript
to denote thé-th component of a vector.

In fact it is more convenient to definé¢’ = p6®,i =1,2,... , m, and ignore the
terms >, (09)2 (independent of), giving the augmented Lagrangian function

L(x, %, p) = K(X) + ATc(x) + gc(x)Tc(x).

Hence, given a multiplier estimatee R™, the next iterate, can also be obtained by
solving

minL(x, A, p). (2.6)
xeRP
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We now discuss how to solve the subprobleig) in each Powell-Hestenes
iteration. Notice that if we definéA(x) to be the Jacobian matrix af(x) by
AX) = (aci (x)/axj) and using 2.3, we have the expressions &L (X, 1, p)
andVZ2L(x, A, p)

ViL(X, A, p) = VK(X) + AX)"[A + pC(X)]
and

m
VEL(X, &, p) = VZK(X) + p AT A(X) + Z[A(i) + PG ()]VZC (X)
i=1
= C(X) + S(X, A, p), (2.7)
where
CX) =MX)"MX) + pAX)TAX) (2.8)
and
S(X, A, p) = 1 Xn: va fi(x) + Xm:w” + pC(X)]V2Gi (X)
) ’ n — fl (X) | — (| (| .
Therefore, in addition to making a precise convergence test possible, lzndarate
Jacobian matriced(x) and A(x) means that a good approximation to a portion of
the Hessian is available as a by-product of the gradient computation. Note that the
second-order term®(x, A, p) requires the calculation af + m (expensive) Hessian
matrices. In fact there are some problems where it is often possible to ignore the
second-order terr8(x, A, p) of the Hessian.

Let A, be the corresponding multiplier o2 @) at the solutiork,. Notice that, at the
solutionX,, p Zi’“:l C (%) V3¢ (%X,) = 0. In addition, whem is large and the fitting
model is correct, one can show that (see OsbatBp fhe following two probability
quantities hold:P(lim,_.., A, = 0) =1 and

P (n”ﬂ!o; T (1>zn)vzf‘ o) = O) =t

Hence, whex is close to the solutio®, andn is large enough, the second-orderterm
S(x, A, p) of the Hessian can be neglected under appropriate conditions. Based on
these arguments, Osborris] suggests minimising2.6) by the iterative procedure

Xo = X, Xj+l=Xj+ajdj’ j:O,l,Z,...,
whered; solves
C(XJ)dJ = —VXL(XJ S A, p) (29)

anda; is the step size by doing an approximate line search. He sets the lastxgrate
to x;..
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It is worth mentioning thatl; produced by 2.9) is always a descent direction
df Vi L(Xj, 2, p) = —(VyL(X;, &, p))TC(X) TV, L(X, 4, p) <O

from the positive definiteness 6f(x). Hence this method yields a natural globalisation
via line search.
Since @.9) is the system of normal equations of the linear least squares problem

2

: (2.10)

2

min
deRP

[ﬁA(XJ)} d [A/ﬁ - ﬁc(xj)}
M (x;) —u/y/n

it is better to obtaird; from a QR decomposition of the matricks(x;) and A(x;).
However the systen®(10 is often ill-conditioned whep is large. This is the typical
case (the recommended value foin Osborne 15] is /n).

However, there are some cases in which the second-ordeiSerm, p) can not
be neglected. An alternative is to approximate the Hessian via a secant update, fol
example, the BFGS formula. Examination @) reveals that such an approach is
tantamount to discarding the useful first-order teCrx) (2.8) at each step. This
may affect efficiency. Another approach is to augment the m&i(ix) by adding
an approximation to the second-order teB(x, A, p). This kind of structured secant
methods was also used by Denatsal. [3] for nonlinear unconstrained least squares
problems. Since we also need the notation of structured secant methods in order tc
explain our ideas in the next section, we consider the following principle for using
additive structure; also see Engetsl. [6].

Assume that, for a functioh(x),

V2h(x) = Hi(X) + Hy(X), (2.11)

whereH;(x) is inexpensive to compute and symmetric. Gige= H;(x) + W as an
approximation tov2h(x), whereW is a secant approximate té,(x), letx, = x +s.
The question is how to updat to give B, such thatB, is a good approximant to
V2h(x,). In doing this, we first updaté/ by a secant approximahy, and ask it to
satisfy the secant equatidhl,s = yP, whereW,. is intended to approximate,(x,)
andyP is an approximation oH,(x,)s. Then we choose

B, = Hi(x,) + W, (2.12)

as an approximation d¥2h(x,). In order to ensure tha@, has a property of least-
change secant update, we updétas follows: let

y = Hi(xp)s+yP (2.13)
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be an approximation 0¥?h(x,)s and
B = Hy(x,) + W (2.14)
be an approximation d¥?h(x.). Then we define
W, =W +U(s, y*, W, v(s, y, B%)), (2.15)
whereU is a secant update defined fdrs # O:

(y — Bs)v" +v(y — B9)T - Bs) svu’
vTs (vTs)2

U(s,y,B,v) = (2.16)

The scalev usually depends os, y and B. We will have occasion to use both

the notatiorv andu(s, y, B); the former will be used unless we feel it is important

to emphasise the role of the parameter. We prefer to use the BFGS update whict
corresponds to the following choices:

y's
STBs’

With the above procedure, one can show Biatlefined by 2.12) has the following
update formulaB, = BS+ U(s,y, BS, v(s, y, B%)).

One could apply the structure principl2.{)—(2.17) to the Hessian of the aug-
mented Lagrangian functio2 (7) with Hy(x) = C(x), H.(x) = S(x, A, p) and aug-
mentC(x) in (2.9 by adding an approximation to the second-order t&m A, p).

In this paper we refer to this as the augmented version of Osborne’s method.
Exploiting this structure within the framework of the Powell-Hestenes multiplier
method may be worthwhile. However, compared with the performance of the proposed
SQP-type algorithm in the next section, the improvement from this approach looks

less attractive as explained below.

BFGS — BFCSg y B) =y +0Bs, o = (2.17)

3. New algorithms based on SQP-type methods

Based on its good numerical performance, we prefer to use a SQP-type methoc
to solve problemZ.2). Compared with SQP-type methods, the Powell-Hestenes
multiplier method is less attractivegbause at each step it may take several inner
iterations to do unconstrained minimisation in order to fiagdand hence needs more
work. Another reason lies in its slow convergence rate. Before we present our new
algorithm, we would like to introduce some known SQP methods.

Define the Lagrangian function associated wit?) by

[(x, 1) = K(X) + ATc(x). (3.1)
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At the current iteratex, the SQP Lagrangian secant method is characterised by the
iterative procedure

X, =X+, Y =Vl (X, A — Vi (X, A4),

3.2
)\‘+=)\,—|—6)\,, B|+:B|+U(S,y|,B|,UBFGs), ( )

whereU (s, y, B, v) is defined as in4.16), s andéx are respectively the solution and
the multiplier associated with the solution of the quadratic program

. 1
minV,l(x, A\)Ts+ =s"B's s.t. c(x) + A(X)s =0,
seRP 2

whereB!' is intended to be an approximation@gl (x, A).

The deficiency of the SQP Lagrangian method is that the local convergence theory
requiresv2l (X, An) to be positive definite and yet satisfaction of this condition is
not guaranteed by standard assumptions, under which the uBdatay lose the
positive definiteness property even if the starting maBixis the identity matrix.

To circumvent the lack of positive definiteness\al (X,, An), one could replace the
Lagrangian function3.1) with the augmented Lagrangian function. Recall that the
augmented Lagrangian function associated with)(is

L(x, &, p) = (X, 2) + gc(x)Tc(x).

Observe that the Hessian of the augmented Lagrangian method is

m
VIL(X, A, p) = VA L) + pAOTAX) + 9 Y GOVG(X).  (3.3)
i=1
At a solution(X,, A,), we have

V2L (Rn» Ans 0) = VA (Rns an) + pAG) T AKy) (3.4)

from the factthat;(X,) =0fori =1,..., m.

One can see from3(4) that for any augmentation parameiergreater than a
threshold valuep, V2L (x, A, p) is positive definite at the solutiofX,, An). Usingy
as a generic term and denoting different choicey ofy different superscripts, i
is defined to beyt = V,L(x,, A,, p) — V,L(X, A,, p), we can guarantee that near
the solutions™ (y) > 0 for p sufficiently large such that the BFGS secant update
shares the hereditary positive definiteness property.

We arrive at the SQP augmented Lagrangian secant method, given by the iterative
procedure

X, =X +S, yt = V,L(X;, Ay, p) — ViL(X, Ay, p),
Ay =A+4+8r  B:=B"+U(s y", B" 159,
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whereU (s, y, B, v) is defined as in4.16), s andéx are respectively the solution and
the multiplier associated with the solution of the quadratic program

; T 1 TRL
mg{rgVXL(x, A, p)' S+ ES B-s s.t. c(X) + A(X)s=0. (3.5)
se

In (3.5), Bt is intended to be an approximation L (x, A, p).

Though theoretically attractive, this alternative has serious practical problems.
First, p is not knowna priori. Secondly, the attempt to use largseems to present
severe numerical problems; see Tagdif] and Nocedaét al. [12].

It is worth noting that at the solution the Hessian of the augmented Lagrangian
function 3.3) displays significant structure in that there is a clear separation between
the first- and second-order terms. The térifl , ¢ (x) V¢ (x) is responsible for the
bad fit in the SQP augmented Lagrangian secant methods because it is incompatibl;
with the satisfaction of linearised constraints, see Tafi.[ Therefore we use
V2 (x, A) + pAX)"T A(x) to approximate the Hessian of the augmented Lagrangian
V2L (X, A, p) by ignoring the tern}_" , ¢ (X) V2c; (x). If we relate this observation to
the structure principle21)—(2.17 with H;(X) = p AX)T A(X), Ha(x) = V2 (X, A)
and usey' defined as ing.2) to approximatev?l (x, A)s, then we get the following
baseline algorithm (we repla&andW by B- andB', respectively) due to Tapid ].

ALGORITHM 3.1 (Tapia L9)).
Step 1. Giverx, A, B' andB" (= B' + p A(X)T A(X)).
Step 2. Compute the solutigs, 1) of the QP-subproblem

. 1
min ViL(X, A, p)'s + EST Bls s.t. c(X) + A(x)s = 0.
se

Step 3. Set
X; =X+s, B® = pA(X)A(X,) + B,
)\‘+ — )\‘ + 8)\., UL — UBFGS(S, yLS’ BS)’
yP =Y, B, =B' +U(s y", B, v"),

Y=o =y 4+ pAX)TAX)S,  BL =Bl 4+ pAX)AX).

The following proposition is useful in exploiting the structure of Algoritt3ni.
We represent it to fit our present need.

PROPOSITION3.1. Suppose thaB' is positive definite omN(x) = {s: A(x)s = 0}.
Then the SQP augmented Lagrangian secant method which uses

B'S = B' + p AX)T A(X)

as an approximation tov2L(x, A, p) generates the same iterate as the SQP La-
grangian secant method that usB'sas an approximation t&?2l (x, 1).
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Applying Proposition3.1, we know that under appropriate conditions, Algo-
rithm 3.1 is equivalent to the following Algorithn8.2 which was called the SQP
augmented scale Lagrangian secant algorithm by Td8la However, from a prac-
tical point of view, their performances can be different. The lines differing from
Algorithm 3.1are in boldface.

ALGORITHM 3.2 (Tapia L9]).

Step 1. Given x, A, B'.
Step 2. Compute the solutigs, 1) of the QP-subproblem

. 1
min V,l(x,A)"s+ =s'B's s.t. c(xX) + AX)s=0
seRP 2

Step 3. Set
X, =X+5 Y= =y + pAx)TAX)S,
R BS = pAXx,)TA(x,) + B,
)“r = A+ 64, L Ls ps
v-=v(s, Yy, BY),
yP =y

B, =B'+U(s, y", B, v").

Itis worth noting that Algorithn8.2 could be viewed as an SQP Lagrangian secant
method, where only the part of the secant update corresponding to scale was change:
This change of scale seems to be important for updates which require a positive definite
Hessian approximation, which has been confirmed by our numerical experiments.

If we have additional structure 2l (x, ) or V2 f (x), as is the case in the equality
constrained maximum likelihood estimation, we can apply the structure principle
(2.1D—(2.17 to also incorporate this available part into the algorithm to obtain a
better approximation. This idea has been exploited by Husch@rfei solving
nonlinear least squares problems with equality constraints. However, Huschens’s
method is restricted to a local framework.

Recall from @.7) that the Hessian of the augmented Lagrangian function consists of
two parts: one parti€(x) = M(x)" M (x)+p A(x)" A(x) containing first-order terms
and the other is the second-order té3¢r, A, p). One can apply the structure principle
(2.1D)—(2.17) to this setting withH; (x) = C(x), H.(X) = S(X, A, p). Before we give
our main results, we have to discuss the choicg/othat is used to approximate
S(X4, Ays P4)S.

Recall thatF (x), T(x), J(x) andM (x) have been defined in Secti@grand

S(X, A, p) = ——vazf(X)+ZA(')VZC(X)+ch,(x)V2q(X) (3.6)
i=1
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First, note that wher andx,. are close to the solutioky,

> aVG(xp)s =Y aPIVe () — Ve 001+ O(sl?)

i=1 i=1
= [A(X) — AT Ay + O([Isl3)
~ LA = AT Ay (3.7)
and
2.5 (])-(+)V2 fi(x;)s = Z:l: 00 [V fi(xp) — V()] + O(s]?)
=[J(x) — IO T(x) + O(lIsl3)
~[Ix) — I T(X). (3.8)

Secondly, we have at the solutign

P G(R)VC (%) = 0. (3.9)

i=1

Substituting 8.7) and @.9) into (3.6) and ignoringp > ", ¢ (X) V¢ (x) due to 8.9),
we obtain

1
S(Xy, Ays pr)S ™ _H[J(X+) — IO T(X) + [AX) — AT A
Therefore we choose
1
yf = _H[J(X+) — IO T (X)) + [AXy) — AT Ay

as our approximation t&(x,, A, p,)s.
An alternative simple formulation for an approximatior8e<_, A, p,)sis derived
by ignoring the term

}Xn: L v (X4)
n<— fi(xy) s
as well as the term Y, ¢ (X) V2ci (x), yielding
¥; = [AX) — AX)] A,

Now we are ready to state our SQP augmented Lagrangian structured secant algo
rithm, which we call Algorithn8.3(we replaceB andw by B-* andB's, respectively).
This algorithm is analogous to Algorith®.1 but pays attention to the structure of
the Hessian of the objective function. The lines differing from AlgoritBri are in
boldface.
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ALGORITHM 3.3.

Step 1. Givenx, A, B'Sand B = B'S+ M (x)TM (x) + p A(X)T A(X).
Step 2. Compute the solutigs, 1) of the QP-subproblem

; T 1 TRpLs
mgngL(x,x,p) S+ ES B*°s s.t. c(X) + A(X)s =0.
Se

Step 3. Set
X, =X+S, Yo = yP 4+ M(X)TM(X)s+ p A(x,) TA(XL)S,
Ay = A4 8A, BS= M(x;)"M(xy) + pA(x,)TA(X,) + B,
y =/, BS=B"+U(s y", B, v"),
v = w(s, Y-S, BY), Br*= B+ M(Xy) "M (X) + pAX4) T A(Xy).

As with Algorithm 3.2, Propositior3.1 motivates the following algorithm by drop-
ping the termp A(x)"T A(x) from the matrixB"s, which we call Algorithm3.4 (we
replacew by B's). This algorithm is analogous to the SQP augmented scale structured
Lagrangian secant method by Husche%js The lines differing from Algorithn3.3
are in boldface.

ALGORITHM 3.4.

Step 1. Givenx, A, B and B = B'S+ M (x)"M (x).
Step 2. Compute the solutigs, 1) of the QP-subproblem

. 1
min V,l(x, A)Ts+ EST Bs s.t. c(x)+ A(X)s = 0. (3.10)
Se
Step 3. Set
X; =X+s, Y= =yP+ MX)TMX)s+ pAX)TAX,)S,
Ay = A+ 84, B° = M(x,)"M(x,) + pA)TAX;) + B,
yP =yl B =B" +U(s, y", B® v,
vt = BF5(s, yte, BY), BL®= B+ M(xy) M (xy).

Naturally, Algorithm3.4 can be interpreted as a structured version of Tapia’s SQP
augmented scale Lagrangian secant method. However, the structure of the objective
functionis also exploited here. It sharesthe advantage that the augmentation paramets
o only appears in the scalebut also incorporates all inexpensive first-order parts
explicitly. This algorithm will be the point of interest for the rest of this work.

In Algorithm 3.4, if we setB's = 0 at each iteration, then we get a SQP Gauss-
Newton algorithm

miRrg Vil (X, 1)Ts + %ST[M X)"TM(X)]s s.t. c(x) + A(X)s =0, (3.11)
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which is akin to using the Gauss-Newton method to solve

vyl (x, 1) =0,
pc(x) =0,

but it pays more attention to the constraiots) if a large penalty parameteris used.
This SQP Gauss-Newton algorithm also has a form analogous@pif Osborne’s
multiplier method, except that we now update the variaklesdx simultaneously,
which we believe should work better.

Similar to the case of Algorithr.2, see Tapial9]; one can show how the positive
definiteness oB produced by Algorithn8.4is retained.

PROPOSITION3.2. AssumeB's + M (x, )" M (x, ) is symmetric and positive definite
on N(x;) and[y? + M(x,)"M(x,)s]"s > Ofor s € N(x,). Let the augmentation
parameterp be sufficiently large and“* be such that) (s, y‘¢, BS, v-°) can be viewed
as an update of the Broyden convex class, that is,

Ve =y"4+1B%, rte [O, V/STyts/sT Bss] }

Then the matrixXB, is positive definite ofN(x,).

4. Implementation of Algorithm 3.4

Our numerical experiments shows that for good performance of Algoritiinma
careful implementation is needed. We implement Algorithwhdescribed above by
including several additional interesting features.

e A trust-region strategy is used to make the algorithm globally convergent.
Instead of subproblen8(10, at each iteration the quadratic modgs, 1, B)

. 1
min Vil (x, M's + EST Bs s.t.c(X)+AX)s=0, |s|, <A (4.1)
se

is solved for the solutios, §1), whereB = M (x)TM (x) 4+ B'* or B = M(x)"M(x),
depending on which works better. A scaled trust region would clearly enhance the
performance of the inner trust region iteration, but this has not yet been implemented.
To avoid an empty feasible set because of the restricted step size, some modification
are needed. This will be discussed in Sectoh

e A model switching strategy is developed. Our software implementation in-
cludes two quadratic models. It sometimes uses the SQP Gauss-Newton algorithn
(3.17) instead of the augmented algorithéh1). Because of the above mentioned
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difficulty in approximating S(x, A, p) by finite differences and because the SQP
Gauss-Newton algorithm tends to do well initially, we use the zero matrix for the
initial matrix B, so that initially the two algorithms are equivalent. Regardless of
which was used to make the step frarto x. , the update oB' to B'® is always made,

but the step fronx to x,. is calculated using the algorithm whose predicted reduction
best matches the actual reduction frarto x, . The first trial step is calculated using

the currently preferred algorithm whose predicted reduction best matches the actua
reductionin the last iteration. When the first trial step fails, we test the alternate model
to see if it would have predicted the observed failure at that point. If so, the alternate
algorithm gets a chance to make a trial step with the same trust radius. If we do not
decide to try changing models, or if the alternate algorithm fails to suggest a more
successful step with the same trust radius, then we assume for the duration of the
present iteration that our current algorithm preference is correct. We then decrease
the trust radius untik, is determined or the algorithm fails.

Typically, this adaptive modelling causes us to use SQP Gauss-Newton steps until
B's builds us useful second-order information, and then to switch to augmented steps
defined by 4.1).

Finally, before each updat®'s in Algorithm 3.4, B'S is multiplied by thesizing
factor

[ sTyP
=min] ——,1;,

we do this as in Dennist al. [3].

4.1. Solving trust region sibproblems We prefer the approach of Byrd and
Omojokun for solving the trust region subproblenl). The algorithm decomposes
each constrained SQP-subproblefl) into two smaller trust region subproblems
which are easier to solve. This makes the Byrd-Omojokun method attractive. This
method was also exploited for solving large scale problems by Letlesd [10].
However, as is well-known, restricting the size of the stefidly < A may preclude
us from satisfying the linear constraintéx) + A(x)s = 0. Therefore Byrd and
Omojokun first compute a step that lies well within the trust region and that satisfies
the linear constraints as much as possible. This is done by defining a relaxation
paramete € (0,1) and computing a step that solves the vertical (or normal)
subproblem

min [ACOv + ()l St llvlls < £A. (4.2)

This problem can have many solutions. Among these solutions the most interesting is
that which lies in the range spaceAfx)". This allows us to completely decouple this
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subproblem from the next one. In the following, we will use the notaficendc to
denoteA(x) andc(x), respectively, and the same rules carry over to other quantities.
Also we denotév,| (x, 1) and the matrix8's + M (x)T M (x) or M(x)" M (x) by g and
B, respectively.

This algorithm is designed so that the full stepeed not move any closer to the
feasible manifold tham does, so we next reformulaté.{) as

1
mins'g + 25 Bs s.t. As= Av, ||s], < A. (4.3)

seRP

This problem, unlike 4.1), has a nonempty feasible region because it already con-
tainsv. We solve fois by seeking a step complementarytoro this end, we compute
ap x (p—m) matrix Z whose columns form the orthogonal basis for the null space
of AsuchthatAZ = 0 andZ™Z = I, and we define the total step of the algorithm as
s = v + Zu, where the vecton € RP"™is yet to be determined. Substituting fon
(4.3), noting thatv and Zu are orthogonal, and ignoring constant terms, we obtain

. 1
min u'[ZT(g+ Bv)] + EuTZTBZu s.t. |lull; < /A2 — |[v]i3.
ueRpP-m

If we define§ = Z7(g+ Bv), B= ZTBZ andA = /A2 — |v||% then we get the
following equivalent system

uglpr] huy=u"g+ 1u Bu s.t |ul, < A. (4.4)
Note that this has the same form as a trust region step in an unconstrained algorithm
We use the dogleg method for approximately solving the trust region problein (
because the dogleg method requires the mdrio be positive definite. Therefore,
when B is not positive definite, we recommend changiBgto B + ucl, where
ue > 0is not much larger, ideally, than the smallgshat will makeB + | posmve
definite and reasonably well conditioned. Procedures for doing this can be found in
Algorithm A5.5.1 of Denniget al. [4]. For simplicity of notation, we still usé to
denote the resulting matrix ifatessary.

Cauchy point. The Cauchy point® of (4.4) is defined as the minimiser bfu) in
the direction of steepest descenuat 0, subject to the trust constraint. Therefore
we have

u? = —ag, (4.5)
where
@= {EQTG)/ (G'BY) if @92/ BY < A,
A/19ll2 otherwise
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and the Newton stey® = —B~1§. The dogleg path consists of the two segments from
u=0tou = u®andfromu = u®®tou = u". The dogleg method finds the minimiser
along this path subject tfu||, < A. Sinceh decreases monotonically along the path,
we simply find the intersection point with the trust region boundary, or we use the
Newton step if the path lies entirely inside the trust region. We denote the solution of
this horizontal (or tangential) subproblem byand define the total step as

o~

§=v+20, 8r=—(AA)IA(g+ B9). (4.6)

We then ses = 8, 51 = 64, X, = X+, A, = A + 84, providedx, gives a satisfying
reduction in the merit function; otherwise, we change models or retain our current
model and reduce the trust region to compute a new trial step.

Let us reiterate our strategy to solve the trust region subproblen (t is easy to
see that it is equivalent to the following problem:

. 1
minv' ATc+ ZvTATAv st vl < CA. 4.7
veRP 2
Comparing 4.7) with the formulation 4.4), we see thati = v, B = AT Ais positive
semidefinite A = ¢ A and§ = ATc. Substituting into 4.5, we obtain the Cauchy
pointv® = —a ATc, where

|ATcl|2/(cTA(ATA)ATc) if [|ATc|3/(cTAATA)ATC) < A,

o =

EA/||ATCl, otherwise
To formulate a dogleg method fot.() we need to define the Newton step. Since we
want the solutiorv to lie in the range space &', we choose the Newton step as
the shortest step in the whole manifold of minimisers minv’ ATc + 207 AT Av,

which is uniquely given by" = —AT(AAT)~1c. Togetherp°® andv" define a dogleg
method for the problemi(7).

4.2. Merit function and choice of penalty parameterp. Let (5, §1) be the step
computed by the above procedure using the currently preferred modett.ggelthe
merit function is used to decide whether the s$epakes sufficient progress toward
the solution of the problen®(1). We follow the idea in EI-Alem%] and use as a merit
function the augmented Lagrangian

(X, 1, p) = KX) +2Tc(x) + gc(x)Tc(x). (4.8)

The actual reduction in the merit function as we go fromi) to (x + 8, A + 51)
is given by ared= ¢ (X, &, p) — ¢ (X + 8, 1 + 84, p).
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We can write
ared=1(x, 1) — (X + 8 A + %) + g [Ico012 — et + 9)112].

Let us replac& (x) by the model objective4(3) with an augmentation tertd which
is the estimate oK (x) at x and linearise the constraints ifh.8) and the multiplier
to give the model merit functiotr at(x, 1)

1
Y(5. 6k p) = K+5Tg+ 58 Bs+ (A + )T [c+ As| + g||c+ As|l2.
We now define the predicted reduction pred in the model merit fungtiby

pred= (0,0, p) — ¥ (8, 64, p)
1 -
= —§7g— 58788 — 5" (c+ AS) + 2 [|lcl — llc+ ASI].

For convenient presentation of our model switching strategy, wej(se., B)
andys (s, 81, p) to denote the currently preferred model and its model merit function,
respectively. We also usg(s, A, B?) for the alternate model antf (s, 51, p) for the
corresponding model merit function.

We accept the step and set= x + § andi, = A + §2, if

aredpred> n;, (4.9

wheren, € (0, 1) is a small fixed constant.
Ifthe step is rejected, we first test whether it might be useful to try changing models,
but only if this is the first time throught(9) in the current iteration. If

Y560 p) — 8.6k p)| _
[¥2(8, 04, p) — (S, 84, p)|
then we change our model preference with the same trust radius and penalty paramets

o and return to test4(9); otherwise we retain our current model preference and
decrease the radius of the trust region by picking

15 (4.10)

A, € [011||§||2,(¥2||§||2],

where O< a3 < ap < 1.

If the step is accepted, then the trust region radius is updated by comparing the
value of ared with pred. Namely, if; < aredpred < n, wheren, € (1, 1), then
the radius of the trust region is updated Ay = min[A, «s]/8|.], whereas > 1.
However, if aredpred> 5,, then we increase the radius of the trust region by setting
A, = min[A,, max A, as]|8]l2)], whereA, is a positive constant. This can be sum-

marised in Schemé.1
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SCHEME 4.1.
Step 1. Set chanmodel false;
Step 2. If ared'pred< 7,, then
If (4.10 is true and chanmodet= false, then
chanmodek= true
setq(s, A, B) = g¥(s, A, BY)
recomputea$, 51) by solvingq(s, A, B)
return to Step 2
Else
setA € [az|S]l2, o2 [|S]l]
If A > 108, then
chanmodek= true
return to Step 2

Else exit

Else if n; < aredpred< 7, set

X, =X+8§

Ay = A+ 8r

A, =min[A, as]|S],]
Elseset

X, =X+8§

Ay = A+ 8r

Ay = min[A,, maxA, az|8]2)]
Our numerical testing suggests that the following values give good performances:

n = 01, O = 0y = 05, AO = 1,

(4.11)
n2 = 0.75, az = 1.5, A, = 1000

Now we describe our strategy for updating the penalty parametédumerical
experiments have suggested that efficient performance of the algorithm requires us tc
keep the penalty parameter as small as possible. However, global convergence theor
requires that the sequenpebe nondecreasing, and that the predicted reduction in
the merit function at each iteration be at least as much as a fraction of the Cauchy
decrease of the residual of the linearised constraints. The idea now is to keep the
penalty parameter as small as possible, subject to satisfying these two conditions
needed for the convergence. Hence our strategy will be to startavith 1 and
increase it only when necessary for satisfying these two conditions. The aim can be
achieved by the following strategy.

SCHEME 4.2.
If pred> §[||c||§ —llc+ Aéll%] then sefp,. = p.
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Else set
. g8+ 18TBS+ 50T (C+ A9)

oy = - +0.01
i lIcll — lc + AS||2

As a consequence of the updatingogfone can show that

p_+
4

The following represents the outline of our algorithm MLESOL for constrained
maximum likelihood estimation.

pred> — [lic|l3 — [lc + A§|3].

ALGORITHM MLESOL.
Step0. Sek, € RP, Bf € RP*P, A € R", pg > 0, A0 > 0,0 < oy < o < 1,
a3 >1,0<n <n,<1lek=0;
Step 1. I VI A)ll2 = 11Vl (%, 1) T, €O)T]T |, < €, then stop;
Step 2. Computés, §1y) according to Sectiod.1above;
Step 3. Update the penalty parameter according to Sceine
Step 4. Test the step, the model choice and updateccording to Schemé 1,
Step 5. Updaté/s andB; as in Sectior8.
Step 6. Sek :=k+ 1 andgoto Step 1.

5. Numerical results

We tested our new algorithm on the estimation of equality constrained mixture
density problem, which is defined by = [B1, i1, 01, B2, 12, 5] and

_ B (y — pna)? B2 (Y — 12)?
Ty = ex"[‘ 207 ] * Joro, ex"[‘ 202 ]

subject to the constraints

Ci(X) = B1— o =0, CyX)=p,— M2 _ .

M1+ W2 pi+po

Numerical results are presented for computations carried out using 1.0 and
u, = 2.0 for two cases:

® 01 =0 = 05,

® 01 =0y = 07

Random numbers are generated according to a realisation of the assumed true mod
incorporating the use of the acceptance/rejection strategy in Rip&y [For testing
purposes, the stopping tolerance was 104, the values of the other parameters are
setin @.11).
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The algorithms described above have been programmed and tested on a Sun Ultr
Sparc 5 Workstation in double precision C with compiler Sun C version 4.2. Its
operating system is Solaris 2.6. We also solved this problem with Schittkowski’s
NLPQL method [L7] and Osborne’s method f], using the same tolerance of 10
In Osborne’s method, the inner scoring step was terminated when the norm of the
gradient of the augmented Lagrangian was less thah di0the number of iterations
exceeded 40. In each case, both the assumed true parameters and an arbitrary poi
were taken as the starting point.

For case 1, we have

(a) starting from the true parametéds= 0.33, u; = 1.0, 0y, = 0.5, 8, = 0.67,
ws = 2.0,0, = 0.5;

(b) starting from the hypothesised valygs= 0.30, 4, = 0.6,01, = 0.4, 8, = 0.7,
Mo = 24, Oy = 0.6.

For case 2, we have

(a) starting from the true parametéds= 0.33, u; = 1.0, 0y, = 0.7, B, = 0.67,
o = 2.0,0, = 0.7,

(b) starting from the hypothesised valygs= 0.30, 4, = 0.6,01, = 1.0, 8, = 0.7,
o = 2.4,0, = 0.5.
The tests were run far = 10, 1¢%, 10° and 10. Typical results are reported in the
appended tables. In summary:

(1) All methods converge to the same solutions and there are no failures.

(2) The performance of MLESOL and Osborne’s method becomes better and better
asn increases. At the solution the Hessian estimates of the two methods become
closer and closer to the true Hessian. No such result exists for NLQPL. Compared
with that of Osborne’s method, the performance of MLESOL does not deteriorate
whenn decreases.

(3) MLESOL clearly outperforms Osborne’s method and NLPQL in each case.

(4) The model switching in MLESOL is not necessary winen sufficiently large,
so an algorithm usin@®, = M (x,)" M (x,) would suffice. The same phenomenon was
observed for the augmented version of Osborne’s method.

Appendix: Tables

The values ohy., andny listed in the tables are the numbers of scoring iteration
steps and function evaluations in each Powell-Hestenes step, respectively. Inthe othe
tables,ny, andn; denote the numbers of iteration steps and function evaluations to
satisfy the stopping tolerance.
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TABLE 1. Osborne’s algorithm starting from the true parameters for case 1.

Constrained maximum likelihood estimation

n lteration] 1 2 3 4 5 6 7 8 9 10 11 12 13 1
Newe |38 40 40 12 11 9 8 7 4 4 4 1 1
10 41 42 44 21 19 15 13 11 6 6 6 1 1
Newe |13 3 1 1
100 15 3 1 1
Newe |10 2 1
10 11 2 1
nSCOre 11 2
100 11 2
TABLE 2. MOA starting from the true parameters for case 1.
n lteraion] 1 2 3 4 5 6 7 8 9 10 11 1P
1o Mo |24 2120 19 18 16 14 12 10 7 3 |1
0, 27 21 20 19 18 16 14 12 10 7 3 |1
Newe |11 3 2 2
100 12 3 2 2
Nscore 6 2 1 1
10° 7 2 1 1
Nscore 11 2
100 11 2

TABLE 3. Osborne’s algorithm starting from the hypothesised parameters for case 1.

n leration] 1 2 3 4 5 6 7 89 10 11 12 13 1
Newe |40 40 40 12 11 9 8 7 4 4 4 1 1
10715, 41 42 44 21 190 15 13 11 6 6 6 1 1
Newe 112 3 1 1
100 14 3 1 1
nSCOre 4 2 1
100 7 2 1
nSCOre 2 2
100 2 2
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TABLE 4. MOA starting from the hypothesised parameters for case 1.

n lteraton] 1 2 3 4 5 6 7 8 9 10 11 12 13
Newoe 129 21 20 20 10 18 16 14 12 10 7 3 |1
107, 32 21 20 20 19 18 16 14 12 10 7 3 |1
Nwe | 9 3 2 2
100 10 3 2 2
nSCOre 4 2 1
10° 7 2 1
nSCOre 2 2
100 2 2

TABLE 5. Osborne’s algorithm starting from the true parameters for case 2.

40

n |lteration| 1 2 3 4 5 6 7 8 9 10
Newre | 40 40 40 40 40 40 40 40 40

10 102 115 118 125 133 136 136 136 136 135
Necore 7 3 2 1

100 7 3 2 1
nSCOre 4 2 1

10 7 2 1
nSCOre 3 2

100 3 2

n |lteration| 11 12 13 14 15 16 17

(ol Mo | 40 40 40 40 40 30 21

0, 136 137 136 135 136 102 71

TABLE 6. MOA starting from the true parameters for case 2.

n leration] 1 2 3 4 5 6 7 8 9 10 11 1P
Newe |15 16 12 13 7 6 6 6 2 2 3 11
1015, 73 83 57 72 33 26 30 29 7 6 3 |1
Ne | 7 3 2 2
100 7 3 2 2
nSCOre 4 3 1
10° 7 3 1
nSCOre 3 2
100 3 2
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TABLE 7. Osborne’s algorithm starting from the hypothesised parameters for case 2.

n |lteratonfl 1 2 3 4 5 6 7 8 9 10
Newe 120 11 11 10 9 8 653 ©»
10715, 32 10 19 17 15 13 10 8 5 3
Nwe |9 3 2 1
100 9 3 2 1
Newe |10 2 1
10° 10 2 1
nSCOre 10 2
100 10 2

TABLE 8. MOA starting from the hypothesised parameters for case 2.

n |lteration| 1 2 3 4 5 6 7 8 9 10
Newe | 40 39 27 26 19 14 17 10 10 |4
s 142 146 75 73 64 38 47 29 28 |7
Nscore 9 3 2 1
100 9 3 2 1
Nscore 13 6 2
10 14 7 2
Nscore 13 4
100 13 4

TABLE 9. Comparison results of MLESOL and NLQPL: (a) starting from true parameters, (b) starting
from hypothesised values.

(@) (b)
MLESOL | NLQPL | MLESOL | NLQPL
n Niter Ny Niter Ny Niter Ny Niter Ny
casel| 10 9 10| 15 23] 9 10| 17 21
17| 11 12 9 12| 16 17| 11 25
10° 4 5 13 22 8 9 13 16
104 3 4 9 18 6 71 15 19
(@) (b)
MLESOL | NLQPL | MLESOL | NLQPL
n Niter Ny Niter Ny Niter Ny Niter Ny
case 2| 10 16 17| 15 17| 11 12| 19 20
10 6 7| 21 37 8 91 29 35
10° 6 7 9 21 4 5( 14 26
104 4 5 16 23 6 7| 25 36
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