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Abstract

In this paper we define two types of proper efficient solutions in the Borwein sense for vector
optimisation problems and we compare them with the notions of local Borwein, Ishizuka-
Tuan, Kuhn-Tucker and strict efficiency. A sufficient condition for a proper solution is also
proved.

1. Introduction

In many different fields, such as economics, management science, engineering, indus
try or operations research, there arise problems in which various functions (objectives)
are to be simultaneously optimised. This is why we need tools for nonlinear program-
ming capable of handling several conflicting objectives. In this case, methods of
traditional single objective optimisation are not enough, and we need the new con-
cepts and methods of nonlinear multiobjective optimisation. This area is undergoing
rapid developmentand its importance can be seenfromthe large variety of applications
presented in the literature (see Miettinéd®][and the references therein).

One of the main aims of vector optimisation theory is the determination of all the
efficient points for a problem. However, this is not always enough, and we can select
solutions which are better in some sense. These are the proper efficient solutions
In the finite-dimensional case, the idea of proper Pareto optimal solutions is that
unbounded trade-offs between objectives are not allowed. Practically, a proper Paretc
optimal solution with very high or very low trade-offs does not essentially differ from
a weak Pareto optimal solution for a human decision maker.
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The first notion ofproper efficiencywas introduced by Kuhn and Tucket] in
their well-known work about nonlinear programming and many other notions have
been proposed since then. The best-known are those by Hu®jicdoffrion [6],
Borwein [2, 3], Benson [l] and Henig B]. The reader is referred t@{] for a good
presentation of these notions in the finite-dimensional case and, to/] for the
infinite-dimensional case and for a comparison between them.

There are two main motivations for introducing proper efficiency. First of all, it
makes possible the exclusion of some efficient solutions with undesirable properties, as
was observed by Klingeff] in setting up the starting point of Geoffrion’s definition.
Secondly, it allows us to set up equivalent scalar problems whose solutions produce
most of the optimal solutions, that is, the proper ones.

In this paper, two notions of proper efficiency in the Borwein sense for vector
optimisation problems are introduced and they are compared with four others: one
was considered by Borweir3], another two were introduced by Ishizuka and Tuan
[10] and the fourth one was introduced 6. Section3 is devoted to the first
two definitions, studying implications between them under different assumptions. In
Section4 we introduce two notions of local efficiency in the Borwein sense and
the relationships between these definitions and the four aforementioned ones ar
discussed. A sufficient condition for the existence of proper local efficient solutions
for Hadamard directionally differentiable functions is also presented.

2. Preliminaries

Let E;, E, be real normed linear spac&s¢c E;, Y ¢ E; andf : E; — Eo.

The cone generated iy is denoted by con8 = {Ax : x € S, A > 0} and the
convex hull ofS; by coS.

Throughout this workD denotes a cone ik, and we will assume its vertex lies
at 0 e D. We do not suppose th&l is convex, consequently the order defined by
D in E, is not transitive. Recall thaD is said to be pointed iD N (—D) = {0}.
Cones that are not necessarily pointed have often been considered by authors (see f
instance, Borweingd], Ishizuka and Tuanl(], Khanh [L3]), although some authors
only consider pointed coneg,[L7]. In the present work, we suppose that the cbne
is not pointed, although we need a pointed cént® obtain the main results.

Let us denote by (Y, yo) the tangent cone t¥ aty, € clY (clY is the closure of
Y), that is, the set of limits of the form

vV = Ilm )\n(yn - y0)9

where(1,) is a sequence of positive real numbers @wg is a sequence i with
limit .
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It is said that the subse# of D is called a base for the corig if 0 ¢ cl % and
everyd € D \ {0} has an unique representationcas= b, with A > 0 andb € %.
Following Luc [16, Definition 1.5] we do not assume thagis convex.

The existence of a base for a cone has some relevant consequences for the cor
itself.

REmMARK 2.1. (1) If D has a closed bounded base, tiiis closed [L6, Proposi-
tion 1.7].
(2) If D has a convex base, thdh is convex and pointedlfl, Lemma 1.14].
Therefore ifD has a convex compact base, tHetis convex, closed and pointed.
(3) In this paper, we frequently use a coRewith a convex compact base. In this
case, we point out that i, is a normed vector lattice with positive coidg thenE,
is finite dimensional (Dauer and Gallaghér, Theorem 3.1]).

For yo € Y andD fixed, various notions of optimality are defined as follows.
The pointy, € Y is anefficientelement ofY (with respect toD), denotedy, €
Min(Y, D), ifthere exists ny € Y forwhichy,—y € D\ (—D). Such a pointis also

called minimal or Pareto optimal. The poigtis aweak efficienélement ofY, written
Yo € WMIn(Y, D), if there exists ny € Y satisfyingy, —y € int D \ (—int D). The
point y, is called aocal efficientelement ofY, denotedy, € LMin (Y, D), if it has a
neighbourhood/ such thaty, is an efficient element of N V. A local weak efficient
element is defined similarly. It will be denotggl € LWMin (Y, D).

With respect to the weak efficient elements, we remark bhaé assumed to have
a nonempty interior.

Obviously, it is straightforward to verify that

LMin (Y, D)

Min(Y, D) C {WMin(Y D)

} C LWMin(Y, D).
The weak notions are the same as the non weak ones if the Rosatisfies
D =intD U {0}.

Let f : E; — E, be a function and c E;. The vector optimisation problem
considered here is

Min{f(x) : x € S}, (VP)

that is, the problem of determining al) € S for which f(xg) € Min(f(S), D).
Such anx, is called an efficient (or minimal) solution fol/P); it will be denoted
Xo € Min(f, S). Finally, it is said thatx, is a local efficient solution for\(P) if
f(Xo) € Min(f(SNnU), D), for some neighbourhood of x,. Notice that this is
not equivalent tof (o) € LMin(f(S), D). A local weak efficient solution is defined
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similarly. The Hadamard directional derivative bhtx, € E; in the directionv € E;
is defined to be

, o f(Xo +tu) — (%)
(%0, v) = (t,u)ILn(]o«L,v) t ’

The functionf is called Hadamard directionally differentiable at a pagit f'(Xo, v)
exists and is finite for alb € E;.

3. Local Borwein proper efficiency

Inthis section various notions of local efficiency in the Borwein sense are discussed.
The following is a well-known definition due to Borweif][

DerINITION 3.1 (Borwein proper efficiendy The pointy, € Y is called a Borwein
proper efficient element, writteyy € Bor(Y, D), if

TY+D,y)N(—D) c D. (3.2)

Borwein’s original definition ] requires that the poiny, be an efficient element
of Y, but Sawaraget al. [20, Proposition 3.1.5] show thatE, = RP andD is convex
and closed, then such a condition is enassary. In the next proposition this result is
generalised.

PrROPOSITION3.2. If yp € Y is a Borwein proper efficient element, thgnis an
efficient element of, that is,Bor(Y, D) C Min(Y, D).

PrOOF. If yp ¢ Min(Y, D), then there existg € Y such thaty — y, € (—D) \ D.
Then the segmery, yo] C Y + D, since for alle € [0, 1] we have

Ye=aYo+(l—-a)y=y+alYo—y) €Y +D.

Obviouslyy, = Yo+ (1 — a)(Y — Yo). Let(y,) be the sequence defined by taking
a=1-1/n,thatis,

1
yn=y0+ﬁ(y_y0)€Y+D,

thereforey, — yo, and lim,_... (Yo — Yo) =Y — Yo € T(Y + D, o) N [(—=D) \ D]
in contradiction to 8.1).

We consider now two local definitions of proper efficiency.
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DerINITION 3.3 (Local Borwein proper efficiengBorwein [3, Definition 2 (3]).
The pointy, € Y is said to be a local Borwein proper efficient element, denoted
Vo € LBor(Y, D), ifitis a local efficient element of and

T(Y,y0) N (—=D) C D. (3.2)

Guerraggicet al. use a slightly different notion/[ Definition 6.5].

It will be proved in Propositior8.5that if the coneD is pointed and has a compact
base, then it is not necessary to require tadie a local efficient point of because
this is implied by condition3.2). To prove this result, we need the following lemma.

LEMMA 3.4. Let D be a cone with a compact base. If the sequddgec D and
Ild.]l = 1, then there is a subsequence which converges to domB with ||d|| = 1.

PrROOF. Let # be a compact base @. We have that, = A,b, with A, > 0
andb, € #. By the compactness ¢, there exists a subsequer{tg} convergent
to someb € #, b # 0. Thus|dll = Allbkll, A« = lldll/ k]l = 1/lby]| and
im0 A = 1/1/b].

Consequently limL ., d = limy_ . be/lIbcll = b/|Ib]|. SinceD is closed, we have
d =b/|b|| € D.

PrOPOSITION3.5. Let D be a pointed cone with a compact base agde Y. If
T(Y, Yo) N (—D) = {0}, theny, is a local efficient element of.

PrROOF. Suppose thayy ¢ LMin(Y, D). Thenyy ¢ Min(Y N B(yy, 1/n), D) for
alln € N. Therefore there existg, € Y N B(Yop, 1/n) such that,, — y, € (—D) \ {0}.
It follows thaty, — V.

Letd, = (Yo— Ya)/lIYo — Yall, thend, € D and|d,|| = 1. From Lemma3.4,
taking a subsequence, if necessary, we may assume that

im 2 —% _ _qe_p with [d]=1

n—oc || Yy — Yoll
Then, by definition—d € T(Y, yo). But, by the hypothese3(Y, yo) N (—D) = {0}.
Thusd = 0, which is a contradiction.

Another notion of local proper efficiency was introduced by Ishizuka and TL@n [
Definition 3.5].

DEeFINITION 3.6 (Local Borwein proper efficiency in the sense of Ishizuka-Tuan
The pointy, € Y is called a local IT-proper efficient element, writtgne IT(Y, D),
if there exists a neighbourhodd of y, such that

T(YNV +D,yy) N (-D) c D. (3.3)
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Clearly, BoY, D) C IT(Y, D).

It is proved by Ishizuka and Tuari(, Proposition 3.1] that iff is continuous at
Xo andy, = f(Xp) verifies B.3) for Y = f(S), thenxg is a local efficient solution
for (VP). We actually prove that fron8(3) it follows thaty, is a local efficient element
of f(S), and then Ishizuka and Tuan'’s result follows from this.

ProOPOSITION3.7. If yo is a local IT-proper efficient element, theg is a local
efficient element. That i§] (Y, D) c LMin (Y, D).

PrROOF. By definition, there exists a neighbourhoddf y, such that 8.3) holds,
that is, y, € Bor(Y NV, D). Then, from Propositior8.2, yo € Min(Y NV, D),
thereforey, € LMin(Y, D).

The next corollary follows from this proposition and from Result 4.1 in Cordgy [

COROLLARY 3.8. Let f : E; — E, be continuous aky € SC E;. If f(Xy) is a
local IT-proper efficient element df(S), thenx, is a local efficient solution fofVP).

Now we turn our attention to the relationships between the two notions.

THEOREM3.9. (a) IT(Y, D) c LBor(Y, D).
(b) If Disapointed convex cone with a compactbase, tiigor(Y, D) = IT(Y, D).

PrROOF. (a) Lety, be a local IT-proper efficient element, then there exists a neigh-
bourhoodV of y, such thaff (Y NV + D, yo) N (—D) c D. By Propositior3.7, y,
is a local efficient element.

SinceYNV c YNV + D, it follows that

T(Yv yO) = T(Y N V’ yO) C T(Y nv + D’ yO),

and therefore thak (Y, yo) N (—D) c D, thatis,y, is a local Borwein proper efficient
element.

(b) Let us prove that LBdiY, D) C IT(Y, D). Suppose thay, is a local Borwein
proper efficient element, but that it is not a local IT-proper efficient element. Then for
eachB(yo, 1/n) there exists-d, € T(Y N B(yy, 1/n) + D, o) N (—D) andd, # 0.

We can suppose thitl,|| = 1 since the set$ (Y N B(yy, 1/n) + D, yo) andD are
cones.

From LemmaB3.4, taking a subsequence if necessary, we deduce that

limd,=de D with |[d| =1 and —de T(YNB(Y, 1) + D, yo)

n—oo

since this last set is closed and

—d, € T(YN B(Yo, 1/n) + D, yo) C T(Y N B(Yo, 1) + D, yo).
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From the definition of a tangent cone, fachn there exist

Yok € YN B(Yo,1/n) and d,xe D,k=12,..., (3.4)
such that
Yok + 0k = Yo wWhenk — oo (3.5)
and
k”fgo)»n,k(yn,k + 0ok — Yo) = —d, with A, > 0. (3.6)

From 3.6), givene = 1/n, there existk, € N such that

A0 (Vnke + Goi, — Yo) + ol < 1/n.
Therefore

nlmo )‘n,kn(yn,kfI + dn,kfI - yO) =—d. (3-7)

Setyn, = Ynk,» A = Ohx, andir, = Any,. From @.4) it follows that lim,_ ., Y = Yo.
From this result and fron3(5) we have lim_. ., d, = 0.
We rewrite 3.7) in the following form:

lim (2 (Yn = Yo) + Andh) = —d. (3.8)

The sequence, = A,d’ which appearsin3.8 may be: (i) bounded or (ii) unbounded.
Case (i). Letd,} be bounded. From Lemng4, we may suppose that

lim dh =deD with |d|=1 (3.9

=00 || chy|

Since||d,| is bounded, there exists a subsequence which converges. Then we sup
pose that lim_ . [|d,]| = A. Hence lim_ . d, = Ad. From @.8) it follows that
iMoo An(Yn—Yo) = v € T(Y, Yo). Thenv+1d = —d, thatis,y = —d—Ad € —D,
sinceD is convex. From the hypothesés(Y, y;) N (—D) = {0}. Hencev = 0 and
d € DN (—-D) = {0}, that is, a contradiction.

Case (ii). If{d,} is unbounded, taking a subsequence, let us assume that

lim ||d,|| = +o0.
n—oo

From Lemma3.4, (taking a subsequence, if necessary) we have tha} folds.
From (3.9), it follows that lim,_, .[An(Yn — Yo) + da1/]Ida]l = 0. Hence

lim ( 20y, — yo) + G )—o
oo \ ol 7 ldall)
Therefore iM_ o An(Yn — Yo)/lldall = —d € T(Y, yo) N (—=D) = {0}, from the

hypotheses, and we again have a contradiction and the theorem is proved.
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4. Local proper efficiency

In this section two new notions of a local proper efficient solution are proposed and
we study the relationships between them, those from the previous section and others
We give a sufficient condition which is very close toecessary condition for a point
to be an efficient element.

In the rest of the paper, the coieis pointed.

DerINITION 4.1. (1) The pointx, € Sis said to be a local proper Borwein
efficient solution of type 1 for problem/f), written X, € Bor,(f, S), if there exists
a neighbourhootl of x, such that

T(f(SNU) + D, f(x)) N (—D) ={0}. (4.1)

(2) The pointxy € Sis said to be a local proper Borwein efficient solution of type 2
for problem {/P), writtenxg € Bor,(f, S), if X, is a local efficient solution for(P)
and there exists a neighbourhddf xq such that

T(f(SNU), f(xg) N(—D) = {0}. (4.2)

From Propositior8.5, if D is a cone with a compact base, thér?) yields f (Xy) €
LMin(f(SnU), D).

PROPOSITION4.2. (&) Xq € Bor,(f, S) if and only if there exists), a neighbour-
hood ofxg, such thatf (xg) € Min(f(SNU), D) andT (f(SNU), f(X))N(=D) =
{0}.

(b) If f(xo) € IT(f(S), D) and f is continuous ak,, thenx, € Bor,(f, S).

(c) If f(xg) € LBor(f(S), D), thenxy, € Bory(f, S).

(d) If xo € Bory(f, S) and f is continuous ak,, then there exists a neighbourhood
U of X, such thatf (xg) € IT(f(SNU), D).

(e) If xo € Bory(f, S), then there exists a neighbourhoddof x, such thatf (xq) €
LBor(f(SNnU), D).

() If xo € Bory(f, S) and f is continuous ak,, thenx, € Bor,(f, S).

(9) If xo € Bory(f,S), fiscontinuous ak, and D is a convex cone with a compact
base, therx, € Bor,(f, S).

PROOF. Let us suppose thdt(xg) = Yo, we have:
(a) If xg € Bor,(f, S), then there exist two neighbourhoddsandU” of x, such that

Yo € Min(f(SNU"),D) and T(f(SNU"), vy N(—D) = {0}.

TakingU = U’ N U", we obtain this result. The converse is evident.
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(b) From the hypotheses, there exists a neighbourhooftly, such that
T(f(S9NV +D,yy) N(—D) = {0}. (4.3)

Due to the continuity off, there exists a neighbourhobtildof x, such thatf (U) c V.
Hencef(SNU) c f(S NV and thereforef(SNU)+ D c f(S NV + D.
ThenT(f(SNU)+ D,y C T(f(S NV + D,y). From @.3), it follows that
T(f(SNU) + D, yp) N (—D) = {0}, that is,xy € Bory(f, S).

(c) Itis clear.

(d) From the hypotheses, there exists a neighbourhaf x, such that

T(f(SNU") + D, yy) N(—D) = {0}. (4.4)

Given the neighbourhood ofy,, V = {y € E; : |ly — Yol < 1}, by continuity we
have thatf (U”) c V for some neighbourhodd” of x,. If we defineU = U’ NU”,
thenf (SNU) c V and thereforg (SNU)NV = f(SNU) c f(SNU’). Hence
from (4.4) it follows that T (f (SNU) NV + D, y) N (—D) = {0}.

(e) It follows from (a).

() From (d), we havey, € IT(f(SNU), D). Besides, from Theoref9(a) it follows
thaty, € LBor(f (SN U), D), and from (c) thak, € Bor,(f, S).

(9) To prove this result, we apply successively (e), TheoBehib) and (b).

Hence the two notions introduced in DefinitidriLare equivalent foff continuous
atX, andD a convex cone with a compact base.

The next example shows that the converses of (b) and (c) in the above proposition
are false.

ExAvPLE 4.3. Let E; = E, = R? D = R? the usual cone, the function(x, y) =
(X — X%,y — y?), the setS = {(x,y) : 0 < x < 2,0 <y < 2} and the point
Xo = (0,0). Inthis caseT (S, X = {(X,y) : X > 0,y > 0} and f(S) contains
the setd—2, 1/4] x {0}, {0} x [—2,1/4] and{(x, xX) : —2 < x < 1/4}, which are
the images of the subsets 8f{(x,0) : 0 < x < 2}, {(0,y) : 0 <y < 2} and
{(X,X) : 0 < x < 2}, respectively. Thery, = f(xo) is not an efficient element of
Y = f(9), noris it a local efficient element of, that is,y, ¢ Min(Y NV, D) for all
neighbourhood¥ of yj.

However, X, is a local efficient solution for\(P). It is sufficient to takeU,
the neighbourhood okg, to be{(x,y) : -1 < x < 1,-1 <y < 1}. Then
f(SNU) c [0, 1]1x [0, 1], and hergy, is an efficientelementy, € Min(f (SNU), D).

Clearly, yo ¢ LBor(f(S),D) = IT(f(S), D). However, we have that, €
Bor,(f, S) = Bor,(f, S) since @.1) holds for the neighbourhodd above.

General optimality conditions for a point to be an efficient element have been
collected by Corley4] considering an arbitrary s&t. In Corley’s Theorem 3.1 the
following is established:
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(@) Let D be a closed cone in the finite-dimensional sp&ce If y, € Y and
T(Y, Yo) N (—D) = {0} theny, € LMin (Y, D).
Corley points out that it is an open question whether the closedneBsoofthe
finite dimensionality ofE, can be relaxed. We have shown in Proposiidhthat (a)
holds for E, being infinite dimensional but requires tHathas a compact base. The
next example shows that the closedness and the existence of a compact base canr
be relaxed.

EXAMPLE 4.4. (a) HereD is not closed. Lef, = R? D = (intR%) U {0},
Y ={(x,y) : y> —x?}andy, = (0, 0). Itiseasyto verifythal (Y, yo)N(—D) = {0}
andyp ¢ LMin(Y, D).
(b) HereD is closed without a compact base. et = E be a Hilbert space with
an orthonormal bas# = {e, : n € N}. Let

D={d=(ay) € E:a,>0Vn e N} =clcocone®.

HereD is a pointed, closed, convex cone but it has no compact bas#. £eb U A,
whereA = {(=1/n)e, : n € N} andy, = 0.
We haveT (A, yo) = {0}. Infact, takev € T(A, yp). Then, since

lim(—=1/n)e, = 0=y,

there exists a subsequence apd- 0 such that lim_, ., A, (—1/K\) e, = v.

Therefore, for eache N, lim,_, o, 2,(—1/k,) (&, &) = (v, &). But the sequence
within the limit is null (except at the most for a single term). Hefees) = O for
alli e N and it follows thatv = 0. ThenT(Y, Y,) = T(D, Vo) UT(A,y,) = D
andT(Y, yo) N (—D) = {0}, that is, the hypotheses of (a) are verified. However,
Yo ¢ LMin (Y, yo) because for ak > 0 there exist® € N such that

(=1/me, — Yo € (YN B(Yo, &) — Yo) N (=D).

Corley [4, Result 4.2] also establishes the following necessaryitiondor a point
to be an efficient solution:

Let f : E; — E, be Fréechet differentiable at, € S ¢ E; and D a pointed cone.
If Xq is an efficient solution fofVP), thenV f (Xo)(T (S, Xo)) N (—int D) = @, where
V f (Xo) is the Fiechet differential off at x.

This result can easily be generalised foHadamard directionally differentiable at
Xo andx, a local weak efficient solution fol(P).

In fact, by the hypothesis there exists a neighbourtdaif x, such that

f(X0) = Yo € Min(f(SNU), (int D) U {0}).
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HenceT (f(SNU), yo) N (—int D) = @ [4, Theorem 3.1(a) and remark of page 75].
Now, sinceT (SN U, xg) = T(S, Xo), then

(X0, )T (S, %) = (X0, HT(SNU, %)) C T(F(SNU), yo).

Thereforef’(Xq, )(T(S, X)) N (—int D) = . Note that, ifv € T(S, Xy), then
f'(%0, v) € T(F(9), f(Xg)). Infact, we havey, = (X, — Xo)/An — v, With A, — O
andx, = Xp + A,v, € S. Then

lim f(Xo 4+ Anvn) — F(Xo)

n—o0 An

= f'(Xo, v) € T(f(9), f(X0)).

Related to Corley’s result, we have the next sufficient condition for a point to be a
local proper Borwein efficient solution of type 2 type 1 in this case iD also has a
convex compact base).

THEOREM4.5. Let X € S C E;, E; finite dimensional,D ¢ E, a cone with
compact basef : E; — E, Hadamard directionally differentiable &g and

C(fhY={veE: f'(X,v) € —D}.
If T(S, o) NC(f") = {0}, thenxy € Bory(f, S).

PROOF. Let f (Xo) = Y. Itis sufficientto prove4.2). Infact, from Propositior3.5,
Yo € LMin(f(SnU), D). Hence, by definitiony, € LBor(f(SNnU), D). By
Proposition4.2(c), xg € Bor,(f, SNU) = Bory(f, S).

Letus prove4.2). If T(S, xo) = {0}, thenxgyis anisolated point. Hence there exists
a neighbourhootl of X, such thatSNU = {x,}. ThereforeT (f(SNU), yy) = {0}
and the conclusion is true.

Let T(S Xo) # {0}. Then, for alle > 0, T(SN B(Xg, ), Xo) # {0}. Suppose
that @.2) is false. Then for everg we have

T(f(SN B(X, 1/M)), o) N (=D) # {0}.
Hence there exists
—d, € T(f(SN B(Xe, 1/n)), Yo) N (—D) with d, #0. (4.5)
We can assume thgth|| = 1,d, — d, |d| = 1,d € D and—d € T(f(Sn
B(Xo, 1)), yo) since—d, € T(f(SNB(xg, 1)), Yo) for everyn. From @.5), there exist
Xnk € B(Xo,1/n), k=1,2,... (4.6)
such that

fim M = —dy with A= 1f000 - fOQ) >0 (4.7)
— 00 n,k
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From (4.7), givene = 1/n, there existk, € N such that

H f(Xni) — f(X) 4

Ak,

< —.
n
Therefore
lim M _

n—o0 )"n,kn

—d. (4.8)

Setx, = Xhk, € SN B(X,1/n) andr, = i, > 0. Then @.8 amounts to
Moo (F (%) — F(X0))/An = —d. From @.6), lim,_. ., X, = Xg andx, # X, Since
f(Xn) # f(Xo) by (4.7). SinceE, is finite dimensional, we may assume that (taking
a subsequence if necessary)

Xn —

. Xo .
lim =v € T(SN B(Xg, 1), Xo) Wwith wu, = [|X, — Xl and |Jv]| = 1.

n—o0 Mn

Then lim_ . (f (X)) — f(X0))/un = f'(Xo, v). Hence

n—oo Mn n—oo Mn
Consequently,
F(x.v) = fim ~C = F0Q) 2 TO0) = FOO)
n—o0 M n—oo ln An

Hencef’(xq, v) € —D, but this is a contradiction because T (S, Xo) \ {0} implies
f'(%0, v) ¢ —D, from the hypotheses.

The advantage of Theorefb5 is that we have to verify a condition in the initial
spaceE;. This s, in general, easier than verifying the definition in the final sjigce

The following counterexample shows that the finite dimensionalitfotannot
be relaxed.

ExamMPLE 4.6. With the same data as that of Examglé (b), we now takeE; = E,
Xo = 0andS= D U A. We know thafT (S, xo) = D. Leth, = (1/n)e,.

It is verified thatd_ ", [|b,|> = > o2, 1/n? < co. Hence by 19, Theorem 12.6],
for all x € E, the serie$_ .-, (b,, x) converges.

Let f : E — R be defined byf (x) = >, (by, X) = > o2, an/n With X = (ay).
Then f is a continuous linear functional. Therefofas Fréchet differentiable with
f'(Xg, v) = Vf(Xg)v = f(v) and then

C(f)={veE: f(x,v) = fv) <0} = {v:wn):Zﬂn/ns o}.

n=1
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We haveT (S, xo) NC(f’) = {0} sinceifv € T(S, %), then, > 0Vnandv € C(f’)
implies)_ 7, Bn/n < 0. Hence, = 0 for all n, thatis,v = 0.

However,X, is not a local minimum forf over S, because for the points which
belong toA C S, one hasf((—-1/n)e,) = —1/n?> < f(Xy) and there are points
belonging toA in every neighbourhood of,. Therefore we do not even have the
guarantee that, be a local minimum for a single-valued functidn and, of course,
the equalityT (f (SNU), Xo) N (—R,) = {0} is false too.

In[12, Definition 3.1], the first author introduces the notion of a strict local efficient
minimum for the problem\(P) as follows.

DEFINITION 4.7. Letm > 1 be an integer. A point, € Sis said to be a strict local
efficient minimum of ordem for f : E; — E, over Sif there exist a constamnt > 0
and a neighbourhodd of x, such that

(F)+D)NB(f(X), allx = %™ =¥ Vx e SNU \ {X}.

If E, = RPandD = R?%, such a point is called a strict local Pareto minimum of
orderm.

Every strict local efficient minimum of orden is a local efficient solution for(P)
[12, Proposition 3.3].

The following result establishes the relationship between this notion and that of a
Borwein solution. It follows immediately fronilp, Theorem 4.4].

COROLLARY 4.8. Let f : R” — RP be a Hadamard directionally differentiable
function atx, € SC R". If Xy is a strict local Pareto minimum of orddrfor f oversS,
thenxy € Bory(f, S).

It is not hard to show that the converse of this corollary is false. Take, for
example, f(x,y) = X>+y,x>—y), S = R?2andx, = (0,0). Notice that
f(xo) € LBor(f(S), R?), and, by Propositiod.2(c), X, € Bor,(f, S).

This concludes our study of proper efficiency in the sense of Kuhn-Tucker.

Ishizuka and Tuanl[0, Definition 3.6] consider the following notion of proper
efficiency.

DerFINITION 4.9. Let f : E; — E, be a Hadamard directionally differentiable
function atx, € S C E;. Itis said thatx, is a local proper Kuhn-Tucker efficient
solution for (VP), writtenxy € KT (f, S),if X, € LMin(f, S)andT (S, xo)NCy(f")=0,
whereC,(f") ={v e E;: f'(Xo,v) € =D\ {0}}.

PrOPOSITION4.10. If X, € Bory(f, S) thenxy, € KT(f, S).
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PrOOF. By the definition of Bos( f, S), we havex, € LMin(f, S) and there exists
a neighbourhood) of x, satisfying é.2). Suppose that there existse T (S, Xg) N
C,(f"), and, consequently,e T(SNU, xo). Thenthere exist, € SNU andt, — 0"
such that lim_, .. (X, — Xo)/t, = v. As f is Hadamard directionally differentiable at
Xo, Wwe deduce that

f () — (%)
because € C,(f’). But (4.9 impliesw € T(f(SNU), f(xy)) N(—D) with w # 0,
which contradicts4.2).

w:= lim

n—o0

= f'(Xo, v) € —D \ {0}, (4.9)

The converse of Propositioh10is false in general as the next example shows.

EXAMPLE 4.11. Consider the se = {(X,y,2) € R®: 2xz> x?>+ y%,z > 0},
f(X,y,2) = (X,y),D =R2%,%x, = (0,0,0) andy, = f (X)) = (0, 0). We have:

(1) T(S, xo) NCy(f) =P sinceT (S, xg) = Sis the convex cone generated by the
circlez=1,(x —1)2+y2<1.

(2) f(9 ={(x,y) € R?: x > 0} U {(0, 0)}.

(3) f(SNU,) = {(x,y) € R?: (x —&)> + y? < ¢%}, whereU, = {(x,y,2) :
Max{|x|, lyl, 1z} < 25}, with ¢ > 0, is a base of neighbourhoodsxf Therefore
T(f(Sﬂ U,), yo) N (—R2) # {(0,0)}, and consequently, ¢ Bor,( f, S). However,

Xo € KT(f,S).

5. Conclusions

We would like to emphasise that Theoreén® provides a sufficient condition for
proper efficient solutions of Betype. This notion, by Corollar.8, is related to strict
efficiency, whichis in turn a new concept, whose possibilities are still being developed.
Using Proposition4.10 it follows that every solution of Bgrtype is proper in the
Kuhn-Tucker sense, which, in our opinion, is one of the most important notions of
proper efficiency. The main advantage of TheorkHis that it can easily be applied,
since if the seSis given by constrainte(x) = 0, g(x) < Owithh : R" — R" and
g: R" — R™differentiable, and the Abadie constraint qualification

T(S Xo) = {v € R": Vh(x)v = 0, Vgj(X)v < 0V] such thay;(xo) = 0}

holds atx,, then all the hypotheses of the theorem can be easily checked. Furthermore
this theorem is very close to the necessary condition for a local efficient soldtion [
Result 4.2].

Finally, we find in Theoren8.9 and Propositior.2 that our notions of proper
efficiency solutions are equivalent (in very general conditions) and very similar to two
previous notions.
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