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CONTROL OF SINGULARLY PERTURBED MARKOV CHAINS:
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Abstract

This work is devoted to numerical studies of nearly optimal controls of systems driven by
singularly perturbed Markov chains. Our approach is based on the ideas of hierarchical
controls applicable to many large-scale systems. A discrete-time linear quadratic control
problem is examined. Its corresponding limit system is derived. The associated asymp-
totic properties and near optimality are demonstrated by numerical examples. Numerical
experiments for a continuous-time hybrid linear quadratic regulator with Gaussian dis-
turbances and a discrete-time Markov decision process are also presented. The numerical
results have not only supported our theoretical findings but also provided insights for further
applications.

1. Introduction

This work is concerned with nearly optimal controls of systems driven by singularly
perturbed Markov chains. We consider both discrete-time and continuous-time prob-
lems. The main objectives are to study the issues related to reduction of complexity
of the Markovian systems and to demonstrate the asymptotic properties numerically.
Our numerical experiments have not only supported the theoretical findings, but also
provided insights for further applications.

In many real-world problems, a common practice in quantifying the dynamic rela-
tionships of random events and uncertainties is to use stochastic processesin modellin
and formulation. For systems having jump sample paths, such as those often encoun
tered in communication, reliability, manufacturing and queueing networks, Markovian
jump models have become popular. Many optimisation and control problems can be
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formulated as stochastic control problems driven by Markovian noise. Typically the
underlying Markov chains have large state spaces, which results in complex structures
and leads to serious obstacles in obtaining optimal controls. Although optimal control
problems can usually be solved by a dynamic programming approach, direct imple-
mentation of the dynamic programming principles only works well for those systems
with moderate dimensions because large dimen$tgrdten renders the computation
infeasible. This is the so-called “curse of dimensionality” phenomenon. To overcome
this difficulty requires reducing the complexity of the underlying problems.

In our continuing effortto study such large-scale systetds]1, 24, 28, 26, 25], we
have adopted the hierarchical decomposition approachZ8eé, [L9 among others),
which leads to the formulation of singularly perturbed Markov chains. Related work
on singularly perturbed systems can be founddng] 17, 3, 16, 1, 15, 22] and the
references therein; the formulation of piecewise deterministic processe$js@rje
of the crucial observations is that for the large number of states involved, their rates of
changes are not the same. Some of them change very rapidly, while others may van
at rates orders of magnitude slower. According to singular perturbation theory, such
a high contrast of rates of changes can be reflected by introducing a small paramete
and by using time-scale separation. This yields two time scales, a fast changing one
versus a slowly varying one. With differenttime scales, we can lump the stagzfin
recurrent class) together in accordance with their rates of change. This aggregatior
allows us to form a reduced system having fewer states, in which the optimal controls
for the reduced problem are easier to obtain. Based on the solution of the reducec
problem, we can then construct control policies that will lead to near optimality.

In this paper, we deal with both discrete-time and continuous-time cases, including
discrete-time linear quadratic control (LQ) problems, discrete-time Markov decision
processes (MDP), and continuous-time hybrid linear quadratic regulator (LQG) prob-
lems. Numerical experiments are carried out to verify the asymptotic optimality.
The rest of the paper is arranged as follows. Secfi@tudies an LQ problem in
discrete time. Using weak convergence methods, we derive convergence of the dy-
namic systems and the value functions under suitable scaling. Sédteats hybrid
LQG problems in continuous time. Sectidis concerned with a discrete-time MDP.
Section5 concludes the paper with a couple of remarks. An appendix is furnished to
cover issues in the simulation of Markov chains and other matters in computation.

Notation. This paper deals with finite-state Markov chains regardless of the prob-
lems being in discrete time or in continuous time. Denote the state spaeé apd

write .# = {1,...,m}. For a generato@ = (q;) of a continuous-time Markov
chain and a suitable functiof(.) defined on#, Qf(-)(i) is meantto be
QFf()(M) =Y gy (f(j) — f(i)), (1.1)

j#
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For simplicity, in this paper, we concentrate on the cases where the dominating parts
of the Markov chains contain only recurrent states. In this cagés decomposable
into | subspaces

M =AU =S, S U U S, o, S ) (1.2)

Throughout the paper, we use the conventios .# to denote an elemerit €
{1,...,m} and uses, to denote an element in thth subspacez..

2. Adiscrete-time LQ problem

We examine a discrete-time LQ regulator problem. The design of traditional
linear methods feedback controllers is based on a plant model with fixed parameters
Although it provides a way to manage for many dynamic systems, it cannot handle
the situations in which the actual system is different from the nominal model. Much
effort has been directed to the design of more robust methods in recent years. Tc
take into consideration discrete shifts in regime across which the behaviour of the
corresponding dynamic systems are markedly different, we present an LQ model with
Markovian switches in this section. Rather than using a fixed system configuration, we
take random jumps into consideration, propose a hybrid system, derive its limit, and
demonstrate that its optimal control can be approximated by that of a continuous-time
hybrid LQG problem and that the nearly optimal controls of the original system can
be constructed using the limit system.

Lete > O be a small parameter ang] a discrete-time Markov chain with a finite
state space# havingm elements and transition probability matfX = (p;;) given

by
P*=P+¢Q, (2.1)

whereP is a transition probability matrix an@ is a generator (the precise condition
is given in (Al)). For any € R, use|z] to denote the greatest integer function that
gives the greatest integer less than or equal tBor a finite real number > 0 and

0 < n < |T/e], the dynamic system is given by

{xn+1 = Xn + 8 AW@E) Xy + £B(@)Un + +/Ewn, 22)

Xo = X, a deterministic vector,

wherex, € R™ is the statey, € R™ is the control, A(i) ¢ R™*™ andB(i) € R™*"
are well-defined and have finite values for each .#, and{w,} is a sequence of
random variables with zero mean. Define a sequence of cost functions by
n-1
Jr(X,,u(-)) = €¢E { [X{(M ()X + u{(N(aﬁ)uk] + x,/]Dxn} , (2.3)
k=0
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whereE = E, , is the expectation givex, = o andx, = x. Our objective isto find an
optimal controlu to minimise the expected quadratic cost functiy), (X, &, u(-)).
To obtain the desired asymptotic results, we make several assumptions.
(A1) The following conditions hold:
e {w,} is a sequence of independent and identically distributed (i.i.d.) random
variables withEw, = 0 andE|w,|? < oc.
e ¥ = E(wowp) is a symmetric positive definite matrix.
e Pin (2.1 has the form

P = diagP,, ..., P) (2.4)

such that eacR, is irreducible and aperiodic ar@ = (q;;) is a generator, that
is,q; > Ofori # jandg; = — ), qj. Inthe above, diad;, ..., H)
denotes a block diagonal matrix having matrix entkfs. .., H,.

e The Markov chainy: and the random disturbanag are independent.

e Foreach € .#, M(i) are symmetric nonnegative definite matrices, and)
andD are symmetric positive definite matrices.

ReEMARK 2.1. We concentrate on the cases of singularly perturbed Markov chains
with recurrent states. The cases of inclusion of transient states can be treated in :
similar way. As far as the optimal controls are concerned (8€g, [however, the
transient states are asymptotically unimportant. We consider “white noise” only. The
i.i.d. assumption on the sequenfae,} is mainly for convenience. The limit results
for more complex noise processes suclpasixing processes can be obtained. The
essence is that a central limit theorem holds for the noise, which yields a Brownian
motion limit. For simplicity, we treat the cases where the variance of the noise
(as a result of the diffusion term in the limit) does not depend on the singularly
perturbed Markov chain. The results obtained can be extendeg-ttependent
variance. However, more complex averaging schemes are needed.

Denote the value functions hy (x, «) = inf,., J° (X, @, u(-)). For each 0< n <
N = | T/e], applying the dynamic programming principle with a slight modification
of the argumenting, p. 70], yields a system of dynamic programming equations:

{vf\,(XN,af\,)zx;\,DXN, 25

v (Xn, o) = MIN E {ex) M ()X, + e, N (@) Un + Vi (Xne1, o) )

Define F(i) = ernzl p;; F(j) for an appropriate functiorr(-) defined on.#,
Al) =1 +¢Ad), B(i) = ¢B(i). Using a dynamic programming approach asip [
pp. 165-166], assuming the value function to be of the form

v (X, 1) = X'KE()X +r1.(30), (2.6)
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we proceed to determiné’ andr?. For each € .#, substituting 2.6) into (2.5
yields the following system of Riccati equations:

Ke(i) = A)K +1(I)A(l) +eM(i) — AG)K +1(l)|3(l)(8N(l)
+B)K, +1(l)|3(l)) B()K, +1(I)A(l) (2.7)
K:@i) =D

and

{r;’(i) = e (0) +etr (Ke,()T), (2.8)

ry @) =0.

REMARK 2.2. Instead of solving one equation, we must solve a system efjua-
tions. When the state spac# is large, the required computation is intensive. Using
a singularly perturbed Markov chain approach, however, reduces the complexity and
computational burden.

Note that

Ki() = Koy () + e A(DKE () +eKe, () AG)
+eM() — sK,’;‘"H(l)B(l)(N(l)

+eB'(HK, S O1-10) -] (iHK, £ + O, (2.9)
Furthermore
+1(|) =K +1(|)+82q” +1(j)v (2.10)
where
1 1
Q8=E(P—|)+Q=(qi?)=<g(l3fj —5ij)+Qij> (2.11)

and wherey;; = 1ifi = j and is 0 otherwise. Using this notation, rewrigegj as
Kapa () = K@) — eA()Kna(i) — 8K8+1(|)A(l) - SM(I) +eK arr(DBA)(N()

+eB'()KE,,()B@)) B (HKE,, (1) — eZq.J ta(i) + 0.

This equivalent form will be useful in the subsequent analysis.

For each, define piecewise constant interpolated proceksés i) andre(-,i) as
Ket,i) = Ki@i)andre(t,i) =ri(i), fort € [ne, ne +¢). With a modification of the
argument of the proofs of Lemmas 1 and 2 28], we obtain the following lemma.
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LeEmmMA 2.1. The following assertions hald

(i) Kg(@) and Ke(t,i) are positive definite for each < n < [T /e] and each
t € [0, T], respectively.
(i) For eachi and for some; > 0,

sup K@) <wr,  sup [K(t, )| <7,

0<n<|T/e] te[0,T]
0<n<|T/e] te[0,T]

It can be shown similarly as ir2[ p. 73] or B, p. 166] that the optimal feedback
control for the LQ problem is linear in the state variable, and

e e d_ef

Uy = — [B'HKE,()BG) + gN(i)]’l B'(HKE (DA X = —Pp(i )X
Consequently the dynamic system can be written as
Xni1 = X + On (@)X + ew,, where ©,() = A®) — B@i)®,(). (2.12)

Henceforth, we use to denote a generic positive constant with possible different
values for different appearances and with the understanding of the notatien= «
andkxk = k. To proceed, we first obtain a bound on the second momex;. of

LEMMA 2.2. Under (A1), SURy_n 1/, ElXal? < o0.

PrOOF. For any O<n < |T/e], from (2.12), itis easily seen that

n-1 n-1 n-1 n-1
Elx? <« (|x0|2 +62 ) D B XX O (@) O ()] +eE D Y Ew{(lwk) :

k=0 k=0 k=0 k=0

An application of the discrete version of Gronwall’'s inequality then yields
E|Xal? < k(|Xo]? + tr X) exp(x T) < oco.
Moreover the bounds hold uniformly for€n < [T /e].

To effectively reduce the complexity, we use the idea of aggregation. In accordance
with the form of P given in (2.4), the state space of the underlying Markov chain can be
written as (.2) to reflectthe factthat the state space can be decomposédectarent
classes. We take a continuous-time interpolatior‘@s) = x, fort € [ne, ne + ¢).
Definew;, = (if o} € .#, and defing*(t) = o/ fort € [ne, ne+¢). Working with the
interpolated pai(x®(-), @°(-)), we will show that it converges weakly tx(-), @ (-)),
that is, a solution of a hybrid system in continuous time.
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LEmMMA 2.3. Under(Al), the following assertions hold.

(i) @°(-) converges weakly @(-) ase — 0, which is a continuous-time Markov
chain generated by

Q =diaghv?, ..., vHQdiagdy,, ..., In). (2.13)

wherev' is the stationary distribution corresponding # for eacht = 1, ... ,1, and
1,, denotes arfy-dimensional column vector with all entries beihg

. A . 2

() E(8 |[<T:/0][I[aﬁ:5w) — U({I[aﬁeﬁi)]) — Qase — 0.

This result has been proved 7. We omit the proof here. For corresponding
results for singularly perturbed continuous-time Markov chains, 2&eJhapter 7].

LEMMA 2.4. Under(Al), {x®(-)}is tightinD™[0, T]; the space oR™-valued func-
tions that are right continuous have left limits endowed with the Skorohod topology.

PrOOF. We use the tightness criterid [Section 3.8, p. 132], and.§, Theorem 3,
p. 47], to resolve the problem. Denote the conditional expectation om-gigebra
Z{ =ofa’(u),u <t} by E{. For simplicity and with a slight abuse of notation, in
lieu of [t/e] and|(t +5S)/e], we often usé/s and(t +S)/¢ to denote integers in what
follows. It should be clear from the context. For apy- 0,t > 0 and O< s < 7,
using €.12, we obtain

(t4s)/e—1(t+s)/e—1
2 2
Eflx't+9) — XM =2Ef > > trxgXO (a5 O ()]
ki=t/e  k=t/e
(t4s)/e—1(t+s)/e—1

+22%2E Y D w O (o)X,

ki=t/e  k=t/e
(t+s)/e—1(t+8)/e—1

+ eE{ Z Z Wy, W

ki=t/e  k=t/e
Using Lemma2.2,

(t+s)/e—1(t+s)/e—1

PEE Y Y XX O () Op ()] = O(SY).

ki=t/e  k=t/e
Using independence artthw, = 0, we obtain

(t+s)/e—1(t+s)/e—1

cEE Y > wjwe=0(s).

k=t/e  k=t/e



56 H. Yang, G. Yin, K. Yin and Q. Zhang [8]

By the Cauchy-Schwartz inequality,

(t+s)/e—1(t+s)/e—1

3/2
€ / Z Z wl/<®k1 (Ollil)xkl

ki=t/e k=t/e

E

2 2

(t+s)/e—1 (t+s)/e—1
1/2 1/2 1 .1/2
<E /2 1e E @kl(()lil)xkl EY? |V E wy| = O(S).
ki=t/e k=t/e

Thuslim,_olimsup._ , E|x*(t+s) —x* (t)|> — 0. The desired tightness thus follows.

Since{a*(-)} is tight due to its weak convergence (see Lent#, we can further
show (x°(-), @°()) is tight. Choose a weakly convergent subsequence and for nota-
tional simplicity, still uses as its index. We proceed to characteriseliimét process
and show that the following assertion holds.

THEOREM 2.1. Under(Al), (x?(-), @°(-)) converges weakly tx(-), @(-)) such that
@(-) is givenin Lemma&.3andx(-) is the solution of the hybrid system

dx(t) = E@)x(t) + odw(t),

whereoo' = =, (1) = AG) — B(L)N OB OKWOAQW, e .# ={1,...,1}, and
for a suitable functiorF (-), F(t) = Y, viF(S0).

PrROOF. Using (.12, we have

m -1 t/e—1
XE (1) _xo—l—sZZZ@k(Sz)Xk (o= s«)"’\/_zwk
=1 ¢=1 k=0
m t/e—1 t/e-1
=X+ ¢ Z Z Z OK(S8)XV ey + /€ Z Wk
=1 ¢=1 k=0
m t/e—1
+szzz@k(55)xk {ozk seb T Wl{akelﬂ]
=1 ¢=1 k=0

By virtue of the boundedness &f,, using Lemmag.2and2.3, a partial summation
leads to

Iom t/e—1 2

E 822 Z Ok [log=s) — Viliwgeay]| = 0 ase— 0.

=1 ¢=1 k=0
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The well-known Donsker invariance theorem implies tl;:’étZL/jgl wx = ow(-),

wherew(-) is a standard Brownian motion and the symbslimeans weak conver-
gence. Using an argument similar to that ®4,[Section 9.6], we obtain

m t/e—1

| t
£ Y D Os)XV ey = /O E@(9)x(s) ds.

=1 ¢=1 k=0
Putting all the above estimates together, the desired result is obtained.

To proceed, define piecewise constant interpolatiofx, t, o) = v; (X, ) for
t € [ne, ne +¢). We derive the convergencedf(x, t, ) and derive the limit Ricati
equations.

THEOREM 2.2. Under the conditions of Theorethl, ase — 0, the sequence of
value functions also converges. In fact, we have the following limits for the Riccati
equationq2.7) and(2.8). Foreacht =1,... ,1,

Kt,0) = Kt 0AQ - AOK({, 1) — M)
+K(t, 0BN-IB' (OK (¢, ) — QK(t, )(0), (2.14)
K(T,)=D

and

F(t,)) = —tr (K(t, z)z) _OF(t, ),
(T, =0,

(2.15)

whereQK (t, -)(:) and QT (t, -) (1) are defined ir(1.1).

PrOOF. For anyt, s € [0, T] satisfyingt +s < T, again, for simplicity, we use
(t +s)/e andt/e in lieu of | (t 4+ s)/e] and[t/e]. Similar to the proof of Lemma 3
in [29], sincev®(x,t + s, @) andv®(x, t, &) are the minimal costs, we have

(t+s)/e—1
VS ) — vt ) =eE Y (XM (@)X + X P (en) N (en) D@ i)
k=t/e

By the boundedness &M (-), N(-), andKg, , and using Lemma.2, we can show that
for anyn > 0, there is aA > 0 such that

limsup sup [v*(X,t+5s,a)—v°(X, t,a)] <n.
e—0 0<s<A
O<t+4s<T
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Thus v*(-) is equicontinuous in the extended sense (S |p. 73] for a defini-
tion). Note thatv®(x,t, @) = X'K?(t, @)X + ré(t, ), takingx = 0 in the above
yields the equicontinuity of°(-) in the extended sense. Sing&K:(t,x)X =

vi (X, t,a) — ré(t, o), the quadratic form is equicontinuous in the extended sense.
By repeatedly choosing appropriate vectts; we can show all the entries &f°(t, o)

are equicontinuous in the extended sense. THKO&, @) is equicontinuous in the
extended sense.

Takei = s, € .#,. Since{K*®(-,1)} is equicontinuous in the extended sense and
is uniformly bounded, Theorem 4.2.2 ihJ] implies that it has a subsequence which
converges uniformly to a continuous lintt(-,i). We next characterise the limit.
Using .10, we can write

eA()Kna(i) = eA()Knpai) + ;. where g =e?A() Y qfKnua(j).

=1

Similarly, we can treat the other terms involvirig; ,(i). Note thatQ® defined

in (2.11) is a generator of a singularly perturbed Markov chain in continuous time
with @° = Q/e + QandQ = P — | =diag(P, — I, ..., P — 1,), wherel, denotes

an identity matrix of dimensionx ¢. (The asymptotic properties of such singularly
perturbed Markov chains have been studied extensivelg4h)[ Sincei = s,, we

can write 2.9 as

Kni1(8e) = KA(sy) — 8A/(S£)K§+1(Sz) — &K 1(Se) —eM(sy)
+ K, 180 B(S)(N(Se) + O(e) B (s KL, 1 (Se)
—eQ K 1()(se) + 05

Consequently,

Kg(t + Sv S@) - Kg(tv S@)
(t+s)/e—1
=—c Y [AGIKL(S) + K (s)AS) + M(s)]

k=t/e

(t+s)/e—1

+e Y Kip(s)BE)(NE) + 0) 'B(s0)K{,4(S0)

k=t/e

(t+s)/e—1

—e Y QK{,((s)+G ), (2.16)

k=t/e

whereG*(t) = Y /" g;. It can be shown that the terms & (t) converge to 0

uniformly int € [0, T]. Thus we need only examine the rest of the termgih6j.
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By virtue of the definition of 2.11) and the uniform boundednesskf (-), multi-
plying both sides of%.16 by ¢ and sending — O leads to

t+s (t+s)/e—1
| R-bKE G =lime Y (P= 1K, 060 =0

k=t/e

The continuity ofK (-, ¢) then implies(P, — |)K (t, -)(s,) = O forallt € [0, T].
Irreducillity in turn implies thatK (t, s,) = K (t, v), independent of, and that

(t+s)/e—1

t+s
Z QSKE+1(-)(35)—>/ QK(z, ) (1 dr.
t

k=t/e

Using this fact, multiplying 2.16) by v; and taking summation ovéryields
D vilKe(t 45,5 — K (t, 0]
t+s M
-/ D (R GOK (80 + K/ (5.8 AS) + M(5)) dr

t+s M
+ DK (5. 80BN 8B 80K (5. 801 dr

m,

— / (Z u;Ql,m) K (z, ) (1) dt + o(1),
t

=1

whereo(1) — 0 ase — 0 uniformly int.
Lettinge — O zﬂd using the uniform convergencekof(t, s,) — K (t, v), we will
show for each € .#, K (t, ) = K(t, ). In fact,

(Z szlml) K(t, () = QK(t, ).

=1

Then) ", vi = 1leads to

t+s
Kt+s0)— K, )= —/ [AWK(z,0) + Kz, 0Aw) + M)
t
— K(z,) BNIB' ()K (1, 1) + QK (z, ) (0] dr.

Finally, the uniqueness of the Riccati equation (s&eCGhapter VI]) implies that
K (t,) = K(t,0). As aresultK(t,s,) — K(t, ). This yields the desired limit.
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2.1. Numerical results This section presents a numerical example of a four-state
Markov chainxf € .# =1, 2, 3, 4, with transition probability matriP* = P +¢Q,
where

050 050 O O -06 O 03 03
p_ 055 045 0 O 0= 0 -03 01 02
I 0 04 06)° 102 03 -05 O

0 0 05 05 01 03 0 -04

For a two-dimensional dynamic systeth) and the cost functior?(3), let x
T = (6835). D = (33). A = (73). A@ = (7). A® = (3
A =(2321), B = (33), B@ = (32), B = (35), B@ = (£3), M) =
(39, M@ = (527%), M) = (*{’155), M@ = (327%). N = (§1).

N2 =(¥5), N3 =(¢3), N@ = (i3 2). The time horizon for this discrete-
time modelis O< n < | T/e] with T = 5. We use step sizile = 0.01 to discretise the

limit Riccati equations.

Takeay = 1. The trajectories af (i) versud (t), K: (i) versusK (t, -) andvi (x, i)
versusv(-) are given in Figurel for ¢ = 0.01. The simulation results show that
the discrete-time LQ regulator problem is closely approximated by the corresponding
continuous-time hybrid LQG problem, which allows us to further construct nearly
optimal controls for the original system.

P
U
SN NNW

3. A continuous-time hybrid LQG problem

As was mentioned in the previous section, much effort has been directed to the
design in recent years of more “robust” controllers. In various applications, it is often
necessary to develop models involving disturbances of discrete-event type in addition
to the additive white noise. Introducing a Markovian jump model and extending the
original “state space” model to cover both the original state variables of the LQG
problem and those variables of the Markov chain will result in a new system that
displays both continuous and discrete characteristics and is thus termed a hybric
system.

3.1. Formulation Again, for reduction of complexity, we use a singularly perturbed
Markov chaine®(t) whose state space.i# = {1,..., m}. For further motivation,
the reader is referred t@§. Let us work with a finite horizon for some finifé > 0.
Consider the linear system

dx(t) = [A( (t))x(t) + B(e" (t)ut)]dt + odw(t),

(3.2)
x(s)=x, fors<t<T,
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2 T
,,,,,,,,,,,, - — - Original
) — Average
X15f
a
e}
X Sample path of elements of Kbar/K
1k
| | | | | | | | |
0 0.5 1 15 2 25 3 35 4 4.5 5
Time
T T
40H . — rE(l) N B
L 300 @ == . §
= - £
5 (3
S20H - E( ) .
= r(4)
10H  rbar(1) -
— rbar(2)
0 1 | | | | | | | I
0 0.5 1 15 2 25 3 35 4 4.5 5
Time
50 T T
40: - Vs(l) =~ u
- €
V(2
Ll V@ |
§ Vv*(3)
200 v i
10H v(1) i
— v(2)
0 1 | | | | | | | |
0 0.5 1 15 2 25 3 3.5 4 4.5 5
Time

FIGURE 1. A discrete-time LQG.

where x(t) € R™ denotes state variableg(t) € R™ denotes control variables,
A(i) € R"™™ and B(i) € R™*™ are well-defined and have finite values for any
i € .# andw(-) is a standard Brownian motion. Our objective is to find the optimal
controlu(-) to minimise the expected quadratic cost function

J(s, X, a,u(:))

T
=E {/ [X' ()M (o (1))x (1) + U ()N (e (t)u(t)]dt + X/(T)DX(T)} , (3.2

where E = E,, is the expectation giver(s) = « andx(s) = x; M(), i =
1,..., m, are symmetric nonnegative definite matricBj), i = 1,...,m, andD
are symmetric positive definite matrices(-) andw(-) are independent.

Having a different interpretation than that of the discrete-time counterpart, the
generator ot (t) consists of two parts, a rapidly changing part and a slowly varying
one, and is given by

Q" =Q/e+Q. (3.3)
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Note thatQ/s represents the fast changing part &ddepresents the slowly varying
part. As aresult, the form oB8(3) is similar in spirit to that of 2. 1), where the transition
matrix P¢ consists ofP and a “slowly varying” pareQ. A small parametes > 0
makes the system under consideration display a two-time-scale behaibuf. [

3.2. Optimal control  Letv®(s, &, X) = infy, J°(S, a, X, u(-)) be the value function.
Thenv* satisfies the following system of Hamilton-Jacobi-Bellman (HJB) equations:
forO0<s<Tand €. .#,

0= ELO e {(A(i)x Y I AN CLIL NIV
ds u aX
L 1 L0%ve(s, 1, X) . ,
+Uu N(I)U—f—Etl’(aa T>+Qv (s,~,x)(|)}, (3.4)

with the boundary condition®(T, i, x) = X'Dx, whereQ®vé(s, -, X)(i) is defined

in (1.2).

AssumeQ has a block-diagonal for® = diagQ?, ..., Q'), whereQ' € R™*™
are weakly irreducible (see24, p. 21], for a definition), for = 1,...,l, and
Zizl m = m. Let.# = {S;,...,sm} forc =1, ... | be the state space corre-

sponding toQ* with decomposition of the fornl(2). The slow and fast components
are coupled through weak and strong interactions in the sense that the underlying
Markov chain fluctuates rapidly within a single grou, and jumps less frequently
among different groups. If we consider the states#has a single “state,” then all
such “states” are coupled through the mafgix

Following the approach irg] pp. 165-166] (see als@4, pp. 309-325]), let

(s, i, X) = X'KE(s, )X +ré(s,i). (3.5)

Again, them x m matrix-valued function& ¢(-) and real-valued functions(-) are to
be determined. Substituting.) into (3.4) and comparing the coefficients »fleads
to the following Riccati equations fdf (s, i):

Ke(s,i) = —K*(s,i)A>) — AHK(s,i) — M(i)
+ K*(s,1)BA))NL)B(i)K*(s, i) — Q°K?(s, )(i), (3.6)
K®(T,i)= D,
and

(3.7)

ré(s,i) = —tr(co’Ke(s,i)) — Q°re(s, -)(i),
re(T,i)=0,

whereQ*K#(s, -)(i) is as defined in1(.1). Moreover, similar to§, Chapter VI] (see
also R4, Appendices A.4 and A.5]), it is easy to show that these equations have a
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unique solution. In view of the positive definitenesskof, the optimal control®*
has the form

us*(s,i,x) = =N"2[{)B'(i)K:(s,i)x. (3.8)

By aggregating the states i#, into one state, we obtain an aggregated process
{@®(-)} defined by’ (t) = « whena?(t) € .#,. The proces&’(-) is not necessarily
Markovian. However, using probabilistic arguments, we have show4ngection
7.2] that ase — 0, @°(-) converges weakly t@(-) generated byQ that has the
form (2.13 with v* being the stationary distribution & (for each: = 1,... ,1).
Moreover, for any bounded and measurable deterministic fungtion

2

.
E (/ [l tr=s = Vil @ w=a] BO® dt) = O(e). (3.9)

The following theorem is concerned with the convergenclé ©andr ¢, whose proof
is in [28]. For appropriate functionk (-) andF; (-) on.#, define

m, My
F=) wF(s). FR=) vF(s)F(s), fori=1...,
=1

THEOREM3.1.For ¢ = 1,...,l and¢ = 1,...,m, K*(s,s,) — K(s,0) and
re(s,s¢) — r(s,u), uniformly on[0, T] ase — 0, whereK(s, () andT(s, ) are
the unigue solutions to the differential equati¢@sl4) and (2.15, respectively, with
Y =o00'.

The convergence df¢(s,i) andr®(s, i) leads to that ob*(s, i, X) given by 3.5
whereK?(s,i) andr?(s,i) are the solutions to the differential equatiodsg and
(3.7), respectively. It follows that fo€ = 1,...,m,, ase — 0, v°(S, S¢, X) —
v(s, 1, X) = X'K(S, )X +T(s, ) corresponds to the value function of a limit problem.
Let % denote the control set for the limit problem:

% ={U=@U....U): U =@u...,u™,u eR™}.
Define

m,

f(s,.x,U) =AWx + Y vBsou’, N U)=> v (W'N(s)u’).

j=1 j=1
Thenu(s, ¢, X) satisfies the following HIB equations:

dv(s, ¢, : 0 —
O=M+m|n{f(SLXU)M+X/M(OX
0s Ue X

9v(s, 1, X)

~ 1 ,
—I—N(L,U)—f—Etr(oo %2

)+@@mm}
v(T,,X) = X' Dx.
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The corresponding control problem is
T
minimise J(s,(,x,U(-)) = E {/ X' ()M @()x(t) + ﬁ(&(t), U(t))]dt

+x/(T)Dx(T)}
s.t. dx(t) = f(t, @), x®),U®))dt +odw(t), Xx(S) =X,

wherew(-) € {1, ...,1} is a Markov chain generated If.
The optimal control for this limit problem is:

UoGs, ¢, x) = (U(s, x), ..., U'"(s, x))
with
Ue(s, x) = (ut°(s, x), ..., u™oes, x)) and
uto(s, x) = —=N"1(s0) B () K (s, )X.

Using such controls (as il ], see also24, Chapter 9]), we construct

| m,
U (S X) = DY luegyU0(s, %) (3.10)

=1 ¢=1

for the original problem. Althougi(10 involves a summation, atany given instance,
it has only one term. Equivalently, this control can also be written asdf.#,,

us(s, o, X) = —N"Y(a)B' (¢)K (S, 0)X.

It is clear that this control is identical to the optimal control B18) exceptK® is
replaced byK. We useus(t) = u‘(t, a*(t), x(t)) for the original problem, which is
nearly optimal.

If B(s,) = B(v) andN(s,) = N(v) are independent df, then, in view of 8.9, we
may replacd ,:t)s,; by |z =, v; and consider

| m,
TS 0. X) =Y ) lpeait®(s,x) = —NOBOK(s 0x, if ae..
=1 (=1

Therefore we can writg® (s, «, X) = U°(S, ¢, X). Sincel’ only requires the informa-
tion of(t) € .#,, we can use

U (t) =u(t, o’ (t), x(1)). (3.11)
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THEOREM 3.2. The following assertions hald
(1) The controlu® (t) defined in(3.10 is nearly optimal, that is,

Iimong(s, o, X, U (-)) —v°(s,a, X)| = 0.

(2) AssumeB(s,) = B(t) andN(s,) = N(v) independent of. Thenu’(t) defined
in (3.17) is nearly optimal, that islim,_.q | J(S, o, X, U°(-)) — v°(S, o, X)| = 0.

3.3. Numerical results This section presents a numerical example of a four-state
Markov chaine®(t) € .# = 1,2, 3,4,t > 0, generated by

—-0.10 Q10 0 0 -08 O 08 0
. 1] 012 -012 0 0 0O -07 O a7
Q= e 0 0 —-0.04 004 + 0.5 0 -05 O
0 0 006 —0.06 0 01 0 -01

For a two-dimensional dynamic syste® 1) and cost function3.2), Ietx(O)—( )
0=( 2, D=(23), A = (23), A@ = (&9, A® = (2 ), A® =
(53). B = (32), B® = (38), BG = (29), Bid) = (38). M(D = (1)
M(Z) = (15 4) M@Q) = (i/g 110/03) M#) = (02.75503705) N@) = ( ) N(@2) =

(85), N® = (¥ %), N4 = (132). The time horizon for the continuous-time
model is[0, T] with T = 5. We discretise the system equations with step size
h = 0.01.

Takes = 0 andw (0) = 1. Sample paths af(-) are given in Figur@ for ¢ = 0.01
ande = 0.1, respectively. It shows that a smalleteads to more rapid jumps. The
trajectories off °(-) versusr(-), K#(-) versusK(.), andv(-) versusu(-) are given
in Figure3. The simulation results demonstrate that our algorithm approximates the
optimal solutions well with less computational effort.

4. A discrete-time MDP problem

Discrete-time MDPs are of interest in various applications such as resource al-
location, communication channels and queueing networks. Classical treatments of
discrete-time MDP models can be found i8] and [23] (see also 21] for applica-
tions to reliability models) among others. It is important to consider discrete-time
systems since system measurements are frequently recorded in discrete time. |
addition, success in obtaining topal controls for the underlying system relies on
efficient computation procedures, which in turn depend on the corresponding discre-
tised dynamic systems. A common practice in dealing with MDPs is to use a dynamic
programming (DP) approach, which requires solving a set of DP equations and finding
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FIGURE 2. Continuous-time MC sample patlas= 0.1 ande = 0.01.

the optimal solutions. Such an approach becomes infeasible computationally wher
the dimension of the underlying system is very large, and therefore other alternatives
are needed. Inl{], a hierarchical control approach was proposed, and nearly optimal
control strategies were developed. The essences are state space decomposition a
aggregation. The asymptotic result is based on the asymptotic expansions obtained i
[25]. We provide numerical results herein to further elaborate our theoretical findings
and to offer insight for practical applications.

4.1. Formulation and results Consider a discrete-time Markov chafia;, n =
0,1,...,}with finite state space? = {1, ..., m}, wheres > 0O is a small parameter.

Let the control spacE be a compact subset of an Euclidean space. Consider feedback
controlu, = u(ey) suchthatl, € I'n = 0,1,.... LetP*(uy) = (P (Un))mxm bE the
probability transition matrix oé;, given by €.1) with both P = P(u) andQ = Q(u)
depending om. In view of (2.1), it is clear that the dominating factor is given by the
transition matrixP (u). Since we are focusing on finite-state Markov chains, the MDP
corresponding td® (u) can either consist of a number of recurrent (ergodic) classes of
states or also include transient states.
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FIGURE 3. A continuous-time LQG.

For simplicity, we concentrate on the recurrent cases here. That is, the transition
matrix P (u) consists only of recurrent classes, af{u) has the formZ.4) with each
P.=PR(u). Fore =1,....1, let.# = {sy, ..., Sm} denote the recurrent sub-state
space ofw, corresponding to the blocR,(u). The entire state space @f can be
decomposed as if(2).

For everyu € I', assume that for each=1, ..., 1, P,(u) is anm, x m, transition
matrix and is irreducible and aperiodic. Lgt) = {u(i) : i € .#} be a function such
thatu(i) e I' for all states € .#. A functionu(-) is called an admissible control and
the collection of all such functions is denoted &y .

Consider the cost functiondF (i, u(-)) defined on# x «:

JG,u() =E (e > @ - Ba)gey, u(ai))) : (4.1)
k=0

wherei = «f is the initial state of the chaimg(i, u) is the cost-to-go function, and

B > 0is agiven constant. The objective is to find a functign € «/; that minimises

Jé(@i,u("). Inthe discrete-time setting, the discount faatbr— S¢) depends on.

Such a dependence leads to cancellationiofthe associated DP equations.
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The original MDP problem, termed?¢, is of the form

k=0
subject to: o ~ P*(U(e)), k=0,1,... a5 =1,U(-) € &,
value function: v°(i) = inf J°(i, u(")).
u(ye s

minimise: Jé(,u() = E (s Z(l — Be)g(e, U(Oli))) ,

The notationx? ~ P*(u(e)) means that is a discrete-time Markov chain whose
probability transition matrix i (u(«?)).

To solve the problen®?¢ by using the DP approach, for edch .#, the associated
discrete-time DP equation is

v (i) = min {sg(i, u) + (1 - Be) Z P; (U)vg(j)} :
]

As was shown in]4], ase — 0, areduced problem or limit problem in an appropriate
sense is obtained. Although the original problem is a discrete-time one, the reducec
problem becomes a continuous-time MDP.

To proceed, defing(t,U") = ;“;1 vi(UHg(se, ut), « = 1,...,1. For each
t=1,...,1, define
M=U :=u...,.u™:uele=1...,m},
T=Ix---xO={U=UY...,UY:Uel,t=1....1}.

Let «/° denote a class of functions(-) = {U() : ¢ € .#} such thatU() € T,
forc = 1,...,l. For convenience, call = (U(1),... ,U()) € «° an admissible
control for the limit problem, termed?®. UseX(t) ~ Q(U (X(t))) to denote thaX(t)
is a Markov chain generated (U (X(t))).

Now we have a continuous-time MDP:

minimise: J°(,U) = E/ e 'g(X(t), U (X(t))) dt,
0
70 subject to: X(t) ~ QU (X(t))),t =0, X(0) =k, U e &°,
value function: v(1) = Uin;;O J%(, V).

ProblemZ?° is the limit problem in an appropriate sense.
The DP equation for the limit problerd#? is

pu() = min [T UY + QUGW}, fore=1,...,1. (4.2)
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FIGURE 4. A discrete-time MDP.

LetU, = (UZ,... ,U)) € T denote a minimiser of the right-hand side 4f3). Then
U, € </ is optimal for 22°. We need the following assumptions on the transition
matrix P#(u) and the cost-to-go functiogyi, u):
(A2) For eache > 0, P?(u) is a continuous function ofi. Moreover, for each
Uel,t=1,...,1, PUYisirreducible and aperiodic.
(A3) Foreach e .#,g(i, -) is a continuous function of.

ForeachU' e I';, « = 1,...,1, letv(U") = (vy(U"),..., v, (U")) denote the
stationary distribution oP,(U"), thatis,v*(U") is the unique solution of the following
system of equations:

vi(UHP.WUY) =v'(UY),
Yl viUy =1

THEOREM4.1. Assume(A2) and (A3). For eachi = s, € .4, =1,...,1,
lim,_ove(i) = v(t), wherev(v) is the value function of the limit probler°.

LetU, = (UZ,...,U)) € &° be an optimal control for the limit problen#°.
Define a control,(-) = {u.(«) : « € .#} for the original problem%?¢:

| m,
Ue@) = DD s U (). (4.3)

=1 ¢=1
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Furthermore, the controli,(-) = {u,(«)} constructed in4.3) is asymptotically opti-
mal in thatlim,_¢|J*(@, u,(-)) —v°()| =0, fori € .#.

4.2. Numerical results This section presents a numerical example of a discrete-
time MDP problem concerning a four-state Markov chajpe .# = 1,2, 3,4,
n=0,1,...,with transition probability matrix given by2(1). Note bothP = P (u)

andQ = Q(u) depend onu. In the meantimey = u(«) are functions of states. We
assume three possible control actions in each state and use the following specifications

2 2 3 3/2
ul) =1{3], u2=\14}, u@={ 41|, udh=1| 3 1,
4 3 5/2 2
@)t 1- (U@ 0 0
_ 1@yt )t 0 0
W= o 0 W@)* - @)t
0 0 I— (@)™ U«
—u'i(1) 0 u'(1) 0
B 0 —u'2(2) 0 u'z(2)
QW= 13 o -—uw@E o |
0 U4 0 —u«4

whereu" (1) denotes theth control in state,, with all possible combinations of

ij =12 3andj = 1,2 3,4. To find the optimal control requires comparing the
costs from all possible combinations of control actions. The cost-to-go function is
given by @.1) with g(i, u) = (i + u)?.

The trajectories of° (i), the value function of the original problem, and), the
value function of the limit problem, are displayed in FigdreThe simulation results
show that the original discrete-time problem can be approximated by a continuous-
time MDP closely, which has confirmed our theoretical findings.

REMARK 4.1. To solve the limit control problem numerically, a cautionary note

is in order. If one proceeds with a direct implementation, the numerical procedure
may be unsuitable, which was confirmed by our numerical experiments. This is due
partially to the result of the minimisation operation. Since a generator is involved
and since the diagonal elements of the generator are negative, the iterates of the valu
functions may become negative resulting in the lost of probabilistic meaning in the
iterations. To overcome these difficulties, we use the same procedure as suggested i
[24, p. 240]. Numerically solving the limit problem leads to an equivalent discrete DP
problem. To exploit the equivalence, we need to identify the corresponding transition
probabilities. In fact, it can be shown (see the appendix) that the DP equéti®is(
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equivalent to

[ gy G.(U)
= P ——— —_— . 4.4
v Wéﬂ{ﬂﬂqu(w +Kzﬁﬂ+|qu<u£>|”“)} (@44

5. Further remarks

This paper has focused on numerical solutions for nearly optimal controls of sin-
gularly perturbed systems driven by Markov chains. It complements our theoretical
investigation of the asymptotic properties of such large-scale systems. A centraltheme
here is the reduction of complexity. It should be noted that the original problem may
not include a small parameter. However, the presence of different rates of change:s
will allow us to introduce a small parameter 0 into the system; se@4, pp. 47-49]
for an illustrative example. In many cases- 0 may not be tending to 0, but rather
a “small” constant. The asymptotics we obtained {as 0) provide guidance for
practical models. In the original problem, the Markov chain can takgossible
values, whereas in the reduced system, the number of states bdcothés« m,
the complexity is significantly reduced. In the numerical experiments, we have used
a value iteration approach. A policy improvement method may also be used.

6. Appendix

This appendix illustrates the procedure of generating Markovian sample paths for
both discrete and continuous times in simulation studies, and shows4thatig
equivalentto4.2).

6.1. Discrete-time chains To simulate a Markov chaiay in discrete time requires
first prescribing its transition probability matriR = (pj;), then building its sample
paths. Suppose that € .# = {1,...,m}, for k > 0. The sample paths are
constructed via comparison determined by the transition probability matrit any
time k > 0, the chain’s next move is specified by

1, if U < Pi1,
W =12 Fpi<U<pitp (6.1)

m, ifpi+--+pmi<U~<l

whereU is a random variable following a uniform distribution i@, 1) (that is,
U ~U(@,1l)).
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6.2. Continuous-time chains Suppose that(t) is a continuous-time Markov chain
with state space# = {1, ..., m} and generato®@ = (qg;). To simulate the sample
paths ofx (t) amounts to determining its sojourn timeeatch state and its subsequent
moves. The chain sojourns in any given siafier a random length of timeS, which
has an exponential distribution with parameten;; ). Subsequently the process will
enter another state. Eachstatg = 1,..., m, j # i) has a probability of;; /(—d;)

of being the chain’s next residence. Let a discrete random varigbtienote the
post-jump location and take values §h, 2,...,i — 1,i +1,...,m}. Its value is
specified by

1L ifU <0u/(—0),
X =12 if Gia/(—Ci) <U < (G1+ Gi2)/(— i), (6.2)

m, if 3 i kem G/ (—Gi) < U,

whereU is a random variable uniformly distributed {0, 1). Thus the sample path
of a(t) is constructed by sampling from exponential an, 1) random variables
alternately.

6.3. Computation procedure for a continuous-time MDP For eachJ €T,
po(t) S@(L,U‘)+Zq@(U‘)(v(Z) —v(). (6.3)
C#L
Sincez#l G.UYv () = [6.UYH]v(@), ands > 0, the inequality §.3) is equivalent
to
g, U q.(U")
U(l) < — + = ...V
B+ 10.(U"| Z B +10.(UY]
It follows that

[ _5euy 6. (U
VO =5 {ﬂ a0 2B U ”(5)} |

(£).

C#L

The equality holds if and only i) is the minimiser of the right-hand side @f.@). To
show that 4.4) is equivalent to a DP equation of a discrete-time MDP, let

~ g, Uy [G.(U")]
LU = ——, = max —————,
o ) B+ 16.(U")] g =1...UeT B + 10, (UY]
~ qu(Ul) ~
= ———————— for ¢ and p,=0.
P = S+ 1a.00D 7 P

Then0< p < 1,3, p.(U") = 1. The corresponding discrete-time version of the
DP equation ig/(1) = miny.cr, {§¢, U + p Y, B (UHv(0)}.
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