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Abstract

This work is devoted to numerical studies of nearly optimal controls of systems driven by
singularly perturbed Markov chains. Our approach is based on the ideas of hierarchical
controls applicable to many large-scale systems. A discrete-time linear quadratic control
problem is examined. Its corresponding limit system is derived. The associated asymp-
totic properties and near optimality are demonstrated by numerical examples. Numerical
experiments for a continuous-time hybrid linear quadratic regulator with Gaussian dis-
turbances and a discrete-time Markov decision process are also presented. The numerical
results have not only supported our theoretical findings but also provided insights for further
applications.

1. Introduction

This work is concerned with nearly optimal controls of systems driven by singularly
perturbed Markov chains. We consider both discrete-time and continuous-time prob-
lems. The main objectives are to study the issues related to reduction of complexity
of the Markovian systems and to demonstrate the asymptotic properties numerically.
Our numerical experiments have not only supported the theoretical findings, but also
provided insights for further applications.

In many real-world problems, a common practice in quantifying the dynamic rela-
tionships of randomevents and uncertainties is to use stochastic processes in modelling
and formulation. For systems having jump sample paths, such as those often encoun-
tered in communication, reliability, manufacturingand queueingnetworks, Markovian
jump models have become popular. Many optimisation and control problems can be
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formulated as stochastic control problems driven by Markovian noise. Typically the
underlying Markov chains have large state spaces, which results in complex structures
and leads to serious obstacles in obtaining optimal controls. Although optimal control
problems can usually be solved by a dynamic programming approach, direct imple-
mentation of the dynamic programming principles only works well for those systems
with moderate dimensions because large dimensionality often renders the computation
infeasible. This is the so-called “curse of dimensionality” phenomenon. To overcome
this difficulty requires reducing the complexity of the underlying problems.

In our continuing effort to study such large-scalesystems [10,11, 24,28, 26,25], we
have adopted the hierarchical decomposition approach (see [20, 4, 19] among others),
which leads to the formulation of singularly perturbed Markov chains. Related work
on singularly perturbed systems can be found in [9, 6, 17, 3, 16, 1, 15, 22] and the
references therein; the formulation of piecewise deterministic processes is in [5]. One
of the crucial observations is that for the large number of states involved, their rates of
changes are not the same. Some of them change very rapidly, while others may vary
at rates orders of magnitude slower. According to singular perturbation theory, such
a high contrast of rates of changes can be reflected by introducing a small parameter
and by using time-scale separation. This yields two time scales, a fast changing one
versus a slowly varying one. With different time scales, we can lump the states (ineach
recurrent class) together in accordance with their rates of change. This aggregation
allows us to form a reduced system having fewer states, in which the optimal controls
for the reduced problem are easier to obtain. Based on the solution of the reduced
problem, we can then construct control policies that will lead to near optimality.

In this paper, we deal with both discrete-time and continuous-time cases, including
discrete-time linear quadratic control (LQ) problems, discrete-time Markov decision
processes (MDP), and continuous-time hybrid linear quadratic regulator (LQG) prob-
lems. Numerical experiments are carried out to verify the asymptotic optimality.
The rest of the paper is arranged as follows. Section2 studies an LQ problem in
discrete time. Using weak convergence methods, we derive convergence of the dy-
namic systems and the value functions under suitable scaling. Section3 treats hybrid
LQG problems in continuous time. Section4 is concerned with a discrete-time MDP.
Section5 concludes the paper with a couple of remarks. An appendix is furnished to
cover issues in the simulation of Markov chains and other matters in computation.

Notation. This paper deals with finite-state Markov chains regardless of the prob-
lems being in discrete time or in continuous time. Denote the state space byM and
write M = {1; : : : ;m}. For a generatorQ = .qi j / of a continuous-time Markov
chain and a suitable functionf .·/ defined onM , Q f .·/.i / is meant to be

Q f .·/.i / =
∑
j 6=i

qi j . f . j / − f .i //: (1.1)
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For simplicity, in this paper, we concentrate on the cases where the dominating parts
of the Markov chains contain only recurrent states. In this case,M is decomposable
into l subspaces

M =M1 ∪ · · · ∪Ml = {s11; : : : ; s1m1} ∪ · · · ∪ {sl1; : : : ; slml
}: (1.2)

Throughout the paper, we use the conventioni ∈ M to denote an elementi ∈
{1; : : : ;m} and uses�` to denote an element in the�th subspaceM�.

2. A discrete-time LQ problem

We examine a discrete-time LQ regulator problem. The design of traditional
linear methods feedback controllers is based on a plant model with fixed parameters.
Although it provides a way to manage for many dynamic systems, it cannot handle
the situations in which the actual system is different from the nominal model. Much
effort has been directed to the design of more robust methods in recent years. To
take into consideration discrete shifts in regime across which the behaviour of the
corresponding dynamic systems are markedly different, we present an LQ model with
Markovian switches in this section. Rather than using a fixed system configuration, we
take random jumps into consideration, propose a hybrid system, derive its limit, and
demonstrate that its optimal control can be approximated by that of a continuous-time
hybrid LQG problem and that the nearly optimal controls of the original system can
be constructed using the limit system.

Let " > 0 be a small parameter andÞ"n a discrete-time Markov chain with a finite
state spaceM havingm elements and transition probability matrixP" = .p"i j / given
by

P" = P + "Q; (2.1)

whereP is a transition probability matrix andQ is a generator (the precise condition
is given in (A1)). For anyz ∈ R, usebzc to denote the greatest integer function that
gives the greatest integer less than or equal toz. For a finite real numberT > 0 and
0 ≤ n ≤ bT="c, the dynamic system is given by{

xn+1 = xn + "A.Þ"n/xn + "B.Þ"n/un + √
"wn;

x0 = x; a deterministic vector,
(2.2)

wherexn ∈ Rn1 is the state,un ∈ Rn2 is the control,A.i / ∈ Rn1×n1 andB.i / ∈ Rn1×n2

are well-defined and have finite values for eachi ∈ M , and{wn} is a sequence of
random variables with zero mean. Define a sequence of cost functions by

J"n .x; Þ;u.·// = "E

{
n−1∑
k=0

[
x′

k M.Þ"k/xk + u′
k N.Þ"k/uk

]+ x′
n Dxn

}
; (2.3)
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whereE = Ex;Þ is the expectation givenÞ"0 = Þ andx0 = x. Our objective is to find an
optimal controlu to minimise the expected quadratic cost functionJ"bT="c.x; Þ;u.·//.
To obtain the desired asymptotic results, we make several assumptions.
(A1) The following conditions hold:

• {wn} is a sequence of independent and identically distributed (i.i.d.) random
variables withEwn = 0 andE|wn|2 < ∞.

• 6 = E.w0w
′
0/ is a symmetric positive definite matrix.

• P in (2.1) has the form

P = diag.P1; : : : ; Pl / (2.4)

such that eachPi is irreducible and aperiodic andQ = .qi j / is a generator, that
is, qi j ≥ 0 for i 6= j andqii = −∑ j 6=i qi j . In the above, diag.H1; : : : ; Hl /

denotes a block diagonal matrix having matrix entriesH1; : : : ; Hl .
• The Markov chainÞ"n and the random disturbancewn are independent.
• For eachi ∈M , M.i / are symmetric nonnegative definite matrices, andN.i /

andD are symmetric positive definite matrices.

REMARK 2.1. We concentrate on the cases of singularly perturbed Markov chains
with recurrent states. The cases of inclusion of transient states can be treated in a
similar way. As far as the optimal controls are concerned (see [28]), however, the
transient states are asymptotically unimportant. We consider “white noise” only. The
i.i.d. assumption on the sequence{wn} is mainly for convenience. The limit results
for more complex noise processes such as�-mixing processes can be obtained. The
essence is that a central limit theorem holds for the noise, which yields a Brownian
motion limit. For simplicity, we treat the cases where the variance of the noise
(as a result of the diffusion term in the limit) does not depend on the singularly
perturbed Markov chain. The results obtained can be extended toÞ"k-dependent
variance. However, more complex averaging schemes are needed.

Denote the value functions byv"n.x; Þ/ = infu.·/ J"n .x; Þ;u.·//: For each 0≤ n ≤
N = bT="c, applying the dynamic programming principle with a slight modification
of the argument in [2, p. 70], yields a system of dynamic programming equations:{

v"N .xN; Þ
"
N/ = x′

N DxN;

v"n.xn; Þ
"
n/ = min E

{
"x′

n M.Þ"n/xn + "u′
n N.Þ"n/un + v"n+1.xn+1; Þ

"
n+1/

}
:

(2.5)

Define F̂.i / = ∑m
j =1 p"i j F. j / for an appropriate functionF.·/ defined onM ,

Ã.i / = I + "A.i /, B̃.i / = "B.i /. Using a dynamic programming approach as in [8,
pp. 165–166], assuming the value function to be of the form

v"n.x; i / = x′ K "
n.i /x + r "n.i /; (2.6)
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we proceed to determineK "
n andr "n . For eachi ∈ M , substituting (2.6) into (2.5)

yields the following system of Riccati equations:
K "

n.i / = Ã′.i /K̂ "
n+1.i /Ã.i /+ "M.i /− Ã′.i /K̂ "

n+1.i /B̃.i /."N.i /

+ B̃′.i /K̂ "
n+1.i /B̃.i //

−1B̃′.i /K̂ "
n+1.i /Ã.i /;

K "
N.i / = D

(2.7)

and {
r "n.i / = r̂ "n+1.i /+ " tr

(
K̂ "

n+1.i /6
)
;

r "N.i / = 0:
(2.8)

REMARK 2.2. Instead of solving one equation, we must solve a system ofm equa-
tions. When the state spaceM is large, the required computation is intensive. Using
a singularly perturbed Markov chain approach, however, reduces the complexity and
computational burden.

Note that

K "
n.i / = K̂ "

n+1.i /+ "A′.i /K̂ "
n+1.i /+ "K̂ "

n+1.i /A.i /

+ "M.i /− "K̂ "
n+1.i /B.i /.N.i /

+ "B′.i /K̂ "
n+1.i /B.i //

−1B′.i /K̂ "
n+1.i /+ O."2/: (2.9)

Furthermore

K̂ "
n+1.i / = K "

n+1.i /+ "

m∑
j =1

q"i j K "
n+1. j /; (2.10)

where

Q" = 1

"
.P − I / + Q = .q"i j / =

(
1

"
.p"i j − Ži j /+ qi j

)
(2.11)

and whereŽi j = 1 if i = j and is 0 otherwise. Using this notation, rewrite (2.9) as

K "
n+1.i / = K "

n.i /− "A′.i /K̂n+1.i /− "K̂ "
n+1.i /A.i /− "M.i /+ "K̂ "

n+1.i /B.i /.N.i /

+ "B′.i /K̂ "
n+1.i /B.i //

−1B′.i /K̂ "
n+1.i /− "

m∑
j =1

q"i j K "
n+1. j /+ O."2/:

This equivalent form will be useful in the subsequent analysis.

For eachi , define piecewise constant interpolated processesK ".·; i / andr ".·; i / as
K ".t; i / = K "

n.i / andr ".t; i / = r "n.i /, for t ∈ [n";n"+"/. With a modification of the
argument of the proofs of Lemmas 1 and 2 in [28], we obtain the following lemma.
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LEMMA 2.1. The following assertions hold:

.i/ K "
n.i / and K ".t; i / are positive definite for each0 ≤ n ≤ bT="c and each

t ∈ [0;T], respectively.
.ii/ For eachi and for some�T > 0,

sup
0≤n≤bT="c

|K "
n.i /| ≤ �T; sup

t∈[0;T]
|K ".t; i /| ≤ �T;

sup
0≤n≤bT="c

|r "n.i /| ≤ �T; sup
t∈[0;T]

|r ".t; i /| ≤ �T :

It can be shown similarly as in [2, p. 73] or [8, p. 166] that the optimal feedback
control for the LQ problem is linear in the state variable, and

un = − [B̃′.i /K̂ "
n+1.i /B̃.i /+ "N.i /

]−1
B̃′.i /K̂ "

n+1.i /Ã.i /xn
def= −8n.i /xn:

Consequently the dynamic system can be written as

xn+1 = xn + "2n.Þ
"
n/xn + √

"wn; where 2n.i / = A.i /− B.i /8n.i /: (2.12)

Henceforth, we use� to denote a generic positive constant with possible different
values for different appearances and with the understanding of the notation�+ � = �

and�� = � . To proceed, we first obtain a bound on the second moment ofxn.

LEMMA 2.2. Under(A1), sup0≤n≤bT="c E|xn|2 < ∞.

PROOF. For any 0≤ n ≤ bT="c, from (2.12), it is easily seen that

E|xn|2 ≤ �

(
|x0|2 + "2

n−1∑
k=0

n−1∑
k1=0

E tr
[
xk1x′

k2k1.Þ
"
k1
/2′

k.Þ
"
k/
]+ "E

n−1∑
k=0

n−1∑
k1=0

Ew′
k1
wk

)
:

An application of the discrete version of Gronwall’s inequality then yields

E|xn|2 ≤ �.|x0|2 + tr6/exp.�T/ < ∞:

Moreover the bounds hold uniformly for 0≤ n ≤ bT="c.

To effectively reduce the complexity, we use the idea of aggregation. In accordance
with the form ofP given in (2.4), the state space of the underlying Markovchain can be
written as (1.2) to reflect the fact that the state space can be decomposed intol recurrent
classes. We take a continuous-time interpolation asx".t/ = xn for t ∈ [n";n" + "/.
DefineÞ"n = � if Þ"n ∈M� and defineÞ".t/ = Þ"n for t ∈ [n";n"+"/. Working with the
interpolated pair.x".·/; Þ".·//, we will show that it converges weakly to.x.·/; Þ.·//,
that is, a solution of a hybrid system in continuous time.
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LEMMA 2.3. Under(A1), the following assertions hold.

.i/ Þ".·/ converges weakly toÞ.·/ as" → 0, which is a continuous-time Markov
chain generated by

Q = diag.¹1; : : : ; ¹ l /Q̂ diag.111m1; : : : ; 1111ml
/; (2.13)

where¹� is the stationary distribution corresponding toP� for each� = 1; : : : ; l , and
11111`0 denotes aǹ 0-dimensional column vector with all entries being1.

.ii/ E
(
"
∑[T="]

k=0 [I{Þ"k=s�`} − ¹�` I{Þ"k∈M�}]
)2 → 0 as" → 0.

This result has been proved in [27]. We omit the proof here. For corresponding
results for singularly perturbed continuous-time Markov chains, see [24, Chapter 7].

LEMMA 2.4. Under(A1), {x".·/} is tight in Dn1[0;T]; the space ofRn1-valued func-
tions that are right continuous have left limits endowed with the Skorohod topology.

PROOF. We use the tightness criteria [7, Section 3.8, p. 132], and [12, Theorem 3,
p. 47], to resolve the problem. Denote the conditional expectation on the¦ -algebra
F "

t = ¦ {Þ".u/;u ≤ t} by E"
t . For simplicity and with a slight abuse of notation, in

lieu of bt="c andb.t +s/="c, we often uset=" and.t +s/=" to denote integers in what
follows. It should be clear from the context. For any� > 0, t > 0 and 0< s < �,
using (2.12), we obtain

E"
t |x".t + s/− x".t/|2 = "2E"

t

.t+s/="−1∑
k1=t="

.t+s/="−1∑
k=t="

tr[xk1x′
k2k1.Þ

"
k1
/2′

k.Þ
"
k/]

+ 2"3=2E"
t

.t+s/="−1∑
k1=t="

.t+s/="−1∑
k=t="

w′
k2k1.Þ

"
k1
/xk1

+ "E"
t

.t+s/="−1∑
k1=t="

.t+s/="−1∑
k=t="

w′
k1
wk:

Using Lemma2.2,

"2E E"
t

.t+s/="−1∑
k1=t="

.t+s/="−1∑
k=t="

tr[xk1x′
k2k1.Þ

"
k1
/2′

k.Þ
"
k/] = O.s2/:

Using independence andEwk = 0, we obtain

"E E"
t

.t+s/="−1∑
k1=t="

.t+s/="−1∑
k=t="

w′
k1
wk = O.s/:
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By the Cauchy-Schwartz inequality,

E

∣∣∣∣∣"3=2

.t+s/="−1∑
k1=t="

.t+s/="−1∑
k=t="

w′
k2k1.Þ

"
k1
/xk1

∣∣∣∣∣
≤ E1=2

∣∣∣∣∣"
.t+s/="−1∑

k1=t="

2k1.Þ
"
k1
/xk1

∣∣∣∣∣
2

E1=2

∣∣∣∣∣"1=2

.t+s/="−1∑
k=t="

wk

∣∣∣∣∣
2

= O.s/:

Thus lim�→0 lim sup"→0 E|x".t +s/−x" .t/|2 → 0. The desired tightness thus follows.

Since{Þ".·/} is tight due to its weak convergence (see Lemma2.3), we can further
show.x".·/; Þ".·// is tight. Choose a weakly convergent subsequence and for nota-
tional simplicity, still use" as its index. We proceed to characterise thelimit process
and show that the following assertion holds.

THEOREM 2.1. Under(A1), .x".·/; Þ".·// converges weakly to.x.·/; Þ.·// such that
Þ.·/ is given in Lemma2.3andx.·/ is the solution of the hybrid system

dx.t/ = 4.Þ.t//x.t/ + ¦dw.t/;

where¦¦ ′ = 6,4.�/ = A.�/ − B.�/N−1.�/B′.�/K .�/A.�/, � ∈M = {1; : : : ; l }, and
for a suitable functionF.·/, F.�/ =∑m�

`=1 ¹
�
`F.s�`/.

PROOF. Using (2.12), we have

x".t/ = x0 + "

l∑
�=1

m�∑
`=1

t="−1∑
k=0

2k.s�`/xk I{Þ"k=s�`} + √
"

t="−1∑
k=0

wk

= x0 + "

l∑
�=1

m�∑
`=1

t="−1∑
k=0

2k.s�`/xk¹
�
` I{Þ"k∈M�} + √

"

t="−1∑
k=0

wk

+ "

l∑
�=1

m�∑
`=1

t="−1∑
k=0

2k.s�`/xk

[
I{Þ"k=s�`} − ¹�` I{Þ"k ∈M�}

]
:

By virtue of the boundedness of2n, using Lemmas2.2and2.3, a partial summation
leads to

E

∣∣∣∣∣"
l∑
�=1

m�∑
`=1

t="−1∑
k=0

2k.s�`/xk

[
I{Þ"k=s�`} − ¹�` I{Þ"k ∈M�}

]∣∣∣∣∣
2

→ 0 as " → 0:
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The well-known Donsker invariance theorem implies that
√
"
∑t="−1

k=0 wk ⇒ ¦w.·/,
wherew.·/ is a standard Brownian motion and the symbol⇒ means weak conver-
gence. Using an argument similar to that of [24, Section 9.6], we obtain

"

l∑
�=1

m�∑
`=1

t="−1∑
k=0

2k.s�`/xk¹
�
` I{Þ"k∈M�} ⇒

∫ t

0

4.Þ.s//x.s/ds:

Putting all the above estimates together, the desired result is obtained.

To proceed, define piecewise constant interpolationv".x; t; Þ/ = v"n.x; Þ/ for
t ∈ [n";n"+ "/. We derive the convergence ofv".x; t; Þ/ and derive the limit Riccati
equations.

THEOREM 2.2. Under the conditions of Theorem2.1, as" → 0, the sequence of
value functions also converges. In fact, we have the following limits for the Riccati
equations(2.7) and (2.8). For each� = 1; : : : ; l ,

K̇ .t; �/ = −K .t; �/A.�/ − A
′
.�/K .t; �/− M.�/

+ K .t; �/B N−1 B′.�/K .t; �/− QK .t; ·/.�/;
K .T; �/ = D

(2.14)

and  ṙ .t; �/ = − tr
(

K .t; �/6
)

− Qr .t; ·/.�/;
r .T; �/ = 0;

(2.15)

whereQK .t; ·/.�/ and Qr .t; ·/.�/ are defined in(1.1).

PROOF. For anyt; s ∈ [0;T] satisfyingt + s ≤ T , again, for simplicity, we use
.t + s/=" andt=" in lieu of b.t + s/="c andbt="c. Similar to the proof of Lemma 3
in [28], sincev".x; t + s; Þ/ andv".x; t; Þ/ are the minimal costs, we have

v".x; t + s; Þ/− v".x; t; Þ/ = "E
.t+s/="−1∑

k=t="

(
x′

k M.Þk/xk + x′
k8

′
k.Þk/N.Þk/8k.Þk/xk

)
:

By the boundedness ofM.·/, N.·/, andK "
k+1 and using Lemma2.2, we can show that

for any� > 0, there is a1 > 0 such that

lim sup
"→0

sup
0≤s≤1

0≤t+s≤T

|v".x; t + s; Þ/− v".x; t; Þ/| ≤ �:
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Thus v".·/ is equicontinuous in the extended sense (see [13, p. 73] for a defini-
tion). Note thatv".x; t; Þ/ = x′K ".t; Þ/x + r ".t; Þ/, taking x = 0 in the above
yields the equicontinuity ofr ".·/ in the extended sense. Sincex′K ".t; Þ/x =
v".x; t; Þ/ − r ".t; Þ/, the quadratic form is equicontinuous in the extended sense.
By repeatedly choosing appropriate vectorx’s, we can show all the entries ofK ".t; Þ/
are equicontinuous in the extended sense. ThusK ".t; Þ/ is equicontinuous in the
extended sense.

Takei = s�` ∈ M�. Since{K ".·; i /} is equicontinuous in the extended sense and
is uniformly bounded, Theorem 4.2.2 in [13] implies that it has a subsequence which
converges uniformly to a continuous limitK .·; i /. We next characterise the limit.
Using (2.10), we can write

"A′.i /K̂n+1.i / = "A′.i /Kn+1.i /+ g"n; where g"n = "2 A′.i /
m∑

j =1

q"i j Kn+1. j /:

Similarly, we can treat the other terms involvingK "
n+1.i /. Note thatQ" defined

in (2.11) is a generator of a singularly perturbed Markov chain in continuous time
with Q" = Q̃="+ Q andQ̃ = P − I = diag.P1 − I1; : : : ; Pl − Il /, whereI� denotes
an identity matrix of dimension� × �. (The asymptotic properties of such singularly
perturbed Markov chains have been studied extensively in [24].) Since i = s�`, we
can write (2.9) as

K "
n+1.s�`/ = K ".s�`/− "A′.s�`/K "

n+1.s�`/ − "K "
n+1.s�`/ − "M.s�`/

+ K "
n+1.s�`/B.s�`/.N.s�` /+ O."//−1 B′.s�`/K "

n+1.s�`/

− "Q"K "
n+1.·/.s�`/+ g"n:

Consequently,

K ".t + s; s�`/− K ".t; s�`/

= −"
.t+s/="−1∑

k=t="

[
A′.s�`/K "

k+1.s�`/+ K "
k+1.s�`/A.s�`/+ M.s�`/

]
+ "

.t+s/="−1∑
k=t="

K "
k+1.s�`/B.s�`/.N.s�`/ + O."//−1 B′.s�`/K "

k+1.s�`/

− "

.t+s/="−1∑
k=t="

Q"K "
k+1.·/.s�`/+ G".t/; (2.16)

whereG".t/ = ∑.t+s/="−1
k=t=" g"k . It can be shown that the terms iñG".t/ converge to 0

uniformly in t ∈ [0;T]. Thus we need only examine the rest of the terms in (2.16).
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By virtue of the definition of (2.11) and the uniform boundedness ofK ".·/, multi-
plying both sides of (2.16) by " and sending" → 0 leads to

∫ t+s

t

.P� − I �/K .−; ·/.s�`/d− = lim
"→0

"

.t+s/="−1∑
k=t="

.P� − I �/K
"
k+1.·/.s�`/ = 0:

The continuity ofK .·; �/ then implies.P� − I �/K .t; ·/.s�`/ = 0 for all t ∈ [0;T].
Irreducibility in turn implies thatK .t; s�`/ = K .t; �/, independent of̀, and that

"

.t+s/="−1∑
k=t="

Q"K "
k+1.·/.s�`/ →

∫ t+s

t

QK.−; ·/.�/d−:

Using this fact, multiplying (2.16) by ¹�` and taking summation over̀yields

m�∑
`=1

¹�`[K ".t + s; s�`/ − K ".t; s�`/]

= −
∫ t+s

t

m�∑
`=1

¹�`
(

A′.s�`/K ".−; s�`/ + K ".−; s�`A.s�`// + M.s�`/
)

d−

+
∫ t+s

t

m�∑
`=1

¹�`[K ".−; s�`/B.s�`/N
−1.s�`/B

′.s�`/K ".−; s�`/] d−

−
∫ t+s

t

(
m�∑
`=1

¹�`Q1111111m�

)
K .−; ·/.�/d− + o.1/;

whereo.1/ → 0 as" → 0 uniformly in t .
Letting" → 0 and using the uniform convergence ofK ".t; s�`/ → K .t; �/, we will

show for each� ∈M , K .t; �/ = K .t; �/. In fact,(
m�∑
`=1

¹�`Q111111111m�

)
K .t; ·/.�/ = QK.t; ·/.�/:

Then
∑m�

`=1 ¹
�
` = 1 leads to

K .t + s; �/ − K .t; �/ = −
∫ t+s

t

[
A

′
.�/K .−; �/ + K .−; �/A.�/ + M.�/

− K .−; �/B N−1B′.�/K .−; �/ + QK.−; ·/.�/] d−:

Finally, the uniqueness of the Riccati equation (see [8, Chapter VI]) implies that
K .t; �/ = K .t; �/. As a result,K ".t; s�`/ → K .t; �/: This yields the desired limit.
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2.1. Numerical results This section presents a numerical example of a four-state
Markov chainÞ"k ∈M = 1;2;3;4, with transition probability matrixP" = P + "Q,
where

P =


0:50 0:50 0 0
0:55 0:45 0 0

0 0 0:4 0:6
0 0 0:5 0:5

 ; Q =


−0:6 0 0:3 0:3

0 −0:3 0:1 0:2
0:2 0:3 −0:5 0
0:1 0:3 0 −0:4

 :
For a two-dimensional dynamic system (2.2) and the cost function (2.3), let x0 = (

0
1

)
,

6 = (
1:5 0:5
0:5 2:0

)
, D = (

2 1
1 2

)
, A.1/ = ( −1 0

0 2

)
, A.2/ = ( −2 −1

−1 1

)
, A.3/ = ( −3 −2

−2 0

)
,

A.4/ = ( −4 −3
−3 −1

)
, B.1/ = (

1 2
2 4

)
, B.2/ = (

2 3
3 5

)
, B.3/ = (

3 4
4 6

)
, B.4/ = (

4 5
5 7

)
, M.1/ =(

5 3
3 7

)
, M.2/ = ( 4 3=2

3=2 5

)
, M.3/ = ( 11=3 1

1 13=3

)
, M.4/ = ( 7=2 3=4

3=4 4

)
, N.1/ = (

8 3
3 10

)
,

N.2/ = (
10 6
6 14

)
, N.3/ = (

12 9
9 18

)
, N.4/ = (

14 12
12 22

)
. The time horizon for this discrete-

time model is 0≤ n ≤ bT="c with T = 5:We use step sizeh = 0:01 to discretise the
limit Riccati equations.

TakeÞ"0 = 1. The trajectories ofr "n.i / versusr .t/, K "
n.i / versusK .t; ·/ andv"n.x; i /

versusv.·/ are given in Figure1 for " = 0:01. The simulation results show that
the discrete-time LQ regulator problem is closely approximated by the corresponding
continuous-time hybrid LQG problem, which allows us to further construct nearly
optimal controls for the original system.

3. A continuous-time hybrid LQG problem

As was mentioned in the previous section, much effort has been directed to the
design in recent years of more “robust” controllers. In various applications, it is often
necessary to develop models involving disturbances of discrete-event type in addition
to the additive white noise. Introducing a Markovian jump model and extending the
original “state space” model to cover both the original state variables of the LQG
problem and those variables of the Markov chain will result in a new system that
displays both continuous and discrete characteristics and is thus termed a hybrid
system.

3.1. Formulation Again, for reduction of complexity, we use a singularly perturbed
Markov chainÞ".t/ whose state space isM = {1; : : : ;m}. For further motivation,
the reader is referred to [28]. Let us work with a finite horizon for some finiteT > 0.
Consider the linear system

dx.t/ = [A.Þ".t//x.t/ + B.Þ".t//u.t/] dt + ¦dw.t/;

x.s/ = x; for s ≤ t ≤ T;
(3.1)
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FIGURE 1. A discrete-time LQG.

where x.t/ ∈ R
n1 denotes state variables,u.t/ ∈ R

n2 denotes control variables,
A.i / ∈ R

n1×n1 and B.i / ∈ R
n1×n2 are well-defined and have finite values for any

i ∈M andw.·/ is a standard Brownian motion. Our objective is to find the optimal
controlu.·/ to minimise the expected quadratic cost function

J.s; x; Þ;u.·//
= E

{∫ T

s

[x′.t/M.Þ".t//x.t/ + u′.t/N.Þ".t//u.t/] dt + x′.T/Dx.T/

}
; (3.2)

where E = Ex;Þ is the expectation givenÞ.s/ = Þ and x.s/ = x; M.i /, i =
1; : : : ;m, are symmetric nonnegative definite matrices;N.i /, i = 1; : : : ;m, and D
are symmetric positive definite matrices;Þ".·/ andw.·/ are independent.

Having a different interpretation than that of the discrete-time counterpart, the
generator ofÞ".t/ consists of two parts, a rapidly changing part and a slowly varying
one, and is given by

Q" = Q̃=" + Q̂: (3.3)
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Note thatQ̃=" represents the fast changing part andQ̂ represents the slowly varying
part. As a result, the formof (3.3) is similar in spirit to that of (2.1), where the transition
matrix P" consists ofP and a “slowly varying” part"Q. A small parameter" > 0
makes the system under consideration display a two-time-scale behaviour [6, 17].

3.2. Optimal control Letv".s; Þ; x/ = infu.·/ J".s; Þ; x;u.·// be the value function.
Thenv" satisfies the following system of Hamilton-Jacobi-Bellman (HJB) equations:
for 0 ≤ s ≤ T andi ∈M ,

0 = @v".s; i; x/

@s
+ min

u

{
.A.i /x + B.i /u/′

@v".s; i; x/

@x
+ x′ M.i /x

+u′ N.i /u + 1

2
tr

(
¦¦ ′ @

2v".s; i; x/

@x2

)
+ Q"v".s; ·; x/.i /

}
; (3.4)

with the boundary conditionv".T; i; x/ = x ′Dx, whereQ"v".s; ·; x/.i / is defined
in (1.1).

AssumeQ̃ has a block-diagonal form̃Q = diag.Q̃1; : : : ; Q̃l /, whereQ̃� ∈ Rm�×m�

are weakly irreducible (see [24, p. 21], for a definition), for� = 1; : : : ; l , and∑l
�=1 m� = m. LetM� = {s�1; : : : ; s�m�

} for � = 1; : : : ; l be the state space corre-
sponding toQ̃� with decomposition of the form (1.2). The slow and fast components
are coupled through weak and strong interactions in the sense that the underlying
Markov chain fluctuates rapidly within a single groupM� and jumps less frequently
among different groups. If we consider the states inM� as a single “state,” then all
such “states” are coupled through the matrixQ̂.

Following the approach in [8, pp. 165–166] (see also [24, pp. 309–325]), let

v".s; i; x/ = x′K ".s; i /x + r ".s; i /: (3.5)

Again, them×m matrix-valued functionsK ".·/ and real-valued functionsr ".·/ are to
be determined. Substituting (3.5) into (3.4) and comparing the coefficients ofx leads
to the following Riccati equations forK ".s; i /:

K̇ ".s; i / = −K ".s; i /A.i /− A′.i /K ".s; i /− M.i /

+ K ".s; i /B.i /N−1.i /B′.i /K ".s; i /− Q"K ".s; ·/.i /;
K ".T; i / = D;

(3.6)

and {
ṙ ".s; i / = − tr.¦¦ ′ K ".s; i //− Q"r ".s; ·/.i /;
r ".T; i / = 0;

(3.7)

whereQ"K ".s; ·/.i / is as defined in (1.1). Moreover, similar to [8, Chapter VI] (see
also [24, Appendices A.4 and A.5]), it is easy to show that these equations have a
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unique solution. In view of the positive definiteness ofK ", the optimal controlu";∗

has the form

u";∗.s; i; x/ = −N−1.i /B′.i /K ".s; i /x: (3.8)

By aggregating the states inM� into one state�, we obtain an aggregated process
{Þ".·/} defined byÞ".t/ = � whenÞ".t/ ∈ M�. The processÞ".·/ is not necessarily
Markovian. However, using probabilistic arguments, we have shown in [24, Section
7.2] that as" → 0, Þ".·/ converges weakly toÞ.·/ generated byQ that has the
form (2.13) with ¹� being the stationary distribution of̃Q� (for each� = 1; : : : ; l ).
Moreover, for any bounded and measurable deterministic functionþ.·/,

E

(∫ T

s

[
I{Þ".t/=s�`} − ¹�` I{Þ".t/=�}

]
þ.t/dt

)2

= O."/: (3.9)

The following theorem is concerned with the convergence ofK " andr ", whose proof
is in [28]. For appropriate functionsF.·/ andFi .·/ onM , define

F =
m�∑
`=1

¹�`F.s�`/; F1F2 =
mk∑
`=1

¹k
` F1.s�`/F2.s�`/; for � = 1; : : : ; l :

THEOREM 3.1. For � = 1; : : : ; l and ` = 1; : : : ;m�, K ".s; s�`/ → K .s; �/ and
r ".s; s�`/ → r .s; �/, uniformly on[0;T] as " → 0, where K .s; �/ and r .s; �/ are
the unique solutions to the differential equations(2.14) and (2.15), respectively, with
6 = ¦¦ ′.

The convergence ofK ".s; i / andr ".s; i / leads to that ofv".s; i; x/ given by (3.5)
whereK ".s; i / andr ".s; i / are the solutions to the differential equations (3.6) and
(3.7), respectively. It follows that for̀ = 1; : : : ;m�; as" → 0; v".s; s�`; x/ →
v.s; �; x/ = x′K .s; �/x + r .s; �/ corresponds to the value function of a limit problem.
LetU denote the control set for the limit problem:

U = {
U = .U1; : : : ;U l / : U � = .u�1; : : : ;u�m� /;u�` ∈ Rn2

}
:

Define

f .s; �; x;U / = A.�/x +
m�∑
j =1

¹�`B.s�`/u
�`; Ñ.�;U / =

m�∑
j =1

¹�`
(
u�j ;′N.s�`/u�`

)
:

Thenv.s; �; x/ satisfies the following HJB equations:

0 = @v.s; �; x/

@s
+ min

U∈U

{
f .s; �; x;U /

@v.s; �; x/

@x
+ x′M.�/x

+Ñ.�;U / + 1

2
tr

(
¦¦ ′ @

2v.s; �; x/

@x2

)
+ Qv.s; ·; x/.�/

}
;

v.T; �; x/ = x′Dx:
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The corresponding control problem is

minimise J.s; �; x;U .·// = E

{∫ T

s

[x′.t/M.Þ.t//x.t/ + Ñ.Þ.t/;U .t//] dt

+ x′.T/Dx.T/

}
s.t. dx.t/ = f .t; Þ.t/; x.t/;U .t//dt + ¦dw.t/; x.s/ = x;

whereÞ.·/ ∈ {1; : : : ; l } is a Markov chain generated byQ.
The optimal control for this limit problem is:

U o.s; �; x/ = .U1o.s; x/; : : : ;Ulo.s; x//

with

U �o.s; x/ = .u�1;o.s; x/; : : : ;u�m�;o.s; x// and

u�`;o.s; x/ = −N−1.s�`/B
′.s�`/K .s; �/x:

Using such controls (as in [19], see also [24, Chapter 9]), we construct

u".s; Þ; x/ =
l∑
�=1

m�∑
`=1

I{Þ=s�`}u
�`;o.s; x/ (3.10)

for the original problem. Although (3.10) involves a summation, at any given instance,
it has only one term. Equivalently, this control can also be written as ifÞ ∈M�,

u".s; Þ; x/ = −N−1.Þ/B′.Þ/K .s; �/x:

It is clear that this control is identical to the optimal control in (3.8) exceptK " is
replaced byK . We useu".t/ = u".t; Þ".t/; x.t// for the original problem, which is
nearly optimal.

If B.s�`/ = B.�/ andN.s�`/ = N.�/ are independent of̀, then, in view of (3.9), we
may replaceI{Þ".t/=s�`} by I{Þ".t/=�}¹�` and consider

u".s; Þ; x/ =
l∑
�=1

m�∑
`=1

I{Þ∈M�}¹
�
`u
�`;o.s; x/ = −N−1.�/B′.�/K .s; �/x; if Þ ∈M�:

Therefore we can writeu".s; Þ; x/ = u".s; �; x/. Sinceu" only requires the informa-
tion Þ".t/ ∈M�, we can use

u".t/ = u".t; Þ".t/; x.t//: (3.11)
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THEOREM 3.2. The following assertions hold:

(1) The controlu".t/ defined in(3.10) is nearly optimal, that is,

lim
"→0

|J".s; Þ; x;u".·// − v".s; Þ; x/| = 0:

(2) AssumeB.s�`/ = B.�/ and N.s�`/ = N.�/ independent of̀. Thenu".t/ defined
in (3.11) is nearly optimal, that is,lim"→0 |J".s; Þ; x;u".·// − v".s; Þ; x/| = 0.

3.3. Numerical results This section presents a numerical example of a four-state
Markov chainÞ".t/ ∈M = 1;2;3;4, t ≥ 0, generated by

Q" = 1

"


−0:10 0:10 0 0
0:12 −0:12 0 0

0 0 −0:04 0:04
0 0 0:06 −0:06

+


−0:8 0 0:8 0

0 −0:7 0 0:7
0:5 0 −0:5 0
0 0:1 0 −0:1

 :
For a two-dimensional dynamic system (3.1) and cost function (3.2), let x.0/= (

0
1

)
,

¦ = (
0:5
0:5

)
, D = (

2 1
1 2

)
, A.1/ = (

0 1
1 3

)
, A.2/ = ( −1 0

0 2

)
, A.3/ = ( −2 −1

−1 1

)
, A.4/ =( −3 −2

−2 0

)
, B.1/ = (

2 3
3 5

)
, B.2/ = (

3 4
4 6

)
, B.3/ = (

4 5
5 7

)
, B.4/ = (

5 6
6 8

)
, M.1/ = (

4 3
3 6

)
,

M.2/ = (
3 1:5

1:5 4

)
, M.3/ = ( 8=3 1:0

1:0 10=3

)
, M.4/ = (

2:5 0:75
0:75 3:0

)
, N.1/ = (

6 3
3 8

)
, N.2/ =(

8 6
6 12

)
, N.3/ = (

10 9
9 16

)
, N.4/ = (

12 12
12 20

)
. The time horizon for the continuous-time

model is [0;T] with T = 5. We discretise the system equations with step size
h = 0:01.

Takes = 0 andÞ.0/ = 1. Sample paths ofÞ".·/ are given in Figure2 for " = 0:01
and" = 0:1, respectively. It shows that a smaller" leads to more rapid jumps. The
trajectories ofr ".·/ versusr̄ .·/, K ".·/ versusK .·/, andv".·/ versusv.·/ are given
in Figure3. The simulation results demonstrate that our algorithm approximates the
optimal solutions well with less computational effort.

4. A discrete-time MDP problem

Discrete-time MDPs are of interest in various applications such as resource al-
location, communication channels and queueing networks. Classical treatments of
discrete-time MDP models can be found in [18] and [23] (see also [21] for applica-
tions to reliability models) among others. It is important to consider discrete-time
systems since system measurements are frequently recorded in discrete time. In
addition, success in obtaining optimal controls for the underlying system relies on
efficient computation procedures, which in turn depend on the corresponding discre-
tised dynamic systems. A common practice in dealing with MDPs is to use a dynamic
programming (DP) approach, which requires solving a set of DP equations and finding
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FIGURE 2. Continuous-time MC sample paths," = 0:1 and" = 0:01.

the optimal solutions. Such an approach becomes infeasible computationally when
the dimension of the underlying system is very large, and therefore other alternatives
are needed. In [14], a hierarchical control approach was proposed, and nearly optimal
control strategies were developed. The essences are state space decomposition and
aggregation. The asymptotic result is based on the asymptotic expansions obtained in
[25]. We provide numerical results herein to further elaborate our theoretical findings
and to offer insight for practical applications.

4.1. Formulation and results Consider a discrete-time Markov chain{Þ"n;n =
0;1; : : : ; } with finite state spaceM = {1; : : : ;m}, where" > 0 is a small parameter.
Let the control space0 be a compact subset of an Euclidean space. Consider feedback
controlun = u.Þ"n/ such thatun ∈ 0, n = 0;1; : : : . Let P".un/ = .p"i j .un//m×m be the
probability transition matrix ofÞ"n given by (2.1) with both P = P.u/ andQ = Q.u/
depending onu. In view of (2.1), it is clear that the dominating factor is given by the
transition matrixP.u/. Since we are focusing on finite-state Markov chains, the MDP
corresponding toP.u/ can either consist of a number of recurrent (ergodic) classes of
states or also include transient states.
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FIGURE 3. A continuous-time LQG.

For simplicity, we concentrate on the recurrent cases here. That is, the transition
matrix P.u/ consists only ofl recurrentclasses, andP.u/ has the form (2.4) with each
P� = P�.u/. For � = 1; : : : ; l , letM� = {s�1; : : : ; s�m�

} denote the recurrent sub-state
space ofÞ"n corresponding to the blockP�.u/. The entire state space ofÞ"n can be
decomposed as in (1.2).

For everyu ∈ 0, assume that for each� = 1; : : : ; l , P�.u/ is anm� × m� transition
matrix and is irreducible and aperiodic. Letu.·/ = {u.i / : i ∈M } be a function such
thatu.i / ∈ 0 for all statesi ∈M . A functionu.·/ is called an admissible control and
the collection of all such functions is denoted byA f .

Consider the cost functionalJ".i;u.·// defined onM × A f :

J".i;u.·// = E

(
"

∞∑
k=0

.1 − þ"/kg.Þ"k;u.Þ
"
k//

)
; (4.1)

wherei = Þ"0 is the initial state of the chain,g.i;u/ is the cost-to-go function, and
þ > 0 is a given constant. The objective is to find a functionu.·/ ∈ A f that minimises
J".i;u.·//. In the discrete-time setting, the discount factor.1 − þ"/ depends on".
Such a dependence leads to cancellation of" in the associated DP equations.
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The original MDP problem, termedP ", is of the form

P
" :


minimise: J".i;u.·// = E

(
"

∞∑
k=0

.1 − þ"/kg.Þ"k;u.Þ
"
k//

)
;

subject to: Þ"k ∼ P".u.Þ"k //; k = 0;1; : : : ; Þ"0 = i;u.·/ ∈ A f ;

value function: v".i / = inf
u.·/∈A f

J".i;u.·//:

The notationÞ"n ∼ P".u.Þ"n// means thatÞ"n is a discrete-time Markov chain whose
probability transition matrix isP".u.Þ"n//.

To solve the problemP " by using the DP approach, for eachi ∈M , the associated
discrete-time DP equation is

v".i / = min
u∈0

{
"g.i;u/+ .1 − þ"/

∑
j

p"i j .u/v
". j /

}
:

As was shown in [14], as" → 0, a reduced problem or limit problem in an appropriate
sense is obtained. Although the original problem is a discrete-time one, the reduced
problem becomes a continuous-time MDP.

To proceed, defineg.�;U �/ = ∑m�

`=1 ¹
�
`.U

�/g.s�`;u�`/, � = 1; : : : ; l . For each
� = 1; : : : ; l , define

0� = {U � := .u�1; : : : ;u�m� / : u�` ∈ 0; ` = 1; : : : ;m�};
0 = 01 × · · · × 0l = {U = .U1; : : : ;U l / : U � ∈ 0�; � = 1; : : : ; l }:

Let A 0 denote a class of functionsU .·/ = {U .�/ : � ∈ M } such thatU .�/ ∈ 0�
for � = 1; : : : ; l . For convenience, callU = .U .1/; : : : ;U .l // ∈ A 0 an admissible
control for the limit problem, termedP0. Usex̃.t/ ∼ Q.U .̃x.t/// to denote that̃x.t/
is a Markov chain generated byQ.U .̃x.t///.

Now we have a continuous-time MDP:

P
0 :


minimise: J0.�;U / = E

∫ ∞

0

e−þt g.̃x.t/;U .̃x.t///dt;

subject to: x̃.t/ ∼ Q.U .̃x.t///; t ≥ 0; x̃.0/ = k;U ∈ A 0;

value function: v.�/ = inf
U∈A 0

J0.�;U /:

ProblemP0 is the limit problem in an appropriate sense.
The DP equation for the limit problemP0 is

þv.�/ = min
U �∈0�

{
g.�;U �/+ Q.U �/v.·/.�/} ; for � = 1; : : : ; l : (4.2)
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FIGURE 4. A discrete-time MDP.

Let Uo = .U1
o ; : : : ;U

l
o/ ∈ 0 denote a minimiser of the right-hand side of (4.2). Then

Uo ∈ A 0 is optimal forP0. We need the following assumptions on the transition
matrix P".u/ and the cost-to-go functiong.i;u/:

(A2) For each" > 0, P".u/ is a continuous function ofu. Moreover, for each
U � ∈ 0�, � = 1; : : : ; l , P�.U �/ is irreducible and aperiodic.
(A3) For eachi ∈M , g.i; ·/ is a continuous function on0.

For eachU � ∈ 0�, � = 1; : : : ; l , let ¹�.U �/ = .¹�1.U
�/; : : : ; ¹�m�

.U �// denote the
stationary distribution ofP�.U �/, that is,¹�.U �/ is the unique solution of the following
system of equations: {

¹�.U �/P�.U
�/ =¹�.U �/;∑m�

j =1 ¹
�
j .U

�/ =1:

THEOREM 4.1. Assume(A2) and (A3). For eachi = s�` ∈ M�, � = 1; : : : ; l ,
lim"→0 v

".i / = v.�/, wherev.�/ is the value function of the limit problemP0.
Let Uo = .U1

o ; : : : ;U
l
o/ ∈ A 0 be an optimal control for the limit problemP0.

Define a controlu".·/ = {u".Þ/ : Þ ∈M } for the original problemP":

u".Þ/ =
l∑
�=1

m�∑
`=1

I{Þ=s�`}u
�`
o .·/: (4.3)
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Furthermore, the controlu".·/ = {u".Þ/} constructed in(4.3) is asymptotically opti-
mal in thatlim"→0 |J".i;u".·// − v".i /| = 0, for i ∈M .

4.2. Numerical results This section presents a numerical example of a discrete-
time MDP problem concerning a four-state Markov chainÞ"n ∈ M = 1;2;3;4,
n = 0;1; : : : , with transition probability matrix given by (2.1). Note bothP = P.u/
andQ = Q.u/ depend onu. In the meantime,u = u.Þ"n/ are functions of states. We
assume three possible control actions in eachstate and use the following specifications:

u.1/ =
2

3
4

 ; u.2/ =
2

4
3

 ; u.3/ =
 3

4
5=2

 ; u.4/ =
3=2

3
2

 ;

P.u/ =


.ui1.1//−1 1 − .ui1.1//−1 0 0

1− .ui2.2//−1 .ui2.2//−1 0 0
0 0 .ui3.3//−1 1 − .ui3.3//−1

0 0 1− .ui4.4//−1 .ui4.4//−1

 ;

Q.u/ =


−ui1.1/ 0 ui1.1/ 0

0 −ui2.2/ 0 ui2.2/
ui3.3/ 0 −ui3.3/ 0

0 ui4.4/ 0 −ui4.4/

 ;
where ur .�/ denotes ther th control in state�; with all possible combinations of
i j = 1;2;3 and j = 1;2;3;4. To find the optimal control requires comparing the
costs from all possible combinations of control actions. The cost-to-go function is
given by (4.1) with g.i;u/ = .i + u/2:

The trajectories ofv".i /, the value function of the original problem, andv.�/; the
value function of the limit problem, are displayed in Figure4. The simulation results
show that the original discrete-time problem can be approximated by a continuous-
time MDP closely, which has confirmed our theoretical findings.

REMARK 4.1. To solve the limit control problem numerically, a cautionary note
is in order. If one proceeds with a direct implementation, the numerical procedure
may be unsuitable, which was confirmed by our numerical experiments. This is due
partially to the result of the minimisation operation. Since a generator is involved
and since the diagonal elements of the generator are negative, the iterates of the value
functions may become negative resulting in the lost of probabilistic meaning in the
iterations. To overcome these difficulties, we use the same procedure as suggested in
[24, p. 240]. Numerically solving the limit problem leads to an equivalent discrete DP
problem. To exploit the equivalence, we need to identify the corresponding transition
probabilities. In fact, it can be shown (see the appendix) that the DP equation (4.2) is
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equivalent to

v.�/ = min
U �∈0�

{
g.�;U �/

þ + |q̄��.U �/| +
∑
`6=�

q̄�`.U �/

þ + |q̄��.U �/|v.`/
}
: (4.4)

5. Further remarks

This paper has focused on numerical solutions for nearly optimal controls of sin-
gularly perturbed systems driven by Markov chains. It complements our theoretical
investigation of the asymptotic properties of such large-scale systems. A central theme
here is the reduction of complexity. It should be noted that the original problem may
not include a small parameter. However, the presence of different rates of changes
will allow us to introduce a small parameter" > 0 into the system; see [24, pp. 47–49]
for an illustrative example. In many cases" > 0 may not be tending to 0, but rather
a “small” constant. The asymptotics we obtained (as" > 0) provide guidance for
practical models. In the original problem, the Markov chain can takem possible
values, whereas in the reduced system, the number of states becomesl . If l � m,
the complexity is significantly reduced. In the numerical experiments, we have used
a value iteration approach. A policy improvement method may also be used.

6. Appendix

This appendix illustrates the procedure of generating Markovian sample paths for
both discrete and continuous times in simulation studies, and shows that (4.4) is
equivalent to (4.2).

6.1. Discrete-time chains To simulate a Markov chainÞk in discrete time requires
first prescribing its transition probability matrixP = .pi j /, then building its sample
paths. Suppose thatÞk ∈ M = {1; : : : ;m}, for k ≥ 0. The sample paths are
constructed via comparison determined by the transition probability matrixP. At any
time k ≥ 0, the chain’s next move is specified by

Þk+1 =


1; if U < pi 1;

2; if pi 1 < U < pi 1 + pi 2;

· · · · · ·
m; if pi 1 + · · · + pi;m−1 < U < 1;

(6.1)

whereU is a random variable following a uniform distribution in.0;1/ (that is,
U ∼ U .0;1/).
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6.2. Continuous-time chains Suppose thatÞ.t/ is a continuous-time Markov chain
with state spaceM = {1; : : : ;m} and generatorQ = .qi j /. To simulate the sample
paths ofÞ.t/ amounts to determining its sojourn time ateach state and its subsequent
moves. The chain sojourns in any given statei for a random length of time,Si , which
has an exponential distribution with parameter.−qii /. Subsequently the process will
enter another state. Each statej ( j = 1; : : : ;m, j 6= i ) has a probability ofqi j =.−qii /

of being the chain’s next residence. Let a discrete random variableXi denote the
post-jump location and take values in{1;2; : : : ; i − 1; i + 1; : : : ;m}. Its value is
specified by

Xi =


1; if U < qi 1=.−qii /;

2; if qi 1=.−qii / < U < .qi 1 + qi 2/=.−qii /;

· · · · · ·
m; if

∑
k6=i;k<m qik=.−qii / < U ;

(6.2)

whereU is a random variable uniformly distributed in.0;1/. Thus the sample path
of Þ.t/ is constructed by sampling from exponential andU .0;1/ random variables
alternately.

6.3. Computation procedure for a continuous-time MDP For eachU ∈ 0,

þv.�/ ≤ g.�;U �/+
∑
`6=�

q̄�`.U
�/.v.`/ − v.�//: (6.3)

Since
∑

`6=� q̄�`.U
�/v.�/ = |q̄��.U �/|v.�/, andþ > 0, the inequality (6.3) is equivalent

to

v.�/ ≤ g.�;U �/

þ + |q̄��.U �/| +
∑
`6=�

q̄�`.U �/

þ + |q̄��.U �/|v.`/:

It follows that

v.�/ ≤ min
U �∈0�

{
g.�;U �/

þ + |q̄��.U �/| +
∑
`6=�

q̄�`.U �/

þ + |q̄��.U �/|v.`/
}
:

The equality holds if and only ifU is the minimiser of the right-hand side of (4.2). To
show that (4.4) is equivalent to a DP equation of a discrete-time MDP, let

g̃.�;U �/ = g.�;U �/

þ + |q̄��.U �/| ; ² = max
�=1;::: ;l ;U∈0

|q̄��.U �/|
þ + |q̄��.U �/| ;

p̃�` = q̄�`.U �/

².þ + |q̄��.U �/|/ for ` 6= � and p̃�� = 0:

Then 0< ² < 1,
∑

`
p̃�`.U �/ = 1. The corresponding discrete-time version of the

DP equation isv.�/ = minU �∈0�
{
g̃.�;U �/ + ²

∑
`

p̃�`.U �/v.`/
}
.



[25] Numerical study of singularly perturbed Markov chains 73

Acknowledgements

The research of H. Yang and K. Yin was supported in part by the Minnesota
Sea Grant College Program by the NOAA Office of Sea Grant, U.S. Department of
Commerce, under Grant NA46-RG0101; G. Yin’s research was supported in part by
the National Science Foundation under Grant DMS-9877090; Q. Zhang’s researchwas
supported in part by the USAF Grant F30602-99-2-0548 and ONR Grant N00014-96-
1-0263.

References

[1] M. Abbad, J. A. Filar and T. R. Bielecki, “Algorithms for singularly perturbed limiting average
Markov control problems”,IEEE Trans. Automat. ControlAC-37 (1992) 1421–1425.

[2] D. Bertsekas,Dynamic programming: deterministic and stochastic models(Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1987).

[3] G. Blankenship, “Singularly perturbed difference equations in optimal control problems”,IEEE
Trans. Automat. ControlT-AC 26 (1981) 911–917.

[4] P. J. Courtois,Decomposability: queuing and computer system applications(Academic Press,
New York, 1977).

[5] M. H. A. Davis, Markov models and optimization(Chapman and Hall, London, 1993).
[6] F. Delebecque and J. Quadrat, “Optimal control for Markov chains admitting strong and weak

interactions”,Automatica17 (1981) 281–296.
[7] S. N. Ethier and T. G. Kurtz,Markov processes: characterization and convergence(J. Wiley, New

York, 1986).
[8] W. H. Fleming and R. W. Rishel,Deterministic and stochastic optimal control(Springer, New

York, 1975).
[9] F. C. Hoppensteadt and W. L. Miranker, “Multitime methods for systems of difference equations”,

Studies Appl. Math.56 (1977) 273–289.
[10] R. Z. Khasminskii, G. Yin and Q. Zhang, “Asymptotic expansions of singularly perturbed systems

involving rapidly fluctuating Markov chains”,SIAM J. Appl. Math.56 (1996) 277–293.
[11] R. Z. Khasminskii, G. Yin and Q. Zhang, “Constructing asymptotic series for probability dis-

tribution of Markov chains with weak and strong interactions”,Quart. Appl. Math.55 (1997)
177–200.

[12] H. J. Kushner,Approximation and weak convergence methods for random processes, with appli-
cations to stochastic systems theory(MIT Press, Cambridge, MA, 1984).

[13] H. J. Kushner and G. Yin,Stochastic approximation algorithms and applications(Springer, New
York, 1997).

[14] R. H. Liu, Q. Zhang and G. Yin, “Nearly optimal control of singularly perturbed Markov decision
processes in discrete time”,Appl. Math. Optim.44 (2001) 105–129.

[15] Z. G. Pan and T. Bas¸ar, “H ∞-control of Markovian jump linear systems and solutions to associated
piecewise-deterministic differential games”, inNew trends in dynamic games and applications(ed.
G. J. Olsder), (Birkḧauser, Boston, 1995) 61–94.

[16] A. A. Pervozvanskii and V. G. Gaitsgori,Theory of suboptimal decisions: decomposition and
aggregation(Kluwer, Dordrecht, 1988).

[17] R. G. Phillips and P. V. Kokotovic, “A singular perturbation approach to modelling and control of
Markov chains”,IEEE Trans. Automat. Control26 (1981) 1087–1094.



74 H. Yang, G. Yin, K. Yin and Q. Zhang [26]

[18] S. Ross,Introduction to stochastic dynamic programming(Academic Press, New York, 1983).
[19] S. P. Sethi and Q. Zhang,Hierarchical decision making in stochastic manufacturing systems
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