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Abstract

Optimal control problems governed by semilinear elliptic partial differential equations are
considered. No Cesari-type conditions are assumed. By proving an existence theorem and
the Pontryagin maximum principle of optimal “state-control” pairs for the corresponding
relaxed problems, we establish an existence theorem of optimal pairs for the original
problem.

1. Introduction

It is well-known to researchers working in optimal control theory that to guarantee
the existence of (classical) optimal pairs we need a Cesari-type condition, which is
a natural generalisation of optimal control problems with linear state equations and
convex cost functionals. Many results are available along these lines. We refer the
reader to the books by Berkovitz][ Cesari p] and Li and Yong 1] for further detail.

When these types of conditions are no longer satisfied, measure-valued controls
(that is, randomising controls), called “relaxed controls”, are introduced. Other
names have been used in the literature for relaxed controls such as “sliding regimes'’
(Filippov [7]), “generalised controls” (Gamkrelidze]), “relaxed curves” (Warga
[18]), and “generalised curves” (Youn@Z]). Here we adopt the name “relaxed
control” (McShane 13]) since it is more frequently used among mathematicians
working in control theory. For finite-dimensional control systems, relaxed controls
have been systematically studied. We refer the reader to the books of Gamkrelidze
[8], Berkovitz [3] and Warga 20] for details. For infinite-dimensional systems, most
results are concerned with linear or semilinear evolution systems. Among them, we
mention the works by Ahmed.], Fattorini [6] and Papageorgioup).
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By relaxation, the space of admissible controls is extended to a larger space and bott
control system and cost functional are convexified. There are at least three advantage
in considering relaxed controls. First, after relaxation, the existence theorem and the
necessary conditions of optimal relaxed control follow easily under relatively weak
hypotheses. Next, when the classical control problem (that is, non-relaxed problem)
admits no optimal control, optimal relaxed control provides a method to construct
approximate optimal controls since under suitable conditions, any relaxed control can
be approximated by classical controls. For infinite-dimensional systems, especially
for evolution systems, the above two aspects have been carefully investigated by man
researchers. The third advantage is that when an optimal relaxed control is a Dirac
measure almost everywhere, then it essentially becomes a classical optimal control
that is, in the non-relaxed sense (see Seclifor details). Thus research on optimal
relaxed control also gives the possibility of seeking classical optimal controls (see
Balder [2], Neustadt 5] and Suryanarayandf], for examples).

The main purpose of this paper is to establish an existence theorem for some system
governed by semilinear elliptic equations without assuming Cesari-type conditions.
To this end, we first establish existence and the Pontryagin maximum principle for
optimal relaxed controls. Under suitable assumptions, we can prove that an optimal
relaxed control is supported at a single point almost everywhere. Thus it must be an
optimal control for the classical non-relaxed problem.

2. Classical and relaxed controls

The (classical) control system we consider in this paper is

n

0 0 .
=Y @0 (00) = F(x,ye0,uCx), i 2,
|

) X (2.1)
Yl =0,
with the cost functional being
Ju()) =/ fO(x, y(x), u(x)) dx, (2.2)
Q

wherey(.) is the state corresponding to contugl) satisfying 2.1).
We pose the following assumptions.
(S1) Q is a bounded region iR" with a C1! boundaryd2, andU is a compact
metric space.
(S2) a;() € C(Q), & = a; and for somer > 0, Y, &;(X)&& > Al
VE = (6,8, ...,&) e R", x e Q.
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(S3) f : 2 xR xU — Ris Borel measurable inx, y,u) € @ x R x U and
continuous in(y, u) € R x U for almost allx € , f,(x,y,u) < 0,V(x,y,u) €
Q x R xU. Moreover, foranyR > 0, there exists aMg > 0 such thatf(x, y, u)|+
[fy(X, ¥, W] < Mg, ¥(X,u) e 2 x U, |y < R

(S4) f°:Q x R xU — Ris Borel measurable ifx, y, u) and lower semicontin-
uous in(y, u) for almost allx € Q. Moreover, for anyR > 0, there exists aKr > 0
such thatfo(x, y,u) > —Kg, V(X,u) € 2 x U, |y| < R.

DenoteZ,q = {v : @ — U | v measurable Our (classical) optimal control problem
is as follows.

ProBLEM (C). Find al(-) € %4 such that
J@U@) = u<<'>2;/ad J()). (2.3)

Any 0(-) satisfying .3) is called an optimal control. For convenience, we call it
a classical optimal control. It is well-known that optimal control of Prob(&)may
fail to exist unless further suitable Cesari-type conditions are imposed“rf).

EXAMPLE 1. LetU = [—1, 1], @ = (-1, 1),

{ —y'(X) =u(x), in Q,

2.4
ylaQ = 07 ( )

1
Ju(@)) =/ {Y2(X) — U*(X)} dx.
-1

Then there is nai(-) € %q such thatJ(G(-)) = infy()ee, J(U(-)). To see this, for
j =1,2,..., wechoosel(-) as follows:

U0 = 1, Ixlelk/j,2k+1/2pl k=0,1,2,...,j -1,
"l -1, otherwise

and lety; (-) be the solution ofZ.4) corresponding ta; (-). We havey; € C**[—1, 1],
Ya € (0,1), and it is an even function. Therefogg(:) is odd andy;(0) = O.
Consequently, by the definition af (-), we have

! ] |X| 1
|yj(X)|=_yj(|X|)=/ uj(é) dg S?'
0 J

Hence, noting thay; (—1) = y;(1)=0, we havely; (x)| =y;(Ix]) —y; (D] <1/(2)).
Then

1
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Consequently inf.)cz,, J(U()) = —2. Now, letl(-) € %, such that)(G(-)) = —2.
Let y(-) be the state corresponding@¢). Then|l(x)| = 1 andy(x) = 0, a.e. on
[—1, 1]. The second relation yields(x) = 0, a.e. or[—1, 1], contradicting the first
relation. Thus there is nd(-) € %4 such that

J@U@) =-2= inf Ju()).
@c)) o )
Now let us introduce a condition of Cesari-type.

DEFINITION 2.1. LetY be aBanach space a(d, d) a metric space. Let : Z—2"
be a multifunction. We sayx possesses the Cesari propertgat Z, if

[)COA(0s(z) = A(z),

§>0

wheretoD is the closed convex hull db, Os(z) = {z € Z | d(z, z5) < §}, and
AG) = U, A(2), foranyG < Z. If A has the Cesari property at every point
ze€ Q C Z, we simply say that\ has the Cesari property dp.

For any(x, y) € Q x R, let

22> fox,y,u),

A 0
éa(X’Y)—{(Z’Z)E[RX Riz = f(x,y,u), for someu € U

} . (25)

To guarantee the existence of a classical optimal control, we usually need to impose
the following Cesari-type condition (seg, b, 11]).
(S5) For almostalk € 2, the maps'(x, -) has the Cesari property @

By Definition 2.1, if &(x, -) has the Cesari property § € R, then& (X, yo) is
convex and closed. On the other hand, if (S1) and (S3)—(S4) hold, then for almost
all x € Q, £(x,y) is closed for any € R. In Examplel, we can easily verify that
(S1)—(S4) hold, whilef (x, y) = {(z.2%) e Rx R | 22 > y?>— 7%, —1 < z < 1} is not
convex for any(x, y) € Q x R. Thus (S5) does not hold.

Though (S5) is an important condition to guarantee the existence of classical optimal
control, it is not a necessary condition. Here is an example.

EXAMPLE 2. LetU = [0, 1], @ = (-1, 1),

—y'(X) =u(x), in Q,
Ylse =0,

1
Ju(@)) =/ {Y*(x) — U*(x)} dx.
-1
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We mention that Exampl2is very similar to Examplé. In Example2, (S1)-(S4)
still hold but (S5) does not hold. But we will prove in Sectibithat there exists at
least ondi(-) € %4 such that2.3) holds. Example is a special case of Example
in Sectionb.

We now recall the notion of relaxed control and state somdnpireary results
about the space of relaxed controls.

We denote by#!(U) the set of all probability measureslih by Z(<2, U) the set
of all measurable probability measure-valued function®othatis,o (-) € Z2(2,U)
ifand only ifo(x) € .Z}(U), a.ex € @, andx — [, h(v)o (x)(dv) is measurable,
vh € C(U), whereC(U) denotes the space of continuous functionslbn Let
CU)* andL(2;C(U))* be the dual spaces @(U) and L(2; C(U)) with weak
star topology, respectively. We regawd(U) andZ (2, U) as subspaces @f(U)*
andL(2; C(U))*, respectively, by setting

6(h) é/ h()6(dv), V6 € .#*U), he CU),
U

and
o(Q) é/dx/ gx, v)o(x)(dv), Vo € Z(Q,U), ge LY CWU)). (2.6)
Q U

We see thatZ.6) is well-defined by Theorem IV.1.6, (p. 266) i&(]. Thusoy — o
in Z(Q2,U) means that

/dx/ h(X, v)ok(X)(dv) —>/dx/ h(x, v)o(x)(dv), VYhe LY(Q;CU)).

Q U Q U

We now state the optimal relaxed control problem corresponding to Praigm
PrOBLEM (R). Find ac (-) € Z(2, U) such that

Je = it (),

YeZ (2,U)
where

J(o (1) é/dx/ £O(x, y(x), v)o (X)(dv), (2.7)
Q U

andy(-) is the state corresponding to relaxed contro) € Z (2, U), thatis, itis the
solution of the following:

n

9 By .
—i;a—xi(au(x)a—xj(x))—/u f(x, y(x), v)o(x)(dv), in @,

(2.8)
Y]se = 0.
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We need to explain the meaning ¢f.7) since f° is only supposed to be lower
semicontinuous iy, v) € R x U. Itis not very hard to prove that sinde® satisfies
(S4), it is the limit of an increasing sequence of functiond.i(2; 7 (R x U)),
where# (R x U) denotes the set of all continuous function®irx U with compact
supports. Thus we may firtd,(-) € L1(22; # (R x U)) such that

he(X, ¥, v) 1 foX, y,v), V(X,y,v) € QxR xU. (2.9)

Consequently, we can defiddo (-)) by identifying the right-hand side o2(7) with
the following limit:

lim /dx/ he(X, y(X), v)o (X)(dv).
Q U

k—+o00

We mention that/,q can be imbedded int& (2, U) by identifying eachu(:) € %4q
with the Dirac measure-valued functiép,, € Z(2, U). Moreover,J(8,,) defined
by (2.7) coincides withJ (u(-)) defined by 2.2). Thus the notatiold (o (-)) does not
cause any confusion. On the other hand, it is easy to see thdt)ife Z(Q2,U)
and there exists @ : @ — U such thatr (x) = §,x), a.e.x € Q, thenu(-) must be
measurable, that isi(-) € %4q. Thus, if Problem(R) has an optimal relaxed control
() € Z(22,U) such that supp (x) is a singleton ofJ for almost allx € &, then
Problem(C) admits at least one classical optimal control.

The following lemmav s crucial in deriving the existence of optimal relaxed controls.

LEMMA 2.2. Suppos&J is a compact metric space. Thef(2, U) is convex and
sequentially compact.

For a proof of the above lemma, see Warg@ [Theorem IV.2.1, p. 272].

3. Existence of an optimal relaxed control

We begin with a preliminary lemma which shows thatj is well-posed.

LEMMA 3.1. Let (S1)—(S3)hold. Then for any () € Z(22,U), (2.8 admits a
unigue weak solutioy(-) € Wol’p(sz) N L*(Q), foranyp € [1, +00). Furthermore,
there exist constants, > 0 andM > Oindependent of (-) € Z(2, U), such that

YO llwgr@) < Cos
1YOlle@ < M.

The above lemma is basic. We omit the proof since it is similar to thatf@y, (
see, for example 1[1, Chapter 2, Theorem 6.11 and Chapter 3, Proposition 6.3].
We now state the existence theorem of optimal relaxed controls.

Yo € Z(Q,U). (3.1)
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THEOREM 3.2. Let(S1)—(S4)hold. Then ProbleniR) admits at least one solution.

PrOOF. We give only a sketch of the proof since it is quite standard.
By (S4) and Lemm&.1, we have a sequeneog(-) € Z (2, U), such that

Jo() > J= inf Jo®).

o(eZ(Q,U)

Let y«(-) be the state correspondingdg(-). Then, choosing a subsequence if nec-
essary, we can suppose tha(-) — o(-) in Z(Q2,U), %(-) — y(-) weakly in
Wol’p(sz), uniformly in C(2), by Lemmas2.2 and3.1, and the Sobolev imbedding
theorem, where we sgt > n. Thus it is not very hard to check thgt-) is the state
correspondingté (-). By Theorem1V.2.9in20], we haveyh € L*(Q; ¢ (R x U)),
lim /dx/ h(X, yx(X), v)oi (X)(dv) =/dx/ h(x, y(X), v)& (X)(dv).

Q U Q U

k—+o0

Leth; be an increasing sequence satisfyia@). Then
J(@ () =/dX/ fO(x, y(x), v)a (x)(dv)
Q U

= lim /dx/ hj(x, ¥(x), v)& (x)(dv)
Q U

j—+oo

= lim lim /dx/hj(x, Yi(X), v)oi (X)(dv)
Q U

j—= 400 k—+00

IA

j—= 400 k=400

lim lim /dx/ (X, Yi(X), v)ok (X)(dv)
Q U

= lim /dx/ FO(X, Yk(X), v)oi (X)(dv)
Q U

k—+o00

=J.
Therefores (+) is an optimal relaxed control to ProblgR).

We now recall the defition of £(x, y) (see £.5). Under assumptions (S1) and
(S3)—(S4) & (x, y(x)) is closed for almost alk € Q. If it is also convex for almost
all x € , then, since

(/ f(x, y(x), v)5(X)(dv),/ fox, y(x), v)o (X)(dv)>
U U
€ TOL (X, (X)) = £(X, ¥(X)), a.e.x € L,

we havel : @ — U, not necessarily measurable, such that for almost alk?,

/ f(x, y(x), v)o (x)(dv) = f(X, y(X), G(x)),
U

/ fO(x, y(x), v)3 ) (dv) > f(x, Y(x), G(x)).
U
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Thus, by Filippov’s lemma (se€] and [11, Corollary 2.26, Chapter 3]), which is
usually called the “implicit measurable function theorem”, there exists a measurable
G(-) € %qsuch that

/ f(X, Y(x), v)a (x)(dv) = f(X, y(X), G(x)),

v (3.2)
/ fO(x, y(x), v)a (x)(dv) > fo(x, y(x), G(x)).
U

Replacings () by G(-) (that is, &;,), the value of the right-hand side of the first
relation in €.8) remains unchanged. Thy¢) is also the state correspondingto).
Consequently, byd.2), J(G(-)) < J(o(-)). Therefordi(-) must be a classical optimal
control to Problerm{C).

The above tells us that if we have

(S5) For almost alk € 2, £(x, y) is convex for any € R,

then Problen{C) admits an optimal control.

In fact, under assumptions (S1)—(S4), (S5) holds if and only if (88}ls (see Li—
Yong [11, Proposition 4.3, p. 107]). Thus we have obtained a proof for the existence
of optimal controls to ProblertC) under (S1)—(S5). We would like to mention that
such a proof is essentially the same as that givefingp. 127-128].

On the other hand, replacityand f (x, y(x), u(x)) by .#}(U) and

f(X, y(x), o (X)) E/ f (X, y(x), v)o (xX)(dv),
U

respectively, and so on, the relaxed control syst@m){(2.8) is a special case of
control systemZ.1)—(2.2. Thus Theoren3.2is in fact a special case ot], Theo-
rem 6.4]. The proof of Theorer®.2is essentially a procedure of verifying that the
relaxed control systen2(7)—(2.8) satisfies the assumptions (especially the lower semi-
continuity) needed for][1, Theorem 6.4]. For the fact o#}(U) being a compact
metric space, see Warga(, Theorem IV.1.4, p. 625].

4. Maximum principle for optimal relaxed controls

To derive a maximum principle for optimal relaxed controls, we make some further
assumptions.

(S3) f:Q xR xU — R has the following propertiesf (-, y, u) is measurable
on, and f (x, -, u) is in C(R) with f(x, -, -) and f,(x, -, -) continuous orR x U.
Moreover,

fy(X,y,u) <0, V(X,y,u) e QxR xU, (4.1)



[9] Optimal controls without Cesari-type conditions 123

and for anyR > 0, there exists aMg > 0 such that

(S4) The functionf?: Q x R x U — R satisfies (S3)except for ¢.1).

The maximum principle of optimal relaxed controls can be established essentially
the same way as that for classical control problems. Thus we omit the details and only
state the result.

THEOREM4.1. Let (S1)—(S2)and (S3)—(S4) hold. Let(y(-), o (-)) be an optimal
relaxed pair to Problen{R). Then there exists @&(-) € W, () (Vp € [1, +00))
such that

0 (o0 ) o |
—HZ; ox (aj(x)axj (X)> —/U f(x, y(x), v)o (X)(dv), in Q, 4.2)
y|asz = 0,

n a a“/—, B i . )

g (aJ-(X)a—Xj<X>> = [ 8,050,007 0 @i 0
- ) ] , (4.3)
- / £2(x, (), )3 () (dv), in Q,
_ U
K/f|asz = 0,

and,Vo € Z2(Q,U),

/ dx / (X, 00, VT (X) = F2x, (%), ) (@(X) — (X)) (dv) <0.  (4.4)
Q U

We call @.3) the adjoint equation of the variational system along the optimal pair.
In the current case, the maximum condition takes the variational inequality fiodn (
(comparing with that found inl[1]). Next, we denote

H(X7 y7 w, w) = f(X’ yv U))'l// - fO(X9 y’ 'LU)
and

Ue = {w e U HO 900, 0, 9 00) = maxHx, 500, 0, 500 | . (45)
Then it is easy to see that.d) is equivalent to
suppo (X) € Uy, a.e.xe Q. (4.6)

ProPOsITION4.2. Under the assumptions of Theorehd, let (y(-), 5 (-)) be an
optimal relaxed pair to ProbleniR) and U, be defined by{4.5. If for almost all
X € , eitherU, is a singleton olJ or £(x, (X)) is convex, then Problef&) admits
at least one classical optimal control.
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PROOF. Let Qo = {x € Q | U, isasingletof Then for anyx € €, we have
U(x) € U such that (x) = 8;,. Therefore

/ f(X, y(X), v)o (X)(dv) = f(X, y(X), U(x)),
v VX € Q. (4.7)

/ fO(x, y(x), v)a () (dv) = f(x, y(x), G(x)),
U

On the other hand, for almost all € Q \ @, £ (X, y(X)) is convex. By (S1) and
(S3)—(S4) £ (X, Y(x)) is closed for almost atk € 2. Thus we havei(x) € U such
that 3.2) holds for almost alk € Q \ Q,. Combining the above with4(7), we see
that there existsi : Q — U, not necessarily measurable, such tt&ap)(holds for
almost allx € €. Then, by Filippov’s lemma, we can change the definitioni Gj
such thatli(-) € %,4 and @.2) still holds for almost allx € €. Obviously, y(-) is
the state corresponding @i@-) satisfying .1) andJ(G(-)) < J(6(-)). Thereforai(-)
must be an optimal classical control to Problém).

ProPOsITION4.3. Under the assumptions of Theorehd, let (y(-), 5 () be an
optimal relaxed pair to ProblertR). Suppose for almost a¥ € Q,

f(X, Y(X), v) = F(X, Y(X), w), Vv, w € sSupps(X). (4.8)

Then Problen{C) admits at least one classical optimal control.

PrOOF. By (4.6), (4.8), and the definition obl,, we get for almost alk € €,
fO(x, y(x), v) = fox, y(X), w), Vv, w € supps(X). (4.9)

Thus letd : @ — U, not necessarily measurable, such th@t) € supps (x). We
have that 4.7) holds for almost allx € Q. Therefore, by Filippov's lemma, we
can find ali(-) € %4 such that 4.7) holds for almost alk € Q. As we have seen
in the proof of Propositiort.2, such ad(-) must be an optimal classical control to
Problem(C).

5. Existence of a classical optimal control

Inthis section, we will state and prove our main theorem. We consider the following
system:

n

-y 2 (a-(x)ﬂ(m) = f(x, y(¥) +9Ux), in
S e ’ ’ ’

(5.1)
Ylse = 0.
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Let the cost functional take the form
Ju@)) = /{fO(X, y(X)) + h(u(x))} dx, (5.2)
Q

wherey(-) is the state corresponding to contugl) satisfying 6.1).
We impose the following assumptions.
(P1) (S1) holds.
(P2) In addition to (S2); (-) € C*().
(P3) g e C(U). The functionf : Q x R — R satisfies (S3)
(P4) h e C(). The functionf?: Q x R — R satisfies (S4)
Denotea = minyy g(u) andb = max,.y g(u). Let Ynin(-) and ymax(-) be the
solution of 6.1) corresponding tg(u(x)) = aandg(u(x)) = b, respectively. Before
making further assumptions, let us introduce the following lemma.

LEmMMA 5.1. Suppose thdtl is a compact metric space agdh € C(U). For any
B € R, denote

£, 2 [w e U [pgtw) —hw) = maxpg) —hwi |,

a; = ming(w), b =maxgw). F £ (B eR|a; < byl
weEg weEg

ThenF is at most countable.

PrROOF. Sinceg(-) andh(-) are continuous itJ andU is compactEg, a; andby
are well-defined for ang < R.
Supposes € F, B € Randw e Ej; such that

We will prove thatg = 8.
By the definition ofEg, a; andbg, we havew,, w, € Eg such that

as =g(w1), by =g(wy), (5.4)

andgg(w;) — h(w;) > pg(w) — h(w), i = 1,2. Similarly, by the definition of;,
we haveg(w) — h(®) > Bg(w;) — h(w;), i = 1, 2. Thus we have

(B—B@Qw)—gw) =0, i=12 (5.5)

Therefore, by $.9—(5.5), we getg = . i
The above implies that i, 8 € F andg # 8, then(ag, by) N (a5, bz) = ¥. Thus
the number of nonempt;, by)'s is at most countable, that iB,is at most countable.
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Now we suppose that the following additional assumption also holds:
(P5) Leta, b andF be defined as above. For afiye F, there exist a subsél,
of € and two sequences of functiolg(-) andZ (-) in vv,ﬁcl(sz) such that
|2\ Q4| = the Lebesgue measure@f\ 2; =0 (5.6)
and
{(x,y) € Qs xR fyO(X, y) = Bty (X, )}
C{X,y) € Qs xR |y=VYg(x), forsomek=1,2,...}
U{(X,y) € Qs x R|Yy=Zg(x), forsomek=1,2,...}
U{(X,y) € 2 X R[Y > Ymax(X) OF'Y < Ymin(X)}, (5.7

while, a.e.om2, vk =1,2, ...,

D w (a 0?2 ﬂk(x)) < F(X, Ya(¥) +a, (5.8)

i,j= l
"B dZ

D (a ) ﬂk(x)) > f(X, Zg(¥) +b. (5.9)

ij=1 "
For our problem, we have
_ 0 2’ > fo(x, y) + h(u),
s y) = {(Z’Z )eRXR z= f(x,y) + g(u), forsomeu e U}

Clearly# (x, y) is not convex in general. Therefore, for such systems, the Cesari-type
condition (S5) does not hold in general.
We now state our main theorem.

THEOREM5.2. Let (P1)—(P5)hold. Then ProblenfC) corresponding to system
(5.2)—(5.2) admits at least one optimal control.

In applications, we may replace (P5) by the following stronger condition:

(P5) For anyp € R, there exist2; € 2, and two sequences of functiolg(-),
Zsx(-) € WZH() such that$.6)—(5.8) hold.

loc
The advantage of (P55 that it is independent @f(-) andh(-), except for the upper
and lower bounds of(-).
Assumption (P5) looks very technical. But we will see that many systems satisfy
such a condition.

ExamvPLE 3. Consider the systenb(1)—(5.2). Let

fooy)=r@y), oGy =ry), Vxy eQxR.



[13] Optimal controls without Cesari-type conditions 127

Let (P1)—(P4) hold. Moreover, suppoge| (r°/'(y) = Br'(y)} is at most countable
and infycg r (y) + min,cy g(v) > 0. Then (PS)(and consequently (P5)) follows from
the following relation:

{(X,y) e QxR | fyO(X, y) = By (X, y)}
={X,y) e Q xR |y=Cgy, forsomek=1,2,...},

whereCgy € {y|(r%'(y) = Br'(y)}. Comparing the above witt5(6)—(5.9), we see
that it suffices to seR; = Q@ and¥;«(-) = C4, While Zg(+) is not necessary.

By Theorem5.2, for such a system, there exists an optimal classical control to
Problem(C).

Let us give some special cases of the above example.

ExampLE 4. In Example3, letg > 0. Then it is easy to see that we can choose
r(y) = 0 (ore, or —arctany + 7/2, etc) andr®(y) = a polynomial ofy (or a
polynomial ofe?, or a trigonometric polynomial of, or In(1+ y?), or,/1 + y2, etc).

REMARK. The trivial case ® = 0 is an exception. In this case, (P8pes not hold
becausdy € R | (r%'(y) = Br'(y)} = R wheng = 0.

Clearly, the system described in Examfleoes not satisfy the Cesari-type con-
dition (S5) in general. Exampl2is just a special case of Exampe which does
not satisfy (S5). The following two examples also do not satisfy condition (S5). Itis
interesting to compare them with Examfile

ExampLE 5. Let @ satisfy (P1)U = [—1, 1]. Consider the following system:

—AY(X) = —y(X) + cosy(X) + u(x), in ,
Ylse = 0.

The cost functional isJ(u(-)) = fg{yz(x) — u?(x)}dx. It is easy to verify that
ay < by <= B =0, thatis,F = {0}. LetY(x) =0. Then

—AY(X) < =Y(X) + cosY(X) + miUnv, in Q.
ve

Thus we can see that (P5) holds (here (RSes not hold). Since (P1)—(P4) hold
obviously, by Theorerb.2, there exists a measuratilé) : 2 — U such that

J@e) = u(‘i)rel;/d J()).
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EXAMPLE 6. LetQ = (—1,1),U =[-1, 1],
—y'(x) =u(x), in Q,
Ylse =0,

1
J()) = / {ly() — M sgnx)|* — u*(x)} dx,
-1

whereM is sufficiently large. In fact, it suffices to takd > 1/2. In this example,
we can see thab(7) holds since

{(X.y) €2 xR |y— Msgnx) =0}
- {(X’ y) e 2 xR | y > ymax(X) ory < ymin(X)}~

On the other hand, (P1)—(P4) obviously hold. Thus, by Theds&tnwe have a
G(-) € %qsuch that

J@e) = u(i)g;/ad Ju)).
Now we turn to proving Theorem.2. Let us first introduce the following lemma.
LEMMA 5.3. LetC be a constant. I € W™P(Q), p > 1, m > 1, then
’p(x) =0, ae {p=CLV1=<|p|=m,

wherep = (pi1, - -+ , pn) is @ann—tuple of nonnegative integers, [p| = Y.\, pi-

In the case wheren = 1, the above result can be found in Morréy| p. 69].
See also Kinderlehrer and StampaccHig, [Chapter 2]. The remaining cases can be
obtained easily by induction.

PROOF OFTHEOREM 5.2 By Theoremi.1, Problem(R) admits an optimal relaxed
pair (y(-),a (") € Wol’p(sz) x Z(Q2,U) (L < p < +00). Moreover, there exists a
¥ (-) € Wy () such that

o 0 P ox ’ u ’ ’

y|asz = 0,

(5.10)

n a a - ) -
-2 % (aj(x)—w(x)> = f,(x, YOO ¥ () — (X, y(x)), in L,

R 9%
Vlse =0,
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and
supps (X) € Uy, a.e.x € Q, (5.11)

whereU, = {w € U|g(w)y (X) — h(w) = max..u (g()¥ (X) —h(®))}, ¥x € Q. By
Lemma3.1and (P3), we see thaf (x, y(x))| < C, a.e.x € Q, for some constant
C > 0. Moreover,| [, g(v)6 (x)(dv)| < maxy [g(v)], a.ex € Q. Consequently
sincea;; (-) € C*(2), by anLP-estimate for the elliptic equations(-) € V\/I () for
anyp € [1, +00). Similarly, ¥ (-) € V\/I P(Q) foranyp e [1, +00).

Denote2 = {x € Q | ¥(x) € F}. By Lemma5.1, we havegy, B, ..., B - - -,
such that? C | J,{x € Q | ¥(X) = B¢}. Denote2y = {x € Q | ¥(X) = B} N Ly,
Then|U, 2« \ 2| = 0. Sincea;; () € CY(Q) andy (1) € WP(Q), we get

Za()—‘”()ew. @, Vi=12...n,
and by Lemmd.3,
. oy .
Zaj(X)a—X(x)=o, aexec2.Vi=12..nk=12 ...
) j

Therefore

— Z (a (x)—'/’(x)) =0, aexe2,Vk=12.... (5.12)

|]l

That s, fy (X, y(X)) B« — fyo(x, y(x)) =0,a.ex € &,k =1,2,.... Therefore, it
follows from (P5) that

2 C (U{x € Qp | YOO = Yﬂu(x)}) U <U{x € Q| YOO = Zﬁu(x)})

| |
Jx € 25, 1 700 < Yonin(X) OF Y(X) > Yinax(X))}
= (U F<1>> U (U F<2>> UFe.
Since

/ g(v)a (X)(dv) € [a, b], (5.13)
U

henceymin(X) < ¥(X) < Ymax(X), a.€. or2. Thus|F?| =0,vk =1,2,....
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On the other hand, for ea¢hsincey(-) € W2P(Q) andY;,, € W2 (), similar
to (5.12, we have

— . i r ﬂ — - i . aYﬂkJ
> o (aj(x) ™ (x)) =-> o (aj(x) 7 (x))

ij=1 ij=1

= (X, Yga () +a= f(x,yx) +a,

aexe Ry ={xe Q| yX) = Y0} Thus, by 6.10, f, 9(v)& (x)(dv) < a,
a.ex € F\. Therefore, by the definition @, we have

supps (x) € {v e Ulg(v) =a}, ae.xeRy.
Similarly,
supps (x) € (v e U|g(v) = b}, ae.xeRY.

Thus we see that for almost alle 2,
g(v) =g(w), Vv, w € suppo(X). (5.14)
On the other handix € Q \ 2, ¥ (X) € F, that s,
g(v) =g(w), VYv,w € Uy. (5.15)

Combining 6.14—(5.15 with (5.11), we see that}.14) holds foralmost alk € Q. By
Proposition4.3, Problem(C) has at least one classical optimal control. We complete
the proof.
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