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DEGREE REDUCTION OF BEZIER CURVES
USING CONSTRAINED CHEBYSHEV POLYNOMIALS
OF THE SECOND KIND
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Abstract

In this paper a constrained Chebyshev polynomial of the second kind3&ittontinuity

is proposed as an error function for degree reductionézi@ curves with £*-constraint

at both endpoints. A sharp upper bound of thg norm for a constrained Chebyshev
polynomial of the second kind wit@*-continuity can be obtained explicitly along with

its coefficients, while those of the constrained Chebyshev polynomial which provides
the bestC!-constrained degree reduction are obtained numerically. The representations
in closed form for the coefficients and the error bound are very useful to the users of
Computer Graphics or CAD/CAM systems. Using the error bound in the closed form, a
simple subdivision scheme f@*-constrained degree reduction within a given tolerance is
presented. As an illustration, our method is applie@teconstrained degree reduction of a
plane Bezier curve, and the numerical result is compared visually to that of the best degree
reduction method.

1. Introduction

Degree reduction of &ier curves is one of the most important problems in CAGD
(Computer Aided Geometric Design) or CAD/CAM. In general, degree reduction
cannot be done exactly, leading to approximation problems. Much effort has been
directed at dealing with these problems in the past twenty years. Most publications
focus on particular aspects of the problems, such as best degree reductiGh [
Ck-constraints{, 2, 10, 14], the L ,-norm [3, 8, 11, 16, 17, 18] and simple algorithms
[12, 19, 21, 22, 23.

Itis well-known that the error function of the best degree reduction in the uniform
(L) norm is the Chebyshev polynomial up to the leading coefficient. But, in many
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actual CAD/CAM systems, it is required][that the approximate curve is continuous
to orderk > 0 at each junction point of consecutive curve segments. In order to
reduce the degree ofeBier curves wittC° C?! or C2-constraints at both endpoints,
constrained Chebyshev polynomials are necessary as the error functions, which ar
the best approximate monic polynomials to zet8, [L4] for each case. In th€®-
constraint case, constrained Chebyshev polynomials can be expressed in terms c
classical Chebyshev polynomials, but the other cases can be obtained numerically
using the (modified) Remes algorithdy R2]. Recently, Kim and Ahn10] proposed
agoodC!-constrained degree reduction method using constrained Jacobi polynomials.
The method gives the coefficients of the polynomials explicitly, and also presents the
L., norm of the polynomials in closed form fewendegree.

In this paper, we propose another method for degree reductiorO#itionstraints
using properly modified Chebyshev polynomials of the second kind. It is not the best
C!-constrained degree reduction and its uniform error bound is also larger than the
L., norm of the constrained Jacobi polynomial w@h-continuity numerically 10].
But our method presents the explicit form of a sharp error bound of theorm for
all degrees along with the coefficients. We also present a simple subdivision scheme
using the uniform error bound of our method in closed form. We apply our method to
the degree reduction of a planeBér curve and compare the numerical result to that
of the best degree reduction method.

The outline of this paper is as follows. In Secti@nwe introduce our method
of C!-constrained degree reduction using constrained Chebyshev polynomials of the
second kind witiC*-continuity. We also present explicitly their uniform error bound
and the control points in &ier form, which are useful in actual CAD/CAM systems.
Using the uniform error bound we give the subdivision scheme fo€theonstrained
degree reduction within a specified tolerance. In SecBiowe give an example of
the C!-constrained degree reduction of a planezBt curve of degree seven using
our method, and compare its result to that of the best degree reduction by plotting the
graphs of the degree reducedzér curves. In Sectiofy we summarise our work.

2. Degree reduction withC*-constraints

Inthis section, we introduce our method for degree reduction @zeB curve with
aC!-constraint at both endpoints. It is well-knowh/] that the besC*- constrained
degree reduction has the constrained Chebyshev polynomialGiitontinuity as
an error function, but the polynomial can be obtained numerically using the Remes
algorithm. A goodC*-constrained degree reduction using the constrained Jacobi
polynomial with C*-continuity [L0] has the error bound explicitly for even degree.
We use constrained Chebyshev polynomial of the second kind @fitbontinuity
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as an error function fo€*-constrained degree reduction, since the polynomial has
explicit representation in terms oeBier coefficients and uniform error bound for all
degrees. The following are some well-known properties for Chebyshev polynomials
of the second kind which we shall call on later in the paper.

PrOPERTY2.1 (Refer to §, 20]). The Chebyshev polynomial of the second kind,
U,(x) = sin((n 4+ 1)0)/sin(6), 6 = arccox, of degreen, has the following proper-
ties:

(@) U,(x) has leading coefficient'2

(b) The zeros ol,(x) arex = cogkz /(n+ 1)),k =1, ..., n, and the largest zero
of U,(x) is cogn/(n + 1)) which is denoted by, in this paper;

(c) 2"U,(x) has the smalledt,, norm on[—1, 1] amongst all monic polynomials
weighted byy/1 — x?;

(d) U,(x) <1//1—x2forx e[-1,1].

(€) Un(x) =Y o o TR((x — 1)/2)%, where

W oan(N+1/2\/n+k+1 2n+1
I =4 .
n—k k n
DerINITION 2.2. We define theconstrained Chebyshev polynomial of the second
kind with C*-continuityfor n > 4 by

tt — DUy o(2un_ot — tn-2)
(Aptn_2)"2

En(H) =

fort € [0, 1], wheremu,_, = cogxr/(n — 1)) is the largest zero df,_»(X).

THEOREM 2.3. The constrained Chebyshev polynomial of the second kindG#ith
continuity E, (t) is a monic polynomial of degrag has double zeros at= 0, 1, and
its uniform norm is bounded by

1

IEnOllLion = 4-1cog-2(r/(n — 1))

(2.2)
In particular, equality holds for even.

PROOF. By Property2.1(a),U,_»(2un_ot —un_») has leading coefficieril i, _,)" 2
so thatE, (t) is a monic polynomial.

By Property2.1(b), U, _»(x) has a zero atpu, _», so thatE,(t) has double zeros at
both endpoints = 0, 1.
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-1

FIGURE 1. Constrained Chebyshev polynomials of the second kind®fitbontinuity, 4~* co$~2(s /(n—
1))En(t), uniformised by the error bound, for4 n < 10, are plotted by dashed lines for odd degnee
and by solid lines for even.

By Property2.1(d), we have

t(1-1

[En(D)] < .
" (4pn—2)""2 \/l — (2ptnot — pn_2)?

forallt € [0, 1]. Since O< u,_» < 1, we get

M- =(1— @~ D) < (12,2 — D) < /1 i 52t — 12

forallt € [0, 1]. Thus

_r 1 1
(4i1n2)"2 4 4-1cog2(w/(n — 1))

IEn(D] <

forallt € [0, 1], and @.1) is satisfied. Particularly, for evem

L1 U@ L
En(1/2) =7 (4n_)"2  4-cos-2(x/(n — 1))

yields that the equality in 1) holds.

As an illustration, we plot the constrained Chebyshev polynomial of the second
kind with C*-continuity, 4-* co$'-?(r/(n — 1)) E, (1), uniformised by the error bound
in Theorem2.3, for 4 < n < 10, in Figurel. As shown in Tablel, we compare
the uniform error bound oE,(t) which is obtainable explicitly with the uniform
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TABLE 1. The uniform error norms of the best degree reduction ®ftitonstraintT.? (t) obtained by
the Remes algorithm, and the uniform error bound of our mefgt) obtained explicitly.

[ degreen  [IC2()llL oy bound of |[En()llL 0.1 |

4 6.2500x 102 6.2500x 102
5 8.9443x 103 1.1049x 102
6 16546x 1073 2.2797x 1073
7 3.4009x 104 5.0117x 104
8 7.3959x 10~° 1.1411x 104
9 16648x 10°° 2.6559x 10°°
10 38340x 10°° 6.2744x 1076
11 89712x 10~ 1.4981x 107
12 21238x 1077 3.6051x 107
13 50724x 1078 8.7277x 1078
14 12196x 10°8 2.1228x 1078
15 29482x 107° 5.1822x 10°°
16 7.1577x 10710 1.2689x 10°°
17 17440x 10710 3.1148x 10710
18 42614x 10712 7.662x 1011
19 10440x 1071 1.8878x 101
20 25628x 1012 4.6581x 1012

norm of the constrained Chebyshev polynomials v@hcontinuity C2(t) of leading
coefficient 1 which are obtained numerically by the Remes algorithfh [ (The
superscript 2 oi€2(t) means double zeros at both endpoirif3 [4].)

Now, using the constrained Chebyshev polynomial of the second kindGwith
continuity E,(t), we describe our method &*-constrained degree reduction of a
Bézier curvef (t) = Y b B"(t) of degreen, whereB"(t) = ("t'(1 —t)" and
b, fori = 0,...,n, are Bernstein polynomials anceBier coefficients (or control
points), respectively.

PROPOSITION2.4. Let f(t) = Zi”:o b B"(t) be the given Bzier curve of degree
having control pointsd,. Then the Bzier curvef (t) of degree(less than or equal
to) n — 1 given by f(t) := f(t) — A"byE,(t) is a degree reduction of (t) with
C!-constraint at both endpoints, and its error norm is bounded by

- [ A"y
O = gn-1cog-2(r/(n — 1))’

1) = FOlliaion = 1Al IEa()lL.

where thenth forward differenceA™, = Y ((—1)'(7)b._; is equal to the leading
coefficient of the polynomidi(t) of degreen.

PrOOF. Since then-th degree polynomiald (t) and A"byE,(t) have the same
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leading coefficientf (t) is a polynomial of degree less than or equahte- 1. The
k-th order derivativeE® (t) = O fork = 0, 1, att = 0, 1, yields thatf © (t) = f®(t)
and f (t) is a degree reduction of(t) with a C!-constraint at both endpoints. The
error bound is easily obtained from Theor@rs.

The following proposition gives the closed form of the control points of the con-
strained Chebyshev polynomials of the second kind \@thcontinuity in Bézier
form, which is needed to calculate(t) as a Bszier curve or a segment of spline in
CAD/CAM systems.

ProOPOSITION2.5. The constrained Chebyshev polynomial of the second kind with
C*-continuity of degrea in Bézier form is given by

n
En(t) =Y 6B,
i=0
wherecy = C¢; = ¢,_1 = C, = Oand

i—1 n-2 n 3/2 (n+k 1)(n f :)(k) ( g — 1) o

= . (2n 3)() 2 :un—Z ’ (22)

PrOOF. By Definition 2.2and Property.1 (e), we haveE, () in a power basis
tt-1) 2ptn ot — ptn1 — 1\
En®) = 7 7)“232 5
-2

t(t—l X s — 1\
= oo () () e
j=0

t(t - l) iy Fn 2 k Mn72 - 1 k=] j+2— ntJ
- 4n-2 k J 2 Hn_2
j=0 k=j

J

for n > 2. Using the transformation from a power basis of degnésto a Bernstein
basis

m mim]
Lout=22 )B'“m

we obtain
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By the equation

tt—1) Zu B"2(t) = u_1B"(t)

i=0 i

S|
~ |~

I
N

we have the Bzier form of the constrained Chebyshev polynomial of the second kind
with C!-continuity

_1n1i1n2n**' Kk e o — 1\
En(t) = = r; 2<j> (MTZ> pitzrBn ). (2.3)
i=1 j=0 k=j |

Thus @.2), fori = 2,...,n — 2, follows from 2.3 and Property2.1 (e), and
Co = C; = C,_1 = G, = Ofollows from the fact thaE,(t) has double zeros at= 0, 1.

The factthat; = ¢,_; = 0 can be also proved by calculatirigy§) as follows:
1 n-2 — o — 1 k _1
Ci= —— l—wn72 _mn-2 - 2-n U o(—pn o) = O,
TP ( 2 ) M2 = R e AT

1 n—-2 n-2 Kk — _1 k=j -
m e S () (gt

n-2

=wzun 2(n-2) = 0.

Using the proposition above we represent the degree redutgiomf f (t) in Bézier
form:

n-1
fty =) BB,
i=0

whereb,,i =0, ..., n— 1, are the BZier coefficients off (t) of degreen — 1.
PROPOSITION2.6. The Bezier coefficients; of f(t) are given by

i |b0—A”boco if i =0,

b = - o
L(b, —Anboci — bil) if i=1...,n—1,

n—I

=2

recursively.

PrOOF. See Kim and Ahn1Q].
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In the practical application, for a given tolerance it is necessary to subdivide the
Bézier curvef (t) of degreen into k pieces in order to approximate each piece by the
lower degree BZier curve within the tolerance. In the following theorem, we show
how many subdivisions are required so that each piecewise degree reduction using ou
method has error less than the given tolerance.

THEOREM2.7. For a given tolerances, the Bézier curvef(t) = >\ b B"(t)
must be subdivided intosegments so that the degree reduction for each segment has
uniform error less tham, wherek is given by

B | Ay ue
k= Rs 4n-1cog-2(m/(n — 1))) —‘ (2:4)

and[x] denotes the smallest integer larger than

PROOF. Since each subdivided segmefritt) = f(t/k+j/k),j=0,...,k—1,
has leading coefficierifL/ k)" A"b,, the uniform error of the degree reduction for each
segment is equal tol/K)"|A"bo| || En(-)[|Lj0.13- IN order to satisfy that the uniform
error bound be less than (2.4) holds by Theoren2.3.

3. Example

In this section, we apply our method to reduce the degree of a plenieB&urve
of degree seven. Let theeBier curve be given by7]

7
ft) =) bB/.
i=0
where theb;’s are (0, 0), (.5, 0), (.3, —1), (1,.25), (1, —.75), (1.7, .25), (1.5, —.5),
(2, —.5), in order, as shown in Figurd. The degree reduction method using a
constrained Chebyshev polynomial of the second kind @itrcontinuity yields the
approximate Bzier curvef (t) of degree six,

6
ft) = f©) — ATboEr(t) = ) BB,

i=0

where A7by = (24.4,64.25) and theb’s are (0, 0), (0.583 0), (0.322 —1.043),
(1, -0.119, (1.678 0.193), (1.417, —0.5), (2., —0.5), in order. The uniform error
bound for the degree reduction is given by

G = FOlliaion < 1(24.4,64.25)][E7()llL.00 ~ 0.0336
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—— given f()
- — - best f*5!(t)
- % - our method f(t)

FIGURE 2. The best degree reduction and our method: the givezieB curvef (t), the best degree
reduction f°*s(t) and our method (t) are plotted by solid lines, dashed lines, and dashed lines with
crosses, respectively. The boxes, triangles and circles are the control points oéeastcBrve, in order.

On the other hand, the best degree reduction by the constrained Chebyshev poly
nomial yields f**{(t) = f(t) — (24.4, 64.25C2(t) = 3.7 , v B°(t), where they’s
are(0, 0), (0.5833330), (0.337096 —1.00389, (1, —0.11875, (1.6629 0.153889,
(1.41667 —0.5), (2., —0.5), in order. We compare the graph of our degree reduction
f (t) to that of f**s{(t) by plotting the Rszier curves and their control points in Figire

Let the error tolerance be given by 0001. By Theoren?.7, the curvef (t) must
be subdivided into two pieces because

B (24.4, 62.5)| Ve B
k= |7<45(cos(7r/6))5 X 0.001) W ~ 1165 =2

By subdividing f (t) att = 1/2 into two Bézier segments as shown in Figuehe
uniform error bound is given by

1 24.4,64.2
— X u ~ 0.000263< 0.001,
27 45 cogr/6)°

and the degree reduction wiit-constraint for each &ier segment is achieved within
the specified tolerance.
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—— given f(t)
- — - first segment
- % - second segment

FIGURE3. Degree reduction using the subdivision scheme: the degree reductions using ourEéthod

for the first and second segments are plotted by dashed lines and dashed lines with crosses, respectivel
The circles and boxes are the control points of the degree reduction for each subdigziensggment,

in order.

4. Comments

In this paper we presented a method for degree reductiorenieBcurves with
the C*-constraint at both endpoints having the explicit form of the uniform error
bound. The constrained Chebyshev polynomial of the second kind3Attontinuity
E,(t) proposed in this paper has the minimum, error bound among the monic
polynomials which have zeros of multiplicity two at both endpoints 0, 1, and for
which the uniform error bounds are known explicitly. Evergf(t) is not the best
degree reduction with &*-constraint and its error bound is larger than that of the
constrained Jacobi polynomial wit@!-continuity proposed by Kim and Ahri{],
it is more useful than those polynomials since no numerical calculations are needed
That is to say, the &ier coefficients and the uniform error bound=ft) in explicit
form can be obtained for any degree. We also gave a simple subdivision scheme an
the numerical results for an example using our degree reduction method.
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