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DEGREE REDUCTION OF B ÉZIER CURVES
USING CONSTRAINED CHEBYSHEV POLYNOMIALS

OF THE SECOND KIND
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Abstract

In this paper a constrained Chebyshev polynomial of the second kind withC1-continuity
is proposed as an error function for degree reduction of Bézier curves with aC1-constraint
at both endpoints. A sharp upper bound of theL∞ norm for a constrained Chebyshev
polynomial of the second kind withC1-continuity can be obtained explicitly along with
its coefficients, while those of the constrained Chebyshev polynomial which provides
the bestC1-constrained degree reduction are obtained numerically. The representations
in closed form for the coefficients and the error bound are very useful to the users of
Computer Graphics or CAD/CAM systems. Using the error bound in the closed form, a
simple subdivision scheme forC1-constrained degree reduction within a given tolerance is
presented. As an illustration, our method is applied toC1-constrained degree reduction of a
plane B́ezier curve, and the numerical result is compared visually to that of the best degree
reduction method.

1. Introduction

Degree reduction of B´ezier curves is one of the most important problems in CAGD
(Computer Aided Geometric Design) or CAD/CAM. In general, degree reduction
cannot be done exactly, leading to approximation problems. Much effort has been
directed at dealing with these problems in the past twenty years. Most publications
focus on particular aspects of the problems, such as best degree reduction [7, 13],
Ck-constraints [1, 2, 10, 14], the L p-norm [3, 8, 11, 16, 17, 18] and simple algorithms
[12, 19, 21, 22, 23].

It is well-known that the error function of the best degree reduction in the uniform
(L∞) norm is the Chebyshev polynomial up to the leading coefficient. But, in many
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actual CAD/CAM systems, it is required [2] that the approximate curve is continuous
to orderk ≥ 0 at each junction point of consecutive curve segments. In order to
reduce the degree of B´ezier curves withC0, C1 or C2-constraints at both endpoints,
constrained Chebyshev polynomials are necessary as the error functions, which are
the best approximate monic polynomials to zero [13, 14] for each case. In theC0-
constraint case, constrained Chebyshev polynomials can be expressed in terms of
classical Chebyshev polynomials, but the other cases can be obtained numerically
using the (modified) Remes algorithm [4, 22]. Recently, Kim and Ahn [10] proposed
a goodC1-constraineddegree reduction method using constrainedJacobi polynomials.
The method gives the coefficients of the polynomials explicitly, and also presents the
L∞ norm of the polynomials in closed form forevendegree.

In this paper, we propose another method for degree reduction withC1-constraints
using properly modified Chebyshev polynomials of the second kind. It is not the best
C1-constrained degree reduction and its uniform error bound is also larger than the
L∞ norm of the constrained Jacobi polynomial withC1-continuity numerically [10].
But our method presents the explicit form of a sharp error bound of theL∞ norm for
all degrees along with the coefficients. We also present a simple subdivision scheme
using the uniform error bound of our method in closed form. We apply our method to
the degree reduction of a plane B´ezier curve and compare the numerical result to that
of the best degree reduction method.

The outline of this paper is as follows. In Section2, we introduce our method
of C1-constrained degree reduction using constrained Chebyshev polynomials of the
second kind withC1-continuity. We also present explicitly their uniform error bound
and the control points in B´ezier form, which are useful in actual CAD/CAM systems.
Using the uniform error bound we give the subdivision scheme for theC1-constrained
degree reduction within a specified tolerance. In Section3, we give an example of
the C1-constrained degree reduction of a plane B´ezier curve of degree seven using
our method, and compare its result to that of the best degree reduction by plotting the
graphs of the degree reduced B´ezier curves. In Section4, we summarise our work.

2. Degree reduction withC1-constraints

In this section, we introduce our method for degree reduction of a B´ezier curve with
a C1-constraint at both endpoints. It is well-known [14] that the bestC1- constrained
degree reduction has the constrained Chebyshev polynomial withC1-continuity as
an error function, but the polynomial can be obtained numerically using the Remes
algorithm. A goodC1-constrained degree reduction using the constrained Jacobi
polynomial withC1-continuity [10] has the error bound explicitly for even degree.
We use constrained Chebyshev polynomial of the second kind withC1-continuity
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as an error function forC1-constrained degree reduction, since the polynomial has
explicit representation in terms of B´ezier coefficients and uniform error bound for all
degrees. The following are some well-known properties for Chebyshev polynomials
of the second kind which we shall call on later in the paper.

PROPERTY2.1 (Refer to [6, 20]). The Chebyshev polynomial of the second kind,
Un.x/ = sin..n + 1/�/= sin.�/, � = arccosx, of degreen, has the following proper-
ties:

(a) Un.x/ has leading coefficient 2n;
(b) The zeros ofUn.x/ arex = cos.k³=.n + 1//, k = 1; : : : ;n, and the largest zero

of Un.x/ is cos.³=.n + 1// which is denoted by¼n in this paper;
(c) 2−nUn.x/ has the smallestL∞ norm on[−1;1] amongst all monic polynomials

weighted by
√

1 − x2;
(d) Un.x/ ≤ 1=

√
1 − x2 for x ∈ [−1;1].

(e) Un.x/ = ∑n
k=00

n
k ..x − 1/=2/k, where

0n
k = 4n

(
n + 1=2

n − k

)(
n + k + 1

k

)/(
2n + 1

n

)
:

DEFINITION 2.2. We define theconstrained Chebyshev polynomial of the second
kind withC1-continuityfor n ≥ 4 by

En.t/ = t .t − 1/Un−2.2¼n−2t − ¼n−2/

.4¼n−2/
n−2

for t ∈ [0;1], wheremun−2 = cos.³=.n − 1// is the largest zero ofUn−2.x/.

THEOREM 2.3. The constrained Chebyshev polynomial of the second kind withC1-
continuityEn.t/ is a monic polynomial of degreen, has double zeros att = 0;1, and
its uniform norm is bounded by

‖En.·/‖L∞[0;1] ≤ 1

4n−1 cosn−2.³=.n − 1//
: (2.1)

In particular, equality holds for evenn.

PROOF. By Property2.1(a),Un−2.2¼n−2t−¼n−2/has leading coefficient.4¼n−2/
n−2

so thatEn.t/ is a monic polynomial.
By Property2.1(b),Un−2.x/ has a zero at±¼n−2, so thatEn.t/ has double zeros at

both endpointst = 0;1.
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FIGURE1. Constrained Chebyshev polynomials of the second kind withC1-continuity, 4n−1 cosn−2.³=.n−
1//En.t/, uniformised by the error bound, for 4≤ n ≤ 10, are plotted by dashed lines for odd degreen
and by solid lines for evenn.

By Property2.1(d), we have

|En.t/| ≤ 1

.4¼n−2/
n−2

t .1 − t/√
1 − .2¼n−2t − ¼n−2/

2
;

for all t ∈ [0;1]. Since 0< ¼n−2 < 1, we get

4t .1 − t/ = .1 − .2t − 1/2/ ≤ .1 − ¼2
n−2.2t − 1/2/ ≤

√
1 − ¼2

n−2.2t − 1/2

for all t ∈ [0;1]. Thus

|En.t/| ≤ 1

.4¼n−2/
n−2

· 1

4
= 1

4n−1 cosn−2.³=.n − 1//

for all t ∈ [0;1], and (2.1) is satisfied. Particularly, for evenn,

En.1=2/ = 1

4

Un−2.0/

.4¼n−2/n−2
= 1

4n−1 cosn−2.³=.n − 1//

yields that the equality in (2.1) holds.

As an illustration, we plot the constrained Chebyshev polynomial of the second
kind withC1-continuity, 4n−1 cosn−2.³=.n − 1//En.t/, uniformised by the error bound
in Theorem2.3, for 4 ≤ n ≤ 10, in Figure1. As shown in Table1, we compare
the uniform error bound ofEn.t/ which is obtainable explicitly with the uniform
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TABLE 1. The uniform error norms of the best degree reduction withC1-constraintT .2/
n .t/ obtained by

the Remes algorithm, and the uniform error bound of our methodEn.t/ obtained explicitly.

degreen ‖C2
n.·/‖L∞[0;1] bound of‖En.·/‖L∞[0;1]

4 6:2500× 10−2 6:2500× 10−2

5 8:9443× 10−3 1:1049× 10−2

6 1:6546× 10−3 2:2797× 10−3

7 3:4009× 10−4 5:0117× 10−4

8 7:3959× 10−5 1:1411× 10−4

9 1:6648× 10−5 2:6559× 10−5

10 3:8340× 10−6 6:2744× 10−6

11 8:9712× 10−7 1:4981× 10−6

12 2:1238× 10−7 3:6051× 10−7

13 5:0724× 10−8 8:7277× 10−8

14 1:2196× 10−8 2:1228× 10−8

15 2:9482× 10−9 5:1822× 10−9

16 7:1577× 10−10 1:2689× 10−9

17 1:7440× 10−10 3:1148× 10−10

18 4:2614× 10−11 7:662× 10−11

19 1:0440× 10−11 1:8878× 10−11

20 2:5628× 10−12 4:6581× 10−12

norm of the constrained Chebyshev polynomials withC1-continuityC2
n.t/ of leading

coefficient 1 which are obtained numerically by the Remes algorithm [14]. (The
superscript 2 onC2

n.t/ means double zeros at both endpoints [10, 14].)
Now, using the constrained Chebyshev polynomial of the second kind withC1-

continuity En.t/, we describe our method ofC1-constrained degree reduction of a
Bézier curve f .t/ = ∑n

i =0 bi Bn
i .t/ of degreen, whereBn

i .t/ = (n
i

)
t i .1 − t/n−i and

bi , for i = 0; : : : ;n, are Bernstein polynomials and B´ezier coefficients (or control
points), respectively.

PROPOSITION2.4. Let f .t/ = ∑n
i =0 bi Bn

i .t/ be the given B́ezier curve of degreen
having control pointsbi . Then the B́ezier curvef̄ .t/ of degree(less than or equal
to) n − 1 given by f̄ .t/ := f .t/ − 1nb0En.t/ is a degree reduction off .t/ with
C1-constraint at both endpoints, and its error norm is bounded by

‖ f .·/ − f̄ .·/‖L∞[0;1] = |1nb0| ‖En.·/‖L∞[0;1] ≤ |1nb0|
4n−1 cosn−2.³=.n − 1//

;

where thenth forward difference1nb0 = ∑n
i =0.−1/i

(n
i

)
bn−i is equal to the leading

coefficient of the polynomialf .t/ of degreen.

PROOF. Since then-th degree polynomialsf .t/ and1nb0En.t/ have the same
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leading coefficient,f̄ .t/ is a polynomial of degree less than or equal ton − 1. The
k-th order derivativeE.k/

n .t/ = 0 for k = 0;1, att = 0;1, yields thatf̄ .k/.t/ = f .k/.t/
and f̄ .t/ is a degree reduction off .t/ with a C1-constraint at both endpoints. The
error bound is easily obtained from Theorem2.3.

The following proposition gives the closed form of the control points of the con-
strained Chebyshev polynomials of the second kind withC1-continuity in Bézier
form, which is needed to calculatēf .t/ as a Bézier curve or a segment of spline in
CAD/CAM systems.

PROPOSITION2.5. The constrained Chebyshev polynomial of the second kind with
C1-continuity of degreen in Bézier form is given by

En.t/ =
n∑

i =0

ci Bn
i .t/;

wherec0 = c1 = cn−1 = cn = 0 and

ci =
i −1∑
j =0

n−2∑
k= j

−
(

n−3=2
n−2−k

)(
n+k−1

k

)(
n−2− j
i −1− j

)(
k
j

)
(2n−3

n−2

)(n
i

) (−¼n−2 − 1

2

)k− j

¼
j +2−n
n−2 ; (2.2)

i = 2; : : : ;n − 2.

PROOF. By Definition 2.2and Property2.1(e), we haveEn.t/ in a power basis

En.t/ = t .t − 1/

.4¼n−2/n−2

n−2∑
k=0

0n−2
k

(
2¼n−2t − ¼n−1 − 1

2

)k

= t .t − 1/

.4¼n−2/
n−2

n−2∑
k=0

k∑
j =0

0n−2
k

(
k

j

)(−¼n−2 − 1

2

)k− j

¼
j
n−2t j

= t .t − 1/

4n−2

n−2∑
j =0

n−2∑
k= j

0n−2
k

(
k

j

) (−¼n−2 − 1

2

)k− j

¼
j +2−n
n−2 t j ;

for n ≥ 2. Using the transformation from a power basis of degreem into a Bernstein
basis

m∑
j =0

v j t
j =

m∑
i =0

i∑
j =0

(
m− j
i − j

)
(m

i

) v j Bm
i .t/;

we obtain

En.t/ = t .t − 1/

4n−2

n−2∑
i =0

i∑
j =0

n−2∑
k= j

(
n−2− j

i − j

)
(

n−2
i

) 0n−2
k

(
k

j

)(−¼n−2 − 1

2

)k− j

¼
j +2−n
n−2 Bn−2

i .t/:
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By the equation

t .t − 1/
n−2∑
i =0

ui Bn−2
i .t/ = −

n−1∑
i =1

(
n−2
i −1

)
(n

i

) ui −1Bn
i .t/

we have the B´ezier form of the constrained Chebyshev polynomial of the second kind
with C1-continuity

En.t/ = −1

4n−2

n−1∑
i =1

i −1∑
j =0

n−2∑
k= j

(n−2− j
i −1− j

)
(n

i

) 0n−2
k

(
k

j

)(−¼n−2 − 1

2

)k− j

¼
j +2−n
n−2 Bn

i .t/: (2.3)

Thus (2.2), for i = 2; : : : ;n − 2, follows from (2.3) and Property2.1 (e), and
c0 = c1 = cn−1 = cn = 0 follows from the fact thatEn.t/ has double zeros att = 0;1.

The fact thatc1 = cn−1 = 0 can be also proved by calculating (2.3) as follows:

c1 = −1

n4n−2

n−2∑
k=0

0n−2
k

(−¼n−2 − 1

2

)k

¼2−n
n−2 = −1

n.4¼n−2/n−2
Un−2.−¼n−2/ = 0;

cn−1 = −1

n4n−2

n−2∑
j =0

n−2∑
k= j

0n−2
k

(
k

j

)(−¼n−2 − 1

2

)k− j

¼
j +2−n
n−2

= −1

n.4¼n−2/n−2

n−2∑
k=0

Un−2.¼n−2/ = 0:

Using the proposition above we represent the degree reductionf̄ .t/ of f .t/ in Bézier
form:

f̄ .t/ =
n−1∑
i =0

b̄i Bn−1
i .t/;

whereb̄i , i = 0; : : : ;n − 1, are the B´ezier coefficients off̄ .t/ of degreen − 1.

PROPOSITION2.6. The B́ezier coefficients̄bi of f̄ .t/ are given by

b̄i =



b0 − 1nb0 c0 if i = 0;
n

n − i

(
bi −1nb0 ci − i

n
b̄i −1

)
if i = 1; : : : ;n − 1;

recursively.

PROOF. See Kim and Ahn [10].
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In the practical application, for a given tolerance it is necessary to subdivide the
Bézier curvef .t/ of degreen into k pieces in order to approximate each piece by the
lower degree B´ezier curve within the tolerance. In the following theorem, we show
how many subdivisions are required so that each piecewise degree reduction using our
method has error less than the given tolerance.

THEOREM 2.7. For a given tolerance", the B́ezier curve f .t/ = ∑n
i =0 bi Bn

i .t/
must be subdivided intok segments so that the degree reduction for each segment has
uniform error less than", wherek is given by

k =
⌈( |1nb0|

" 4n−1 cosn−2.³=.n − 1//

)1=n
⌉

(2.4)

anddxe denotes the smallest integer larger thanx.

PROOF. Since each subdivided segmentf j .t/ = f .t=k + j=k/, j = 0; : : : ; k − 1,
has leading coefficient.1=k/n1nb0, the uniform error of the degree reduction for each
segment is equal to.1=k/n|1nb0|‖En.·/‖L∞[0;1]. In order to satisfy that the uniform
error bound be less than", (2.4) holds by Theorem2.3.

3. Example

In this section, we apply our method to reduce the degree of a plane B´ezier curve
of degree seven. Let the B´ezier curve be given by [7]

f .t/ =
7∑

i =0

bi B7
i .t/;

where thebi ’s are.0;0/, .:5;0/, .:3;−1/, .1; :25/, .1;−:75/, .1:7; :25/, .1:5;−:5/,
.2;−:5/, in order, as shown in Figure2. The degree reduction method using a
constrained Chebyshev polynomial of the second kind withC1-continuity yields the
approximate B´ezier curvef̄ .t/ of degree six,

f̄ .t/ = f .t/ −17b0E7.t/ =
6∑

i =0

b̄i B6
i .t/;

where17b0 = .24:4;64:25/ and theb̄i ’s are .0;0/, .0:583;0/, .0:322;−1:043/,
.1;−0:119/, .1:678;0:193/, .1:417;−0:5/, .2:;−0:5/, in order. The uniform error
bound for the degree reduction is given by

‖ f .·/ − f̄ .·/‖L∞[0;1] ≤ |.24:4;64:25/|‖E7.·/‖L∞[0;1] ≈ 0:0336:
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FIGURE 2. The best degree reduction and our method: the given Bézier curve f .t/, the best degree
reduction f̄ best.t/ and our methodf̄ .t/ are plotted by solid lines, dashed lines, and dashed lines with
crosses, respectively. The boxes, triangles and circles are the control points of each Bézier curve, in order.

On the other hand, the best degree reduction by the constrained Chebyshev poly-
nomial yields f̄ best.t/ = f .t/ − .24:4;64:25/C2

7.t/ = ∑6
i =0 vi B6

i .t/, where thevi ’s
are.0;0/, .0:583333;0/, .0:337096;−1:00389/, .1;−0:11875/, .1:6629;0:153889/,
.1:41667;−0:5/, .2:;−0:5/, in order. We compare the graph of our degree reduction
f̄ .t/ to that of f̄ best.t/ by plotting the Bézier curves and their control points in Figure2.

Let the error tolerance" be given by 0:001. By Theorem2.7, the curvef .t/ must
be subdivided into two pieces because

k =
⌈( |.24:4;62:5/|

46.cos.³=6//5 × 0:001

)1=7
⌉

≈ d1:65e = 2:

By subdividing f .t/ at t = 1=2 into two Bézier segments as shown in Figure3, the
uniform error bound is given by

1

27
× |.24:4;64:25/|

46 cos.³=6/5
≈ 0:000263< 0:001;

and the degree reductionwithC1-constraint for each B´ezier segment is achievedwithin
the specified tolerance.
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FIGURE3. Degree reduction using the subdivision scheme: the degree reductions using our methodEn.t/
for the first and second segments are plotted by dashed lines and dashed lines with crosses, respectively.
The circles and boxes are the control points of the degree reduction for each subdivision Bézier segment,
in order.

4. Comments

In this paper we presented a method for degree reduction of B´ezier curves with
the C1-constraint at both endpoints having the explicit form of the uniform error
bound. The constrained Chebyshev polynomial of the second kind withC1-continuity
En.t/ proposed in this paper has the minimumL∞ error bound among the monic
polynomials which have zeros of multiplicity two at both endpointst = 0;1, and for
which the uniform error bounds are known explicitly. Even ifEn.t/ is not the best
degree reduction with aC1-constraint and its error bound is larger than that of the
constrained Jacobi polynomial withC1-continuity proposed by Kim and Ahn [10],
it is more useful than those polynomials since no numerical calculations are needed.
That is to say, the B´ezier coefficients and the uniform error bound ofEn.t/ in explicit
form can be obtained for any degree. We also gave a simple subdivision scheme and
the numerical results for an example using our degree reduction method.
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