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PERIODIC SOLUTIONS OF A TWO-SPECIES RATIO-DEPENDENT
PREDATOR-PREY SYSTEM WITH TIME DELAY IN A
TWO-PATCH ENVIRONMENT
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Abstract

By using the continuation theorem of coincidence degree theory, a sufficient condition
is obtained for the existence of a positive periodic solution of a predator-prey diffusion
system.

1. Introduction

Xu and Chen 4] considered a two-species ratio-dependent predator-prey diffusion
model with time delay given by

Ay3Xs(l)
m) + D10e() — (b)),

X5 (1) = Xo(t) (8p — @poXa(t)) + Da(X1(t) — Xo(1)), (1.1)

t —
Xg(t) = Xa(t) <—a3 + mxg(tail);l)(+ x:()t — 1’)) '

Xy () = X (1) (al —ap X (t) —

wherex; (t) represents the prey population in tHgatchj = 1, 2, andxs(t) represents
the predator population. Hete> Ois a constant delay due to gestatibnis a positive
constant denoting the dispersal rate; 1, 2, anda; (i = 1, 2, 3), a1, 13, &, az; and
m are positive constants.

In Xu and Chen 4], the local and global asymptotical stability of the positive
equilibrium of the system1(1) were studied. For an ecological interpretation of
system (.1), we refer to fi] and references cited therein.
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Realistic models require the inclusion of the effect of change in the environment.
This motivates us to consider the following two species predator-prey diffusion model
with time delay:

ay3(t) X3 (1) )

Xy (1) = X () (al(t) — a1 ()X () — M%) a0
+ D1i(t) (X (1) — X1 (1)),

X5 (1) = Xo(t) (B2 (t) — 8pa(t)Xa(t)) + Do (t) (X1 (t) — Xo(t)),

o - ag ()X (t — 1)
X5(t) = Xa(t) ( %M+ Ot — o) Fxa(t = f)> '

(1.2)

In addition, the effects of a periodically changing environment are important for
evolutionary theory as the selective forces on systems in a fluctuating environment
differ from those in a stable environment. Therefore the assumptions of periodicity
of the parameters are a way of incorporating the periodicity of the environment (for
example, seasonal changes, food supplies, mating habits, and so on), which leads us
assume thab; (i = 1, 2),a (i = 1, 2, 3),a13, a13, &, a3; andm are strictly positive
continuousw-periodic functions.

As pointed out by Freedman and W1 pnd Kuang 8], it is of interest to study
the global existence of periodic solutions for systems representing predator-prey or
competition systems. In this paper, our aim is to use the continuation theorem of
coincidence degree theory which was proposed2inby Gaines and Mawhin to
establish the existence of at least one positivperiodic solution withw > 0 of
system (.2).

Let X, Z be real Banach spacek, : domL c X — Z a Fredholm mapping
of index zero andP : X — X, Q : Z — Z continuous projectors such that
ImP =KerL,KerQ=ImL, X =KerL®KerPandZ =ImL&Im Q. Denote by
Ky :ImL — KerPndomL the generalisedinverse (bj and byJ : ImQ — KerL
an isomorphism of In®Q onto KerL.

For convenience we introduce a continuation theoramdge 40] as follows.

LEmMmMA 1.1. LetQ2 C X be an open bounded set ahld: X — Z be a continuous
operator which is_-compactor2 (thatis,QN : @ — Z andK,(I —Q)N : Q — Y
are compact Assume

(@) foreachir € (0,1),x € 92 NdomL, Lx # ANX;
(b) for eachx € 92 N KerL, QNx # 0;

(c) dedJQNx Q@NKerL,0} # 0.
ThenLx = Nx has at least one solution 2.
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2. Main result

For the sake of convenience we will use the notation

_ 1 w )
f =—/ ft)dt, f'= min f(t) and fM™ = max f(t),
w Jo te[0,w] te[0,w]
wheref is a strictly positive continuous-periodic function.
We now state our fundamental theorem about the existence of a pesipeeiodic
solution of system1.2).

THEOREM 2.1. Assume the following
(i) (a—Dyp' >af/m,
(") aI31 > a_31
Then systeriL.2) has at least one positive-periodic solution.

PrOOF Let

ag3(t)es® g (t)ene
Fat.s) = m(t)es® + ene and Fa(t, s) = m(t)eys(s—0) 4 gnis—0

Consider the system

yi(t) =ay(t) — Di(t) — apa(t)e"™ — Fy(t, t) 4+ Dy(t)e?V 10,
Yo(t) = a(t) — Da(t) — aps(t)e”? + Dy(t)e® %0, (2.1)
ya(t) = —ag(t) + Fa(t, 1),

wheret, D; (i = 1,2),a (i = 1,2, 3), ai1, &43, &, a3; andm are the same as
those in systeml(2). It is easy to see that if the syster®.1) has anw-periodic
solution(y; (t), y;(t), y3 (1)), then(eiVe%®0e¥%®)T is a positivew-periodic solution
of system (..2). Therefore for {.2) to have at least one positive-periodic solution it
is sufficientthat?.1) has at least one-periodic solution. Inorderto apply Lemrial
to system2.1), we take

X = {10, y2(1), ys(t)T € CHR, R®) : yi(t +w) = yi (1), for i =1,2,3},
Z={(z®),nt),zt) eC(R,R):z({t+w) =z(), fori =12, 3}

and

Tl —
[y (), Y2 (), ys() | = max y:(H)] + max|yz(t)] + max |ys(t)].
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With this norm,X andZ are Banach spaces. Let

Y1 [a,(t) — Dy(t) — ays(t)e"® — Fy(t, t) + Dy(t)err®n®
Ny |= ay(t) — Dy(t) — apy(t)e2® + Dy(t)e®-%®
| Y3 ] | —ag(t) + Fu(t, 1)

Vi [y; A (1/w) [y ya(t) dt A
LIva|=|Y]|. Ply|=|@/w [, v(dt |, Yo | € X,

R | Y3 Y3 (L/w) [, ys(t) dt Y3
4] (1/w) fow z () dt r4)

Q L | = (1/21)) fow (1) dt s | eZ.
Z3 (1/21)) fow Z3(t) dt Z3

We note that Ket. = R®,
Zl w
| e Z,/ zt)dt=0, fori =123
0

Z;
ImL = Z
Z3 Z3

is closed inZ and dim KerL = codimImL = 3. Hencel is a Fredholm mapping of
index 0. Furthermore, the generalised inversel(pK, : ImL — KerP N domL
has the form

t 1 w t Zl
Ko (2) =/ z(s)ds——/ / z(s)dsdt for z=|2| € Z.
0 wJo Jo

Z3

ThusQN: X — Z,

Y1 L[5 [aa(t) — Dy(t) — ag(t)e”® — Fy(t, t) + Dy(t)e O] dt
Y2 | = L[5 [a2(t) — Da(t) — ap(t)e”V + D,(t)en %0 ] dt .
Y3 < fo [—as(t) + Fy(t, )] dt

Kp(l — QN : X — X and

Y1 fc: [a1(S) — Di(S) — &u1(5)e® — Fy(s, ) + Dy(5)e29 %] ds
Yo | = fot [az(S) — Dy(S) — ay(s)e2® + Dz(s)ey1<s)—yz<s)] ds
¥s Jyl—as(s) + Fa(s, 9)] ds
% ow fot[al(s) — D1(S) —a11(3)e"® — Fy (S, ) + Dy (s5)e2® %] ds df
_ % ow f(: [az(s) — DZ(S) _azz(S)GVZ(S) + Dz(s)eyl(s%yz(s)] ds dt
L[ [s[~as(s)+ Fa(s, 9)] ds dt
L Ou’[al(t) — Dy (t) —ay, (H)en® — Fy(t, 1) + Dy (t)e®n0] dt

- (E - _> [ o' [32(t) — Dy (t) — apa(t)e” + Dy(t) eV 0] dt } :
v [—as(t) + Fa(t, )] dt
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ClearlyQN andK (I — Q)N are continuous by the Lebesgue theorem and moreover
QN(R) andK ,(I — Q)N(R) are relatively compact for any open bounded®et X.
HenceN is L —compact ort2 for any open bounded s& c X.

Corresponding to the operator equatlox = ANX, A € (0, 1), we have

yi(t) = A[au(t) — Da(t) — an(t)e" — Fy(t, t) + Dy(t)e V],
Yo(t) = A [ax(t) — Da(t) — app(t)e?V + Dy(t)e O %20] (2.2)
Ya(t) = A[—as(t) + Fa(t, O)].

Suppose thaty:(t), y»(t), ys(t))T € X is a solution of system2(2) for a certain
A € (0,1). By integrating £.2) over the interval0, w], we obtain

/ [a1(t) — Dyi(t) — @y (1)@ — Fy(t, t) + Dy(t)e> VO] dt =0,
0

/ [az(t) — Da(t) — app(t)e”V + Dz(t)eyl(t)ﬁZ(t)] dt=0
0
and
/ [—as(t) + Fp(t, t)]dt = 0.
0
Thus

w

/ [au (D) + Fy(t, )] dt = (&g — Dpw + / D, (t)e2V 0 dt, (2.3)
0 0

w

/ a(t)e”?Vdt = (@, — Dy)w + / D, (t)en®—%0 dt (2.4)
0 0

and
f Fo(t, t) dt = Fw. (2.5)
0

From 2.2—(2.5), it follows that
/Ow ly, ()| dt < A/Ow lay(t) — Di(t) — aya ()" — Fy(t, t) + Dy (t)e?V 1| dt
< (& — Dpw + /Ow[all(t)eyl(“ + Fa(t, t)] dt
+ /0 w Dy (t)e” V10 dt
=2(a — Dpw + /O w D, (1) 00 g, (2.6)

/ ly,(H)]dt < A/ |az(t) — Da(t) — apa(t)e”" + Dy(t)e* V%] dt
0 0
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w

< (@ — Dz)w+/ azz(t)eyz<‘>dt+/ D,(t)en %0 dt
0 0

=2(a, — Dy)w + 2/ D, (t)e® %0 dt (2.7
0
and
/lyg(t)l dt < A/ | —ag(t)+Fy(t, )| dt <€3w+/ Fo(t,t) dt =2aw. (2.8)
0 0 0

Multiplying the first equation and the second equation of syste®) py e and
e”® respectively, and integrating both o\ér w], we obtain

/eyl(t)Yi(t) dt =/ [(@1(t) — Dy(t))e"V —ay (H)eV — Fy(t, t)e"V + Dy(t)e” ] dt
0 0
and
/ e”Vyyt dt = / [(@2(t) — Dy(1)€"" — ap(t)e™ ¥ + Dy(H)e" V] dt.
0 0

That is,
/all(t)e2y1<‘>dt+/ F.(t, t)en® dt
0 0

= /w(al(t) — Dl(t))eyl(”dtJr/w D, (t)e”" dt (2.9)
0 0
and
/ azz(t)e2y2<‘>dt=/ (az(t)—Dz(t))eV2<‘>dt+/ D,(t)e"® dt. (2.10)
0 0 0

Equation 2.9) implies that

a![l\/ov eZY1(t) dt < (al o Dl)M A e)’1(t) dt + D:'lvl A eyz(t) dt,

from which, using the inequalitf [;" en® dt)2 <w [y e®dt, we obtain

| w 2 w w
% (/ e}ﬁ(t) dt) < (al o Dl)M / e)’1(t) dt + D:'lvl / eyz(t) dt
w 0 0 0
|

w | DM w 1/2
2% / eyl(t) dt < [(al _ D]_)M + [(al o Dl)M]Z + 4a11—1 / e)’z(t) dt] ,
0 w 0

w

Thus

from which, using the inequality

@+b? <a’?4pb%?, fora>0 andb> 0, (2.11)
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it follows that

| w | M w 1/2
%/ eV dt < (@ — DYM +,/ 2uDi (/ e dt) :
w Jo w 0

A similar argument to4.12) implies from .10 that

| w | M w 1/2
% / ey2(t) dt < (az _ DZ)M + @ (/ e)ﬁ(t) dt) .
w Jo V w 0

Substituting 2.13 into (2.12, we obtain

| w
%/ eyl(t) dt < (al — Dl)M
0

w

|a.DM | (@, — D)M [a,,D) v
" 1D | (& | 2w n i) $ (/ eyl(t)dt>
w ) w8y 0

from which, using 2.11), it follows that

| w
%/ eyl(t)dt <(a1 — Dl)M
0

w

~
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(2.12)

(2.13)

1/2
2

a . DM . a .DM w 1/4
+ 11| : [(az — Dz)M]l/2 + 2= (/ eyl(“dt>
&) V w 0

Therefore there exists a positive constansuch that

| et <o
0

(2.14)

Substituting 2.14) into (2.13 implies that there exists a positive constansuch that

| et <o
0

(2.15)

Chooset; € [0, w], i = 1,2, such thaty; () = minp,, Y (), i =1,2. Thenitis

clear thaty/(t) = 0,i =1, 2. In view of this and systen?(2), we obtain

ay(ty) — Da(ty) — an(t)e"™ — Fy(ty, ty) + Dy(tp)e?@ % =0

and

A (tr) — Da(ty) — a(tr)€”2® + Dy(ty)en @%@ = 0.

(2.16)

(2.17)
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Thus

a1 > ay(t)e"™ = ay(ty) — Di(ty) — Fu(ty, ty) 4+ Dy(ty) e
> (8, — Dy)' — apy/m
and
aye”® > a5(1)e" " = ay(t;) — Da(ty) + Da(tp)e" @ %™ > (3, — Dp)'. (2.18)

Therefore

_ I _ aM | o |
yl(tl) > In (al Dl;M a13/m s yz(tz) > 1In (aza# (219)

11 22

Substituting 2.14), (2.15 and ¢.19 into (2.6) and @.7), we obtain

Yy ———~ 2D} poay) N
/0 Vil dt < 2@ —Dow + P S d (220)
and
v — 2D p,al
[ onat < =D + 2 2 g, (2.21)

Equations 2.14) and .15 imply that there exist two points, n € (0, w) such that

Y1(§) < In(pr/w),  Y2(n) < In(pz/w). (2.22)

In view of this and 2.19, we have

D) —aM/m
V()] < max“ln& ,‘In @ — Dy — a/m H (2.23)
w asy
and
_ |
ly2(n)] < maXHIn P2 ‘In M } : (2.24)
w ayy
Sincevt € R

1O < [y(§)] +/ lyi(®)lds and |y(1)] < [y2(n)] +/ ly2(s)1 ds,
0 0

from (2.20, (2.21) and .23, we obtain

— D) —aM/m
V(O] < max“m& ,||n (a = Do) — 8,/ |}+dlé R,
w ap
and
— D |
ly2(D)| < max“ln pz ,‘In% }+d2 LR,
w 22
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Equation @.5) implies that there exists a poitjt € (0, w) such that

F+1,t54+17) =2
Thatis,am(t; + 7)€% = (ag(t; + v) — @)e”®. Hence

() —as
m(t)as

a.3:|_(t§< + T) — a. In
m(t; + 7)as

lya(t)| = + Iy1(t3)] < max

max +R. (2.25)

Sincevt € R, |ys(t)| < |ys(t)| + f; |y5(s)| ds, from this and 2.8), we obtain

() —as

R, + 2a;w £ R,.
moa, ||t eew =

lys(t)| < max |in

t[Ou]

ClearlyR (i =1, 2, 3) are independent of. DenoteM = R; + R, + R; + Ry; here
Ry is taken sulfficiently large such that

a; — Dy — (ag3/m
2max{||n81|, n & 1)_(13/ ) }+l a31|
ag; mag
(a, — D,) VD, D
+ max (az 2) +Va 251 (az 2) M. (2.26)
a22 a22

Here./s; is the only real root of the equation

V& ax* = v/a; (@ — D1) +y/@i1Di(a — D) +\/a—151\7a—252x.

We now takeR2 = {(yi(t), yo(t), Ya(t)T € X : [[(V1, Y2, ¥2) Il < M}. This satisfies
condition (a) of Lemma.1 When(y, Y», y3)T € 9QNKerL = dQNR3, (y1, Yo, ¥a) "
is a constant vector iR with |y;| + |yo| + |ys] = M. We will prove that when
(Y1, Y2, Ya)" € 02 NKerL =3Q N R,

Y1 (@ — Dy) —ape" — < Ow Wﬁeyl dte® + D,e% 0
QNlY: | = (@ — Dz) — 8" + D% #10
Ya &ty f m(t?;gtieh dte” 0

If the conclusion is not true, that iIQN(y1, Y2, Y3)T = (0,0,0)T with |y;| + |ya| +
lys] = M. Since

S 1 " as(t)dt —_
_ _ yi _ AP\ Vo—VY1 __
(g — D) —agq€e w/ o eyle + D,e =0, (2.27)

we havea;;e?! < (a; — D;)e" + D,e” < (a — Dy)e" + D,e%. Thus

2ape" < (a— Dy + \/ (@ — Dy) +4a;,D,e% < 23, — D) + 2,/a;D; 2.
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Thatis,

a.€" < (a, — Dy) ++/a; D, €72 (2.28)
Since
(@, — D) — 3" + D, % =0, (2.29)

we obtaina,e?? < (a, — D,)e” + D,e". Thus
56”2 < (8 — Dy) + /35D, V2 (2.30)

From .28 and @.30), it follows that

(@ — Dz) + v azzD251

"< g, e?< (2.31)
a
From 2.27) and .29, we obtain
a; — Dy) — (ay3/m a—D
o> @D - @/ oy e @2 Do) (2.32)
ag A
Hence
— D, —
lyi] < maxy|Indy, |In (@ 1)_ (By3/Mm) and
an
Iya| < max (az Dz) + v a22D251 - Dy)
? a a_zz '

Since—a; + (1/w) [, (asu(t)/(M(t)e” + e)) dte = 0, the same argument as that
used for .25 gives

] — Dy) — (ay3/m
il = fin 2= +max{“”81| n B2 B/ )}.
ag
Therefore

3
— D, —

Zlyil < 2maxq|Inél, [In (@ 1)_ (83/mM)

i=1 g

+max{ Inmi\/m }In@ }+ a31I__|

a2 a, M

< M,
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which contradicts the fact thdgy| + |y2| + |ysl = M. So when(y, y2, ¥3)" €
0QNKerL =9QNR3 QN(y1, Vo, Ya)'T # (0,0,0)7.

Finally we will prove that condition (c) of Lemma& 1is satisfied.

Define¢ : DomL x [0, 1] — X by

(8 — Dy) —ape”

¢(y17 y27 y37 M) = (az - DZ) - a_22€y2
—38 + (1/w) fo m(t)aigtieyl dte”
~W/w) [ meists dter + Dyer
+ w Dze)ﬁ*)’z
0

When(yi, Ya, ¥3)T € 9Q NKerL =92 N R3, (y1, Y2, ¥3)T is a constant vector ifR®
with |yi|+ Y| +ys| = M. Using a similar argument to that fQ N(ys, Y», y3)" # O,
when(yy, Yo, ¥3)T € 92 N KerL, we can show that wheiy;, ys, ¥s)" € 0Q NKerL,
d (Y1, Y2, Y3, 1) # (0,0,0)7. As a result, we have

deg JQN(YL, Y2, ¥3)©, 2 NKerlL, (0,0,0)")

= deQ(((al — Dy) —ape”, (ap — Dy) — ae”,

t T
R e dté”) .QnKerL. 0. o,O)T)
m(t)er 4 en

= deQ(((al D,) — a;e”, (&, — Dy) — ae”,

Q. eNt T
—m+————) ,QnNKerL, (0,007 ),
m(t+)e% + e

wheret* € [0, w] is a constant.
Since the system of algebraic equations

(8 — Dy —a1x =0,
(@ — Dy) —a3y =0,
— 3+ agx/(M(t")z+x) =0,

has a unique solutiorx{, y*, z*) which satisfies<* > 0, y* > 0 andz* > 0, thus

deg(((al — Dy) —ae”, (ap — Dy) — ae”,

a_sle)ﬁ
m(t*)ey 4 en

— a3

.
) ,QNKerL, (0,0, 0)T>
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—a X" 0 0
_ i 0 —aY" 0
=sS9N amtz —m(t")agx*
[ -3 amt)ay” (x)?
= sign M)z + X7 ] # 0.

Consequently def QN(y1, y2, y3)", 2 NKerL, (0,0,0)T) # 0. This completes
the proof of condition (c) of Lemma.1

By now we know thaf2 verifies all the requirements of Lemral and that system
(2.2) has at least ona-periodic solution. Therefore systerd.{) has at least one
positive w-periodic solution. This completes the proof of Theor2rh
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