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Abstract

A five-dimensional deterministic model is proposed for the dynamics between HIV and

another pathogen within a given population. The model exhibits four equilibria: a disease-
free equilibrium, an HIV-free equilibrium, a pathogen-free equilibrium and a co-existence

equilibrium. The existence and stability of these equilibria are investigated. A competitive

finite-difference method is constructed for the solution of the non-linear model. The model
predicts the optimal therapy level needed to eradicate both diseases.

1. Introduction

Following the discovery of the human immunodeficiency virus (HIV) three decades
ago, much attention has been focussed on the development and analysis of realis
tic mathematical models for the transmission dynamics, pathogenesis and contro
mechanisms of HIV (see, for instancé, , 4, 5, 7]).

Since HIV is known to replicate only in activated CD4+ T cells (s&65[ 7]), the
study of the effect of the interactions between HIV and other pathogens (such as the
flu virus, mycobacterium tuberculosis, the hepatitis vietcs) is important. McLean
and Nowak b] have proposed within hosin(vivo) models for the dynamics between
HIV and activated CD4+ T cells specific to other pathogens.

Our study is focussed on the design and analysis of a new population model
for the transmission dynamics of HIV and another competing pathogen (assumed
to be curable) within a given population. Such an epidemiological model can be
used to assess anti-HIV programmes in nations where access to highly-active anti-
retroviral therapy (HAART) 7] for controlling HIV is not readily available, but cures
for the competing pathogens (causing tuberculosis, flu, hepatiijs are generally
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available and affordable. The central question to ask is whether an effective treatmen
mechanism that solely focuses on eradicating competing pathogens can reduce th
spread of HIV within the population.

In this paper, we propose a hew deterministic model for the transmission dynamics
of HIV and a single competing pathogen that is curable. Qualitative and numerical
analyses of the resulting five-dimensional nonlinear model are carried out to determine
the optimal therapeutic coverage levels needed for eradicating both diseases. Thi
model is formulated in Sectiohand analysed in Sectiah The effect of treatment
on the stability of the associated equilibria is discussed in Seétitm Section5, we
construct a robust numerical method, which is free of scheme-dependent numerica
instabilities (such as oscillations, chaos, bifurcations and convergence to spurious
zeros). Numerical experiments are reported in Sediion

2. Mathematical model

The model monitors five populations: susceptiblE$, (ndividuals infected with
a curable pathogerY(), HIV-infected individuals Y>), HIV-infected individuals that
have progressed to clinical AID@\J and the population of individuals infected with
the pathogen who become non-infectious following effective treatii@®ntThe total
population size iN = N(t) = X(t) + Yi(t) + Ya(t) + At) + Z(1).

2.1. Susceptible individuals X (t). All individuals recruited into the population at
a rate ofl1 per year are considered to be susceptible to both infectious diseases (HIV
and the other pathogen). Susceptibles die of natural causes at a ratgeofyear.
Susceptibles are lost following contact with members ofthgopulationsi = 1, 2)
at rateg;, respectively. The average number of contacts per unit time is denoted by
Thus
d_X = — X — (CﬂlYl + Cﬂ2Y2> X,
dt N
2.2. Pathogen-infected individuals)Y,(t). This population is generated following
the infection of susceptibles with the pathogen at gateSince members of this()
population can be cured, we model the effect of treatment in terms of inhibition of
transmission probabilitg; given by(1— 7);. This population is diminished by HIV
infection (at rate3,) and by natural death (at ratg. This gives

ﬂ _ (1—1)CcBY1X _ CB2Y1Y-

dt N N
2.3. HIV-infected individuals, Y,(t). This population is generated by the HIV
infection of both the susceptibles and pathogen-infected individuals (aBshatdt

— ,LLYl
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is diminished by natural death (at rat¢ and by the development of clinical AIDS
(at ratev). For computational convenience, it is assumed Yhahdividuals are not
susceptible to infection by the pathogen. It is further assumed that anti-HIV treatment
is not available within the community; hence members ofthand A populations
are not treated. This suggests
dy, . CB2YX B Y1Y-
TN TN
2.4. Individuals with clinical AIDS, A(t). The population of individuals with
clinical AIDS, A(t), increases when members of tfygopulation progress to clinical
AIDS (at ratev). This population is reduced by natural death (at yajeand by
AIDS-induced death (at rath). Thus

dA
2.5. Non-infectious individuals,Z(t). This population is generated following the
effective treatment of members of tNe population (at a rate) and is diminished by

natural death (at a raje), so that

—(n+v)Ya.

dz TCﬂlle
==z
dt N
In summary, the model consists of the equations
dX CB1Y1 + CB2Y>
—— =M -puX - =—22)X,
dt # ( N
dYi A -1chYViX  cBYiY; Y
at N N
dY,  cBYoX ALY,
— = - Y. (2.1)
at N + N (n+v)Yo,
dA
FIn vY, — (n+ d)A,
dz _ TcﬂlY]_X 7
dt = N e

It should be mentioned that since the physical situation being modelled is that of
population dynamics, it is necessary to impose the ttmmdthat all the dependent
variables and parameters of the model are non-negative.

3. Existence and stability of equilibria

Defining, first of all, the force of infection given by (sek B])

G(t) = CﬂlYl(t)|\|—|(—t;:ﬂ2Y2(t)’ H(t) = CﬂIiIY(:gt)’ (3.1)
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it follows from (2.1) that the associated expressions for the population densities at
equilibrium are (se€l], 8])

., I . (1—1)(G - HHX* . H(X + YD
u+G o+ He P u+v
Y; G* — H*)X* 1
n+d g g

Substituting the above into the expressionsGaandH in (3.1) gives

G = v (Cﬂl(l_f)n(G*_H*) ChH* [ 1 (1—r)1‘I(G*_H*)})
(3.2)
and
L_L(gH T T (A-DG —HY)
" _N*<M+U[M+G* (n+H")(u+ G D (3.3)

To find the equilibria of the model, we need to determine the fixed points of the
equation
#1(G, H))
$2(G, H) )~
whereg, andg¢, are the right-hand sides 08.¢) and @.3), respectively.

X=CI>(X)=<

3.1. Disease-free equilibrium. Clearly (0, 0) is a fixed point of® (which cor-
responds to the disease-free #iQuum of the model) sincep,(0,0) = 0 and
¢,(0,0) = 0. In the context ofZ.1), this fixed point corresponds to

Eo = (IT/u1,0,0,0,0).
The Jacobian ob is given by
3= 0¢1(G,H)/0G 0¢1(G,H)/oH
T \9¢(G,H)/dG 9¢o(G,H)/oH )~
EvaluatingJ at (0, 0) gives

R 9¢1(G, H)

1 - =

Jo = 8 H (0,0) 5
0 R,

Ri=cfi(l—1)/n and R, =cBy/(n+ ). (3.4)

The eigenvalues o, are R; and R,. The dominant eigenvalue af,, given by
2 = maxX Ry, Ry}, is the basic reproductive numbel, 3, 8]. It follows then that
the disease-free eijjbrium is locally asymptotically stable i#? < 1 and unstable if
Z > 1.

where
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4 4

f1(0)

f1(0)
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FIGUREL. f1(0) =cB1/u— 1> 0. FIGURE2. f1(0) <O.

3.2. Non-trivial equilibria. Now we discuss the existence and stability of the
non-trivial equilibria. Note that ifY; = 0, thenH* = 0, so thatG* = cg,Y;/N*.
Therefore(G*, 0) is a fixed point of® where

G*=M|:w—l}=ﬂ(%—l),

with R, defined in 8.4). Sinceu is assumed positivé&s* is positive wheneveR; > 1.

By substitutingG* (above) andH* = 0 in the population densities, it is easy to see
that the fixed pointG*, 0) of ® corresponds to a non-trivial equilibriu¢free of HIV
and AIDS) given by

’Ov 07

E_[IT (1-—I(R —1) IHGQ—D}
YT LR Ry uRy |

It should be noted that we requizg > 1 (#Z is the basic reproductive number of
infection) to ensure the existence of a non-trivial equilibrium. It can be shown, after
some manipulation, that the Jacobianioft (G*, 0) is

p, 3G H)
, —
Jl == 8H

0 D,

(G0 | »

whereD; = 1/R;, D, = (R/R)[1+ (1 — )(R, — 1)] andR, is as defined in3.4).
The eigenvalues od; areD; andD,. SinceR; > 1, it follows thatD; < 1. Thus
E, is locally asymptotically stable iD, < 1 and unstable iD, > 1.
Suppose now tha* = H* (thatis,Y; = 0). In this case, the fixed point df is

[(u +dDpu+)(R-1 (n+d)(pn+v)(R— 1)}
uw+v+d ’ uw+v+d '
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Thus G* and H* are positive ifR, > 1. This fixed point corresponds to another
non-trivial equilibrium (pathogeifree)

B (n+v+dII (4 IR, — 1)
o |:R2(IL+ V)(u+d) —vd " R+ v)(p +d) — vd’
WIT(R, — 1)
Ro(it +v) (1 +d) — vd’ } '

Itis worth mentioning that iR, > 1, thenR,(u+v)(u+d)—vd > u(u+v+d) > 0.
Thus none of the components Bf is negative forR, > 1.
The Jacobian ob at (G*, H*) is given by

9(¢2 + ¢3) 9(¢2 + ¢3)
ol 7S 9% ’
3G | g 1o oH | 6 1o

wherep;, = ¢, 4¢3 andgp, andg, are defined as before. The characteristic polynomial
of J,is

AZ—A<%+% %)

oH 090G  9G oH oG 090G oaH

(Lasix om0
(G*,H*)

(G*.H")

Itis easy to see that

093
oH

__ 9%

(G*,H"

Thus the roots of the characteristic polynomiallpfire

= 3 _ cpi(l—r1)
TG e (A D@+ )(R-D/(utv+d)+ )R
and
_ (022 292 _1
he= (86 * 8H> e R

Thereforek, is locally asymptotically stable if mdxy, 1.} < 1.

It should be mentioned that another positive fixed poindofwvhich corresponds
to the coexistence of the two diseases (tha¥is# 0, Y, # 0), exists. However, its
closed-form expression could not be found, thereby making it impossible to analyse
it qualitatively at this point.
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f,(0) f2(0)

T*(l)
1 T 2 1 T
*—O
L =1 7 ;@
FIGURE3. f(0) = R, —1 > Oandz; < ;. FIGURE4. fy(7) < O for somer € (0, 1)
andry < % < ?.
4 4
f2(0)
f2(0) L e
FIGURES. f,(7) < 0 for somer € (0, 1) FIGUREG6. fo(7) < O for somer € (0, 1)

#(1) * *(2) #(1) *(2) *
andr,” < 17 < 1,7, andr,” < ;7 < 1.

4. Effect of the treatment rate (t)

In this section, we shall discuss the effect of the treatment rate on the stability of
the three equilibria.

4.1. Effect oft on the stability of E,.  Without loss of generality, we assume that
R, < 1 (otherwise# > 1 and the disease-free éliforium is unstable). Furthermore,

let fi(r) =cB1(1—1)/u — 1, for0< r < 1. We consider the casdg(0) > 0 and
f1(0) < 0.

Case 1.Supposefi(0) = cB;/u — 1 > 0. In this case, it is easy to see that there is a
uniquet; such thatf,(z;) = 0 and the region of the local asymptotic stabilityyf

is wheref;(r) < 0. Thusk, is stable provided; < t < 1 (see Figurd).

Case 2.Supposef,(0) < 0. Heref,(t) < Oforeveryr € [0, 1] (see Figure). Thus

R; < 1. Hencek, is locally asymptotically stable. These results can be summarised
in the following theorem.
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THEOREM4.1. (a) If ¢By > u, thenE, is locally asymptotically stable whenever
<t <l
(b) If ¢B;y < u, thenE, is locally asymptotically stable for everye [0, 1].

4.2. Effect oft on the stability of E;. Define now a functionf,(t) given by

__HrR _o(Bd=0 | _
fZ(T)_Cﬂl(l—‘L') |:1—|—(1 ‘L')( p 1)] 1, for 0<t <1

We consider two cases as follows.

Case 1. Supposef,(0) = R, — 1 > 0. Itis easy to see that lim; f,(t) = +oc.
Further, there is a uniqug such thatf,(z;) = 0. If fo(r) > O0fort € (0, 1), then
D, > 1 for everyr € [0, 1] and henceE; is unstable (see Figur®. Suppose that
f,(r) < 0 for somer € (0, 1). Then there exist;'” andz;® with ;¥ < 3® such
that fo(;V) = f,(1;?) = 0. If ;¥ > ¢z, thenD, < 1 whenever € (5;%, 7;®).

In this case,D; > 1 and thusE; is unstable (see Figurd). If ;¥ < z; and
;? > tr, then we need e (r;, 1) to establish the local asymptotic stability of
E, (see Figures). In this case, ift € (¢, ;%) (D, < 1), thenD; > 1 (because
hereR, < 1); thusE; is also unstable. Finally, if;'® < 7, thenE; is locally

asymptotically stable providede (7, ©;?) (see Figure).

THEOREM4.2. Suppose thaR, > 1.

(@) If f,(r) = 0for0 < 7 < lor;Y > 7, thenE, is unstable for every € (0, 1).
(b) If ;¥ < 7 < ;®, thenE, is locally asymptotically stable whenevere
(", 7).

(c) 1f ;® < 17, thenE, is locally asymptotically stable whenevee (z;*, 7;?).

Case 2.Supposef,(0) = R, — 1 < 0. In this case, there is a uniqug® such that

f,(r;¥) = 0. If ;¥ > ¢z, thenD, < 1 whenever € (0, 7;¥). ThusE, is locally
asymptotically stable it € (0, ;) (see Figure?). If ;¥ < 7, thenE, is locally
asymptotically stable whenevere (0, 7;) (see Figure).

THEOREM4.3. Suppose thaR, < 1.

(@) If ;® > 7, thenE; is locally asymptotically stable whenevek (0, ;).
(b) If ;¥ < 7, thenE; is locally asymptotically stable whenevee (0, 7;).

4.3. Effect oft on the stability of E,. Define

cB1(1—1)

— -1, f 0 1.
(it D+ )R-/ utord+mR or PerTs

f3(1)
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71 L2 1 T T 5
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FIGURE7. f2(0) = R, —1 < 0and; < ;. FIGURES. f,(0) = R, — 1 < 0and;® < ;.

Notice that f3(r) < Ry/R, — 1. It follows that if R, < 1, thenE, is locally
asymptotically stable, sincB, > 1 (a necessary condition for the existencesy.
Now we consider two cases as follows. ff(0) > 0, then there exists a uniqug
such thatf;(z) = 0. ThereforeE; is locally asymptotically stable if; < 7 < 1
(thatis, fa(r) < 0 orx; < 1). Now suppose that;(0) < 0. Thenfs(r) < O for
everyr and thusk; is locally asymptotically stable for everye [0, 1].

THEOREM4.4. (@) If Ry<1, thenE; is locally asymptotically stablffor R,>1).
(b) If f3(0) > 0, thenE,; is locally asymptotically stable whenevee (5, 1).
(c) If f3(0) < 0, thenE; is locally asymptotically stable for evety

5. Construction of a robust numerical method

It should be noted that the five dependent variables of the model are populations
and must therefore be non-negative. Thus any discrete model (numerical method)
for approximating the model given by.(1) must satisfy the “positivity” property of
the model (seed]). To construct a scheme with such a property, we use forward-
difference approximation for the derivatives i J) and approximate the right-hand
side functions appropriately as follows:

Xn+1 —_ X cB,Yn cB,Yn
T e (xn AT zn> 61
1 2
Yy YD cBi(l— 1) (2Y]) — YT Xt
14 XML YY)+ AN Z0
B Y]
bV Y, — Y (5.1b)

XML YD 4 YD 4 A 20
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YT YD XM (2Y) — YY)
14 XN+ 4 Yyl A Zn
cBaY (2Y) — Y3

_ n+1
Xn+1 + Y:{'I+1+ an + An + Zn (,U, + U)Yz , (510)
An+1 — A"
— =T = (e DA™, (5.1d)
Znt . zn BT Y X+ .
E = Xn+1+Y{|+1+Y2n+1+ An+1+ Zn _MZ 5 (516)

where X(t,) = X", Yi(t,) = Y7, Yaoty) = Y7, Aty = A", Z(t,) = Z"; n =
0,1,2,... and¢ > 0 is the time-step.

In (5.19 and 6.19, non-local implicit approximations foy; andY,, given re-
spectively byY! — 2Y! — Y and Y} — 2YJ — YJ*, have been used to ensure
“positivity”.  Furthermore, although the equations i5.1) are implicit in nature,
they can be solved in sequence to give the following (Gauss-Seidel type) explicit
formulation

X"+ 11
C(B1YT + B2Y3) ’
XM+ Y +Y) + A+ Zn
20cB1(1 — T)Xn+t

Y+l XM+ Y+ Y+ A+ 20

b [ B nxX gy T

XML Y1+ Y] + A4 Zn

) 20cB,Y3 (XL 4 Y[

20 X+l YYD An 70
€cBy (XL + YY)
X0+ Yyl AN Zn
A+ Yt
1+ e(p+d)

Xn+1 _

(5.2)

1+E|:,u+

n
1

(5.3)

n+1 __
Yyt =

) (5.4)

1+ +4(n +v)

n+l (5.5)

LTCA YL

XML 4 Y Y 4 AL Zn
1+ '

Z"+

Zn+1 _

(5.6)

It can be seen from the right-hand sides®P{—(5.6) that none of the methods admits
negative terms for & r < 1. Thus the methof(5.2)—(5.6)} satisfies the “positivity”
requirement of the modeR(1).
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TABLE 1. Effect ofz.

T Rl R2 Dl D2 }»1 }»2 Yf YZ* S.E.
0 6.451 | 0.392 | 0.155 | 0.392 | 91.306 | 2.550 | 54516 | O E:
0.2 | 5161 | 0.392 | 0.194 | 0.329 | 73.045 | 2.250 | 41613 | O E;
0.4 | 3.871| 0.392 | 0.258 | 0.276 | 54.783 | 2.250 | 28710 | O E;
0.6 | 2581 | 0.392 | 0.388 | 0.248 | 36.552 | 2.550 | 15807 | O E;
0.8 | 1.290 | 0.392 | 0.775| 0.322 | 18261 | 2.250 | 2903 | O E;
0.85 | 0.968 | 0.392 | 1.033 | 0.403 | 13696 | 2.550 0 0 Eo
TABLE 2. Effect of 8, (S.E. represents stable equilibrium).
B2 R R, D; | D r A2 Y; 1 Y; [SE
1 0.645 | 78431 | 1.550 | 100 | 7.802E —5 | 1.275E -5 | O | 38844 | E,
0.8 | 0645 | 62745 | 1550 | 80 | 1.220E —4 | 1.593E -2 | 0 | 38750 | E;
0.6 | 0.645| 47059 | 1550 | 60 | 2.172E —4 | 2125E—2 | 0 | 38594 | E,
0.4 | 0645 | 31373 | 1550 | 40 | 4900E —4 | 3.188E—2 | 0 | 38281 | E;
0.2 | 0.645| 15686 | 1.550 | 20 | 1.976E—-3 | 6.375E—-2 | 0 | 37331 | E,
0.1 | 0.645| 7.843 | 1.550 | 10 | 8.041E —3 0.128 0 | 35382 | E;
0.01 | 0645 | 0.784 | 1550 | 1 1.160 1.275 0 0 Eo

6. Numerical experiments

In order to test the behaviour of the numerical scheme constructed above, numerou:
numerical simulations were carried out. The effect of the treatment parametes
monitored by simulating the method using the following parameter and initial values:
[T = 2000, = 0.031, B; = 0.05, B, = 0.005,v, = 0.02,d = 0.06,c = 4,

X% = 120,000, Y = 10, Y? = 70,100, A° = 80,000, Z° = 30. The results
obtained, given in Tablg, are consistent with the theoretical predictions of Sect®bns
and4. As expected, higher values oflead to decreasing values ¥f. In line

with Theoremd.1 (a), att = 7;; = 0.85, we found that’;” = 0, implying that the
pathogen can be eradicated provided at least 85% of the pathogen-infected populatiol
is effectively treated. This eradication condition coincides with the case where both
R; andR; are less than unity (so that the disease-fredibgum is stable).

Further numerical simulations were carried out to study the effeghran the
dynamics of the HIV-infected populatiovy. The parameter and initial values used
in these experiments werél = 2000, = 0.031,53; = 0.01,7 = 0.5, v = 0.02,

d = 0.06,c = 4, X° = 120 000, Y = 10, Y2 = 70,100, A’ = 80, 000, Z° = 30.

The results are depicted in Taldlewhere itis evidentthat g% — 0,Y, — 0. Thus,

if an effective treatment mechanismis used to eliminate the competing pathogen from
the population (makingr; = 0), then HIV eradication can be achieved in about

3 years (see Tablefor the number of HIV infected individuals as a function of time)

by (additionally) administering an active anti-retroviral therapy to the HIV-infected
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TABLE 3. Dynamics of an HIV-infected population f@s = 0.01.

Time (days) 100 | 200 | 400 | 600 | 800 | 1000
HIV-infected population,) | 5300 | 1375| 140 | 16 | 2 0

population that can reduce the probability of HIV transmission below 1% (that is,
makep, < 0.01).

It should be mentioned that numerical simulations reveal that alth&ygimd E,
are both locally asymptotically stable (under the conditions of Theorkgigl.4),
neither of the two equilibria is globally asymptotically stable. Furthermore, in all the
numerical experiments carried out, the numerical method gave profiles that convergec
only to the correct steady-state solutions and did not suffer any scheme-depender
instability for any set of parameter values used.

7. Discussion and conclusion

A new epidemic model has been developed and analysed for the interactions be-
tween HIV and a curable pathogen. Although pathogen-infected individuals are gen-
erally assumed to be more susceptible to HIV infection (in comparison to individuals
who are not infected by the curable pathogen), our model assigns the same probability
of HIV infection (B,) for both subpopulations{ andY;). The associated steady-state
solutions of the model were found and analysed qualitatively. A novel finite-difference
method, which is free of the scheme-dependent instabilities associated with the use
of standard methods (such as the Euler and Runge-Kutta methods), was constructe
and used to compute the solution of the model. Based on the parameter values use
in our numerical simulations, the model predicts that the pathogen can be eradicatec
from the population if 85% of the pathogen-infected populace is effectively treated.
Furthermore, with the pathogen eliminated, the model suggests that HIV eradication
is feasible if an active anti-HIV therapy can reduce the HIV transmission parameter
below a certain threshold. This threshold is 1% for the parameter values used in our
simulations.
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