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Abstract

A five-dimensional deterministic model is proposed for the dynamics between HIV and
another pathogen within a given population. The model exhibits four equilibria: a disease-
free equilibrium, an HIV-free equilibrium, a pathogen-free equilibrium and a co-existence
equilibrium. The existence and stability of these equilibria are investigated. A competitive
finite-difference method is constructed for the solution of the non-linear model. The model
predicts the optimal therapy level needed to eradicate both diseases.

1. Introduction

Following the discovery of the human immunodeficiency virus (HIV) three decades
ago, much attention has been focussed on the development and analysis of realis-
tic mathematical models for the transmission dynamics, pathogenesis and control
mechanisms of HIV (see, for instance, [1, 2, 4, 5, 7]).

Since HIV is known to replicate only in activated CD4+ T cells (see [4, 5, 7]), the
study of the effect of the interactions between HIV and other pathogens (such as the
flu virus, mycobacterium tuberculosis, the hepatitis virusetc.) is important. McLean
and Nowak [5] have proposed within host (in vivo) models for the dynamics between
HIV and activated CD4+ T cells specific to other pathogens.

Our study is focussed on the design and analysis of a new population model
for the transmission dynamics of HIV and another competing pathogen (assumed
to be curable) within a given population. Such an epidemiological model can be
used to assess anti-HIV programmes in nations where access to highly-active anti-
retroviral therapy (HAART) [7] for controlling HIV is not readily available, but cures
for the competing pathogens (causing tuberculosis, flu, hepatitisetc.) are generally
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available and affordable. The central question to ask is whether an effective treatment
mechanism that solely focuses on eradicating competing pathogens can reduce the
spread of HIV within the population.

In this paper, we propose a new deterministic model for the transmission dynamics
of HIV and a single competing pathogen that is curable. Qualitative and numerical
analyses of the resulting five-dimensional nonlinear model are carriedout to determine
the optimal therapeutic coverage levels needed for eradicating both diseases. The
model is formulated in Section2 and analysed in Section3. The effect of treatment
on the stability of the associated equilibria is discussed in Section4. In Section5, we
construct a robust numerical method, which is free of scheme-dependent numerical
instabilities (such as oscillations, chaos, bifurcations and convergence to spurious
zeros). Numerical experiments are reported in Section6.

2. Mathematical model

The model monitors five populations: susceptibles (X), individuals infected with
a curable pathogen (Y1), HIV-infected individuals (Y2), HIV-infected individuals that
have progressed to clinical AIDS (A) and the population of individuals infected with
the pathogen who become non-infectious following effective treatment.Z/. The total
population size isN = N.t/ = X.t/ + Y1.t/ + Y2.t/+ A.t/ + Z.t/.

2.1. Susceptible individuals,X (t). All individuals recruited into the population at
a rate of5 per year are considered to be susceptible to both infectious diseases (HIV
and the other pathogen). Susceptibles die of natural causes at a rate of¼ per year.
Susceptibles are lost following contact with members of theYi populations.i = 1;2/
at rateþi , respectively. The average number of contacts per unit time is denoted byc.
Thus

d X

dt
= 5− ¼X −

(
cþ1Y1 + cþ2Y2

N

)
X:

2.2. Pathogen-infected individuals,Y1(t). This population is generated following
the infection of susceptibles with the pathogen at rateþ1. Since members of this (Y1)
population can be cured, we model the effect of treatment in terms of inhibition of
transmission probabilityþ1 given by.1−−/þ1. This population is diminished by HIV
infection (at rateþ2) and by natural death (at rate¼). This gives

dY1

dt
= .1 − −/cþ1Y1X

N
− cþ2Y1Y2

N
− ¼Y1:

2.3. HIV-infected individuals, Y2(t). This population is generated by the HIV
infection of both the susceptibles and pathogen-infected individuals (at rateþ2). It
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is diminished by natural death (at rate¼) and by the development of clinical AIDS
(at ratev). For computational convenience, it is assumed thatY2 individuals are not
susceptible to infection by the pathogen. It is further assumed that anti-HIV treatment
is not available within the community; hence members of theY2 and A populations
are not treated. This suggests

dY2

dt
= cþ2Y2X

N
+ cþ2Y1Y2

N
− .¼+ v/Y2:

2.4. Individuals with clinical AIDS, A(t). The population of individuals with
clinical AIDS, A.t/, increases when members of theY2 population progress to clinical
AIDS (at ratev). This population is reduced by natural death (at rate¼) and by
AIDS-induced death (at rated). Thus

d A

dt
= vY2 − .¼+ d/A:

2.5. Non-infectious individuals,Z(t). This population is generated following the
effective treatment of members of theY1 population (at a rate− ) and is diminished by
natural death (at a rate¼), so that

d Z

dt
= −cþ1Y1X

N
− ¼Z:

In summary, the model consists of the equations

d X

dt
= 5− ¼X −

(
cþ1Y1 + cþ2Y2

N

)
X;

dY1

dt
= .1 − −/cþ1Y1X

N
− cþ2Y1Y2

N
− ¼Y1;

dY2

dt
= cþ2Y2X

N
+ cþ2Y1Y2

N
− .¼+ v/Y2;

d A

dt
= vY2 − .¼+ d/A;

d Z

dt
= −cþ1Y1X

N
− ¼Z:

(2.1)

It should be mentioned that since the physical situation being modelled is that of
population dynamics, it is necessary to impose the condition that all the dependent
variables and parameters of the model are non-negative.

3. Existence and stability of equilibria

Defining, first of all, the force of infection given by (see [1, 8])

G.t/ = cþ1Y1.t/ + cþ2Y2.t/

N.t/
; H .t/ = cþ2Y2.t/

N.t/
; (3.1)



184 S. M. Moghadas and A. B. Gumel [4]

it follows from (2.1) that the associated expressions for the population densities at
equilibrium are (see [1, 8])

X∗ = 5

¼+ G∗ ; Y∗
1 = .1 − −/.G∗ − H ∗/X∗

¼+ H ∗ ; Y∗
2 = H ∗.X∗ + Y∗

1 /

¼+ v
;

A∗ = vY∗
2

¼+ d
; Z∗ = −.G∗ − H ∗/X∗

¼
and N∗ = 1

¼
.5− d A∗/:

Substituting the above into the expressions forG andH in (3.1) gives

G∗ = 1

N∗

(
cþ1.1−−/5.G∗ − H ∗/
.¼+ H∗/.¼+G∗/

+ cþ2H ∗

¼+v
[

5

¼+G∗ + .1−−/5.G∗ − H ∗/
.¼+ H∗/.¼+G∗/

])

(3.2)

and

H ∗ = 1

N∗

(
cþ2H ∗

¼+ v

[
5

¼+ G∗ + .1 − −/5.G∗ − H ∗/
.¼+ H∗/.¼ + G∗/

])
: (3.3)

To find the equilibria of the model, we need to determine the fixed points of the
equation

x = 8.x/ =
(
�1.G; H /
�2.G; H /

)
;

where�1 and�2 are the right-hand sides of (3.2) and (3.3), respectively.

3.1. Disease-free equilibrium. Clearly .0;0/ is a fixed point of8 (which cor-
responds to the disease-free equilibrium of the model) since�1.0;0/ = 0 and
�2.0;0/ = 0. In the context of (2.1), this fixed point corresponds to

E0 = .5=¼;0;0;0;0/ :

The Jacobian of8 is given by

J =
(
@�1.G; H /=@G @�1.G; H /=@H
@�2.G; H /=@G @�2.G; H /=@H

)
:

EvaluatingJ at .0;0/ gives

J0 =

R1

@�1.G; H /

@H

∣∣∣∣
.0;0/

0 R2


 ;

where

R1 = cþ1.1 − −/=¼ and R2 = cþ2=.¼+ v/: (3.4)

The eigenvalues ofJ0 are R1 and R2. The dominant eigenvalue ofJ0, given by
R = max{R1; R2}, is the basic reproductive number [1, 3, 8]. It follows then that
the disease-free equilibrium is locally asymptotically stable ifR < 1 and unstable if
R > 1.
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FIGURE 1. f1.0/ = cþ1=¼− 1> 0.
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FIGURE2. f1.0/ ≤ 0.

3.2. Non-trivial equilibria. Now we discuss the existence and stability of the
non-trivial equilibria. Note that ifY∗

2 = 0, thenH ∗ = 0, so thatG∗ = cþ1Y∗
1 =N∗.

Therefore.G∗;0/ is a fixed point of8 where

G∗ = ¼

[
cþ1.1 − −/

¼
− 1

]
= ¼.R1 − 1/;

with R1 defined in (3.4). Since¼ is assumed positive,G∗ is positive wheneverR1 > 1.
By substitutingG∗ (above) andH ∗ = 0 in the population densities, it is easy to see
that the fixed point.G∗;0/ of8 corresponds to a non-trivial equilibrium(free of HIV
and AIDS) given by

E1 =
[
5

¼R1
;
.1 − −/5.R1 − 1/

¼R1
;0;0;

−5.R1 − 1/

¼R1

]
:

It should be noted that we requireR > 1 (R is the basic reproductive number of
infection) to ensure the existence of a non-trivial equilibrium. It can be shown, after
some manipulation, that the Jacobian of8 at.G∗;0/ is

J1 =

D1

@�1.G; H /

@H

∣∣∣∣
.G∗;0/

0 D2


 ;

whereD1 = 1=R1, D2 = .R2=R1/[1+ .1 − −/.R1 − 1/] andR2 is as defined in (3.4).
The eigenvalues ofJ1 areD1 andD2. SinceR1 > 1, it follows thatD1 < 1. Thus

E1 is locally asymptotically stable ifD2 < 1 and unstable ifD2 > 1.
Suppose now thatG∗ = H ∗ (that is,Y∗

1 = 0). In this case, the fixed point of8 is
[
.¼ + d/.¼ + v/.R2 − 1/

¼+ v + d
;
.¼ + d/.¼ + v/.R2 − 1/

¼+ v + d

]
:
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Thus G∗ and H ∗ are positive ifR2 > 1. This fixed point corresponds to another
non-trivial equilibrium (pathogen-free)

E2 =
[

.¼+ v + d/5

R2.¼+ v/.¼ + d/− vd
;0;

.¼+ d/5.R2 − 1/

R2.¼ + v/.¼ + d/− vd
;

v5.R2 − 1/

R2.¼+ v/.¼ + d/ − vd
;0

]
:

It is worth mentioning that ifR2 > 1, thenR2.¼+v/.¼+d/−vd > ¼.¼+v+d/ > 0.
Thus none of the components ofE2 is negative forR2 > 1.

The Jacobian of8 at .G∗; H ∗/ is given by

J2 =



@.�2 + �3/

@G

∣∣∣∣
.G∗;H ∗/

@.�2 + �3/

@H

∣∣∣∣
.G∗;H ∗/

@�2

@G

∣∣∣∣
.G∗;H ∗/

@�2

@H

∣∣∣∣
.G∗ ;H ∗/


 ;

where�1 = �2+�3 and�1 and�2 are defined as before. The characteristic polynomial
of J2 is

½2 − ½

(
@�2

@H
+ @�2

@G
+ @�3

@G

)∣∣∣∣
.G∗;H ∗/

+
(
@�2

@H

@�3

@G
− @�2

@G

@�3

@H

)∣∣∣∣
.G∗;H ∗/

:

It is easy to see that

@�3

@H

∣∣∣∣
.G∗;H ∗/

= − @�3

@G

∣∣∣∣
.G∗ ;H ∗/

:

Thus the roots of the characteristic polynomial ofJ2 are

½1 = @�3

@G

∣∣∣∣
.G∗;H ∗/

= cþ1.1 − −/

..¼+ d/.¼ + v/.R2 − 1/=.¼+ v + d/+ ¼/ R2

and

½2 =
(
@�2

@G
+ @�2

@H

)∣∣∣∣
.G∗ ;H ∗/

= 1

R2
:

ThereforeE2 is locally asymptotically stable if max{½1; ½2} < 1.
It should be mentioned that another positive fixed point of8, which corresponds

to the coexistence of the two diseases (that is,Y1 6= 0;Y2 6= 0), exists. However, its
closed-form expression could not be found, thereby making it impossible to analyse
it qualitatively at this point.
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4. Effect of the treatment rate(τ)

In this section, we shall discuss the effect of the treatment rate on the stability of
the three equilibria.

4.1. Effect ofτ on the stability of E0. Without loss of generality, we assume that
R2 < 1 (otherwiseR ≥ 1 and the disease-free equilibrium is unstable). Furthermore,
let f1.−/ = cþ1.1 − −/=¼− 1, for 0 ≤ − ≤ 1. We consider the casesf1.0/ > 0 and
f1.0/ ≤ 0.
Case 1.Supposef1.0/ = cþ1=¼− 1> 0. In this case, it is easy to see that there is a
unique− ∗

1 such thatf1.−
∗
1 / = 0 and the region of the local asymptotic stability ofE0

is where f1.−/ < 0. ThusE0 is stable provided− ∗
1 < − ≤ 1 (see Figure1).

Case 2.Supposef1.0/ ≤ 0. Here f1.−/ < 0 for every− ∈ [0;1] (see Figure2). Thus
R1 < 1. HenceE0 is locally asymptotically stable. These results can be summarised
in the following theorem.
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THEOREM 4.1. (a) If cþ1 > ¼, thenE0 is locally asymptotically stable whenever
− ∗

1 < − < 1.
(b) If cþ1 ≤ ¼, thenE0 is locally asymptotically stable for every− ∈ [0;1].
4.2. Effect ofτ on the stability of E1. Define now a functionf2.−/ given by

f2.−/ = ¼R2

cþ1.1 − −/

[
1 + .1 − −/

(
cþ1.1 − −/

¼
− 1

)]
− 1; for 0 ≤ − < 1:

We consider two cases as follows.
Case 1. Supposef2.0/ = R2 − 1 > 0. It is easy to see that lim−→1 f2.−/ = +∞.
Further, there is a unique− ∗

2 such thatf ′
2.−

∗
2 / = 0. If f2.−/ > 0 for − ∈ .0;1/, then

D2 ≥ 1 for every− ∈ [0;1] and henceE1 is unstable (see Figure3). Suppose that
f2.−/ < 0 for some− ∈ .0;1/. Then there exist−∗.1/

2 and− ∗.2/
2 with − ∗.1/

2 < −
∗.2/
2 such

that f2.−
∗.1/
2 / = f2.−

∗.2/
2 / = 0. If − ∗.1/

2 > − ∗
1 , thenD2 < 1 whenever− ∈ .−∗.1/

2 ; −
∗.2/
2 /.

In this case,D1 > 1 and thusE1 is unstable (see Figure4). If − ∗.1/
2 < − ∗

1 and
−

∗.2/
2 > − ∗

1 , then we need− ∈ .−
∗.1/
2 ; − ∗

1 / to establish the local asymptotic stability of
E1 (see Figure5). In this case, if− ∈ .− ∗

1 ; −
∗.2/
2 / (D2 < 1), thenD1 > 1 (because

here R1 < 1); thus E1 is also unstable. Finally, if− ∗.2/
2 < − ∗

1 , then E1 is locally
asymptotically stable provided− ∈ .− ∗.1/

2 ; −
∗.2/
2 / (see Figure6).

THEOREM 4.2. Suppose thatR2 > 1.

(a) If f2.−/ ≥ 0 for 0< − < 1or −∗.1/
2 ≥ − ∗

1 , thenE1 is unstable for every− ∈ .0;1/.
(b) If − ∗.1/

2 < − ∗
1 ≤ −

∗.2/
2 , then E1 is locally asymptotically stable whenever− ∈

.−
∗.1/
2 ; − ∗

1 /.
(c) If − ∗.2/

2 ≤ − ∗
1 , thenE1 is locally asymptotically stable whenever− ∈ .− ∗.1/

2 ; −
∗.2/
2 /.

Case 2.Supposef2.0/ = R2 − 1 ≤ 0. In this case, there is a unique− ∗.3/
2 such that

f2.−
∗.3/
2 / = 0. If − ∗.3/

2 ≥ − ∗
1 , thenD2 < 1 whenever− ∈ .0; − ∗.3/

2 /. ThusE1 is locally
asymptotically stable if− ∈ .0; − ∗

1 / (see Figure7). If − ∗.3/
2 < − ∗

1 , thenE1 is locally
asymptotically stable whenever− ∈ .0; − ∗.3/

2 / (see Figure8).

THEOREM 4.3. Suppose thatR2 < 1.

(a) If − ∗.3/
2 ≥ − ∗

1 , thenE1 is locally asymptotically stable whenever− ∈ .0; − ∗
1 /.

(b) If − ∗.3/
2 < − ∗

1 , thenE1 is locally asymptotically stable whenever− ∈ .0; − ∗.3/
2 /.

4.3. Effect ofτ on the stability of E2. Define

f3.−/ = cþ1.1 − −/

..¼+ d/.¼ + v/.R2 − 1/=.¼+ v + d/+ ¼/ R2
− 1; for 0< − < 1:
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Notice that f3.−/ < R1=R2 − 1. It follows that if R1 < 1, then E2 is locally
asymptotically stable, sinceR2 > 1 (a necessary condition for the existence ofE2).
Now we consider two cases as follows. Iff3.0/ > 0, then there exists a unique−∗

3

such that f3.−
∗
3 / = 0. ThereforeE2 is locally asymptotically stable if− ∗

3 < − < 1
(that is, f3.−/ < 0 or ½1 < 1). Now suppose thatf3.0/ ≤ 0. Then f3.−/ < 0 for
every− and thusE2 is locally asymptotically stable for every− ∈ [0;1].

THEOREM 4.4. (a) If R1<1, thenE2 is locally asymptotically stable(for R2>1).
(b) If f3.0/ > 0, thenE2 is locally asymptotically stable whenever− ∈ .− ∗

3 ;1/.
(c) If f3.0/ ≤ 0, thenE2 is locally asymptotically stable for every− .

5. Construction of a robust numerical method

It should be noted that the five dependent variables of the model are populations
and must therefore be non-negative. Thus any discrete model (numerical method)
for approximating the model given by (2.1) must satisfy the “positivity” property of
the model (see [6]). To construct a scheme with such a property, we use forward-
difference approximation for the derivatives in (2.1) and approximate the right-hand
side functions appropriately as follows:

Xn+1 − Xn

`
= 5− ¼Xn+1 −

(
cþ1Yn

1 + cþ2Yn
2

Xn + Yn
1 + Yn

2 + An + Zn

)
Xn+1; (5.1a)

Yn+1
1 − Yn

1

`
= cþ1.1 − −/

(
2Yn

1 − Yn+1
1

)
Xn+1

Xn+1 + Yn
1 + Yn

2 + An + Zn

− cþ2Yn+1
1 Yn

2

Xn+1 + Yn
1 + Yn

2 + An + Zn
− ¼Yn+1

1 ; (5.1b)
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Yn+1
2 − Yn

2

`
= cþ2Xn+1

(
2Yn

2 − Yn+1
2

)
Xn+1 + Yn+1

1 + Yn
2 + An + Zn

+ cþ2Y
n+1
1

(
2Yn

2 − Yn+1
2

)
Xn+1 + Yn+1

1 + Yn
2 + An + Zn

− .¼+ v/Yn+1
2 ; (5.1c)

An+1 − An

`
= vYn+1

2 − .¼+ d/An+1; (5.1d)

Zn+1 − Zn

`
= cþ1−Yn+1

1 Xn+1

Xn+1 + Yn+1
1 + Yn+1

2 + An+1 + Zn
− ¼Zn+1; (5.1e)

where X.tn/ = Xn, Y1.tn/ = Yn
1 , Y2.tn/ = Yn

2 , A.tn/ = An, Z.tn/ = Zn; n =
0;1;2; : : : and` > 0 is the time-step.

In (5.1b) and (5.1c), non-local implicit approximations forY1 and Y2, given re-
spectively byYn

1 → 2Yn
1 − Yn+1

1 andYn
2 → 2Yn

2 − Yn+1
2 , have been used to ensure

“positivity”. Furthermore, although the equations in (5.1) are implicit in nature,
they can be solved in sequence to give the following (Gauss-Seidel type) explicit
formulation

Xn+1 = Xn + `5

1+ `

[
¼+ c.þ1Yn

1 + þ2Yn
2 /

Xn + Yn
1 + Yn

2 + An + Zn

] ; (5.2)

Yn+1
1 =

[
1 + 2`cþ1.1 − −/Xn+1

Xn+1 + Yn
1 + Yn

2 + An + Zn

]
Yn

1

1+ `

[
cþ1.1 − −/Xn+1 + cþ2Yn

2

Xn+1 + Yn
1 + Yn

2 + An + Zn
+ ¼

] ; (5.3)

Yn+1
2 =

Yn
2 + 2`cþ2Yn

2

(
Xn+1 + Yn+1

1

)
Xn+1 + Yn+1

1 + Yn
2 + An + Zn

1+ `cþ2

(
Xn+1 + Yn+1

1

)
Xn+1 + Yn+1

1 + Yn
2 + An + Zn

+ `.¼+ v/

; (5.4)

An+1 = An + `vYn+1
2

1+ `.¼+ d/
; (5.5)

Zn+1 =
Zn + `−cþ1Yn+1

1 Xn+1

Xn+1 + Yn+1
1 + Yn+1

2 + An+1 + Zn

1+ `¼
: (5.6)

It can be seen from the right-hand sides of (5.2)–(5.6) that none of the methods admits
negative terms for 0< − < 1. Thus the method{(5.2)–(5.6)} satisfies the “positivity”
requirement of the model (2.1).
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TABLE 1. Effect of− .

− R1 R2 D1 D2 ½1 ½2 Y∗
1 Y∗

2 S.E.
0 6:451 0:392 0:155 0:392 91:306 2:550 54516 0 E1

0:2 5:161 0:392 0:194 0:329 73:045 2:250 41613 0 E1

0:4 3:871 0:392 0:258 0:276 54:783 2:250 28710 0 E1

0:6 2:581 0:392 0:388 0:248 36:552 2:550 15807 0 E1

0:8 1:290 0:392 0:775 0:322 18:261 2:250 2903 0 E1

0:85 0:968 0:392 1:033 0:403 13:696 2:550 0 0 E0

TABLE 2. Effect ofþ2 (S.E. represents stable equilibrium).

þ2 R1 R2 D1 D2 ½1 ½2 Y∗
1 Y∗

2 S.E.
1 0:645 78:431 1:550 100 7:802E − 5 1:275E − 5 0 38844 E2

0:8 0:645 62:745 1:550 80 1:220E − 4 1:593E − 2 0 38750 E2

0:6 0:645 47:059 1:550 60 2:172E − 4 2:125E − 2 0 38594 E2

0:4 0:645 31:373 1:550 40 4:900E − 4 3:188E − 2 0 38281 E2

0:2 0:645 15:686 1:550 20 1:976E − 3 6:375E − 2 0 37331 E2

0:1 0:645 7:843 1:550 10 8:041E − 3 0:128 0 35382 E2

0:01 0:645 0:784 1:550 1 1:160 1:275 0 0 E0

6. Numerical experiments

In order to test the behaviour of the numerical scheme constructed above, numerous
numerical simulations were carried out. The effect of the treatment parameter− was
monitored by simulating the method using the following parameter and initial values:
5 = 2000,¼ = 0:031, þ1 = 0:05, þ2 = 0:005, v2 = 0:02, d = 0:06, c = 4,
X0 = 120;000, Y0

1 = 10, Y0
2 = 70;100, A0 = 80;000, Z0 = 30. The results

obtained, given in Table1, are consistent with the theoretical predictions of Sections3
and 4. As expected, higher values of− lead to decreasing values ofY∗

1 . In line
with Theorem4.1 (a), at− = − ∗

1 = 0:85, we found thatY∗
1 = 0, implying that the

pathogen can be eradicated provided at least 85% of the pathogen-infected population
is effectively treated. This eradication condition coincides with the case where both
R1 andR2 are less than unity (so that the disease-free equilibrium is stable).

Further numerical simulations were carried out to study the effect ofþ2 on the
dynamics of the HIV-infected populationY2. The parameter and initial values used
in these experiments were:5 = 2000,¼ = 0:031,þ1 = 0:01, − = 0:5, v = 0:02,
d = 0:06, c = 4, X0 = 120;000,Y0

1 = 10, Y0
2 = 70;100, A0 = 80;000, Z0 = 30.

The results are depicted in Table2, where it is evident that asþ2 → 0, Y∗
2 → 0. Thus,

if an effective treatment mechanism is used to eliminate the competing pathogen from
the population (makingY1 = 0), then HIV eradication can be achieved in about
3 years (see Table3 for the number of HIV infected individuals as a function of time)
by (additionally) administering an active anti-retroviral therapy to the HIV-infected
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TABLE 3. Dynamics of an HIV-infected population forþ2 = 0:01.

Time (days) 100 200 400 600 800 1000
HIV-infected population (Y2) 5300 1375 140 16 2 0

population that can reduce the probability of HIV transmission below 1% (that is,
makeþ2 ≤ 0:01).

It should be mentioned that numerical simulations reveal that althoughE1 andE2

are both locally asymptotically stable (under the conditions of Theorems4.2–4.4),
neither of the two equilibria is globally asymptotically stable. Furthermore, in all the
numerical experiments carried out, the numerical method gave profiles that converged
only to the correct steady-state solutions and did not suffer any scheme-dependent
instability for any set of parameter values used.

7. Discussion and conclusion

A new epidemic model has been developed and analysed for the interactions be-
tween HIV and a curable pathogen. Although pathogen-infected individuals are gen-
erally assumed to be more susceptible to HIV infection (in comparison to individuals
who are not infected by the curable pathogen), our model assigns the same probability
of HIV infection (þ2) for both subpopulations (X andY1). The associated steady-state
solutions of the model were found and analysedqualitatively. A novel finite-difference
method, which is free of the scheme-dependent instabilities associated with the use
of standard methods (such as the Euler and Runge-Kutta methods), was constructed
and used to compute the solution of the model. Based on the parameter values used
in our numerical simulations, the model predicts that the pathogen can be eradicated
from the population if 85% of the pathogen-infected populace is effectively treated.
Furthermore, with the pathogen eliminated, the model suggests that HIV eradication
is feasible if an active anti-HIV therapy can reduce the HIV transmission parameter
below a certain threshold. This threshold is 1% for the parameter values used in our
simulations.
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