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SINGULAR PROBLEMS MODELLING PHENOMENA IN THE
THEORY OF PSEUDOPLASTIC FLUIDS

RAVI P. AGARWAL! and DONAL O’'REGAN
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Abstract

Existence criteria are presented for nonlinear singular initial and boundary value problems.
In particular our theory includes a problem arising in the theory of pseudoplastic fluids.

1. Introduction

This paper is motivated by the boundary value problem

yVhy" +nt=0, O<t<1
y0 =y@) =0

which arises in the theory of pseudoplastic fluids. In particular we present existence
theory for the mixed boundary value problem

%(py)/+q(t)f(t,y)=0, O<t<1
im0 pOY ) =y(1) =0

where f : [0, 1] x (0, 00) — R is continuous. Noticef may be singular ay = 0.
Problems of the above form have been discussed extensively in the literature (see
[2,3,4,5,6,7,8,9,10, 11]) usually whenf is positone, thatisf : (0, 1) x (0, co) —
(0,00). Only a handful of papers (se8,[4, 5] and the references therein) have
appeared where the nonlinearityis allowed to change sign. This paper presents a
new theory, with the idea being to approximate the singular problem by a sequence
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of nonsingular problems each of which has a lower solutigrand a upper solution

B, and then use a limiting argument. This seems to be more natural and more genere
than the theory presented ig, f, 5] since the study of lower solutions to nonsingular
problems is well documented. Also in this paper we discuss the singular initial value
problem

y=qt)ft,y), 0<t<T(< o)
y(0) =0.

For the remainder of this section we describe the physical problem which motivates
our study. The boundary layer equations for steady flow over a semi-infinite foJate [
are

ouU ou 19
v _ +9Txy

U_ N, ’
ax+ Y p Y
au+av_
axX Yy

where theX andY axes are taken along and perpendicular to the plaethe density,
U andV are the velocity components parallel and normal to the plate and the shear
stressrxy = K(dU/aY)". The case = 1 corresponds to a Newtonian fluid and for
0 < n < 1 the power law relation between shear stress and rate of strain describes
pseudoplastic non-Newtonian fluids. The fluid has zero velocity on the plate and the
flow approaches stream conditions far from the plate, that is,

UX,00 =V(X,00 =0, U(X,00)=U,,

whereU,, is the uniform potential flow. The above results (if we use stream function-
similarity variables) 1, 9] in a third-order infinite interval problem

F”"4+F(F)>" =0, FO) =F(0) =0, F(c0)=1
Now use the Crocco-type transformation= F' andG = F” to obtain
G"G"+(n—1G"'(G)Y+u=0, GO =0 G =0.
Settingy = G" we obtain

yV"y +nu=0, O<u<l1
y(© =yl =0.
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2. Mixed boundary value problems

Motivated by the example in Sectidnconcerning non-Newtonian fluids, we con-
sider the mixed boundary value problem

2.1)

S(py) +amf,y) =0  O0<t<l
lime_o- pY'(t) = y(1) = 0.

We note also that we doot assumefolds/ p(s) < oo. For our first result in this
section we will assume the following conditions are satisfied:

peC[0,1]NnCY0,1) with p> 0on (0,1) (2.2)
geC(0,1) with g > 0on (0, 1) (2.3)

1 1 t
/ p(s)q(s)ds < co and / i/ p(s)g(s)ds dt < oo (2.4)
0 o PM® Jo

f : [0, 1] x (0, o0) — R is continuous (2.5)
ang € {1, 2, ...} and associated with eaalme Ny = {ng,ng + 1, ...},
Ja, € C[0, 11 N C%(0, 1), pa), € ACIO, 1],

with pH)Q(L) f (£, am(®) + (pD)a, 1) > 0 for t € (0, 1), (26)
tIirrJ+ p(t)e,, (1) >0 and O< an(l) <1/m
Jo € C[0,1], > 0 on [0,1) and a(t) < an(t), 27)
t € [0, 1] foreachm e N, '

3B € C[0, 1] N C%(0, 1), p8’ € ACI[O, 1] with
pMa) f (t, 1) + (pt)B (1)) <0 for t € (0, 1), (2.8)
tlij.; pMB'(t) <0 and B(1) > f> 0
and
an(t) < B(t), te][0,1] foreachm e N,. (2.9)

THEOREM2.1.  (l) Supposé€2.2—2.9 hold and in addition assume the follow-
ing condition is satisfied

(2.10)

0< f(t,y) <g(y) on [0, 1] x (0, 8] with g >0
continuous and nonincreasing of®, co);

here ay = sup.oq A(1). Then(2.1) has a solutiony € C[0,1] N C?(0, 1) with
y(t) > «a(t) fort € [0, 1].



170 Ravi P. Agarwal and Donal O’'Regan [4]

(I Supposd€2.2—2.9) hold and in addition assume the following condition is
satisfied

ft,x)— ft,y) >0 for 0 < x <y, foreach fixedt € (0, 1). (2.11)
Then(2.1) has a solutiony € C[0, 1] N C?(0, 1) with y(t) > «(t) fort € [0, 1].

PrOOF. Without loss of generality assunig > 1/ng. Fix m € Ny and consider
the boundary value problem

(py) + pafit,y) =0, 0<t<1

lime_o- pY () =0 (2.12)™
y(1) =1/m,

where
fE, M) +rBM —y), y>B)
fat,y) =1 f(t,y), an() <y < B
f(t, am®) +r(am®) —y), Y <an()

withr : R — [—1, 1] the radial retraction defined by

u, lu <1
ru) =
u/lul, Jul > 1

It is immediate from Schauder’s fixed point theorem (s&@)[that (2.12™ has a
solutiony,, € CI[0, 1] (in facty,, € C[0, 1] N C%(0, 1) with py, € AC[O, 1]). A
standard argument (se&( Chapter 5]; notef: : [0, 1] x R — R is continuous)
guarantees that

am(t) < ym(t) < (1) for t e[0,1]. (2.13)
As a resulty,, is a solution of

(py) + pqf(t,y) =0, O<t<1
lime_o- p)y'(t) =0 (2.14)
y(1) = 1/m.

In addition @.7) guarantees that
a(t) < am(t) < yn(t) < () for t €0, 1]. (2.15)

The proof is now broken into two cases.



[5] Singular problems in pseudoplastic fluids theory 171

Case (A).SupposeZ.10 holds.
We first show

{Ymlmen, iS @bounded, equicontinuous family g, 1]. (2.16)
First notice from 2.10 that(py,,)’ < 0on(0, 1), sopy,, < 0 on(0, 1). In addition
—(p)y,, (1)) < pM®)at)g(ym(t)) fort € (0, 1), so integration from O to yields

t
—pO)y, 1) < g(ym(t))/ p(s)q(s)ds for t € (0, 1).
0
As a result

—\v t 1 t
= #m((t))) = m/ p(s)q(s)ds for t € (0,1).
m 0

Now considel (z) = fozdu/g(u). Fort,s € [0, 1] we have

Cyn(X) /t 1 /X X{
9(Ym(X)) — dz dx,
/s amo | = |1, oo J, PRA@ A2

{1 (Ym)}men, IS @ bounded, equicontinuous family 40, 1]. (2.17)

I Ym@®) = T Om(S)I =

SO

The uniform continuity ofl = on [0, | (ay)] together with 2.17) and

Y = Ym(S)] = 11710 (Yn()) = 1720 (Yn(9)))]

guaranteesA16). A standard argumen®]page 90] using the Arzela-Ascolitheorem
(and @.195) completes the proof.
Case (B).SupposeZ.1]) holds.

We begin by showing

VYmr1(t) < ym(t) for t € [0, 1] foreachm € N,. (2.18)

Suppose .19 is false. Then for somen € Ng, Y1 — Ym Would have a positive
absolute maximum at say € [0, 1). Suppose to begin witk, € (0, 1), SO (Yms1 —
Ym) (o) = 0 and(p(Yms1 — Ym)") (10) < 0. On the other hand2(11) implies

(P(Ymt1 — Ym)) (10) = —P(10)A(10)[ f (o, Ym+1(70)) — f (70, Ym(70))] > O,

a contradiction. Ify = 0 then lim_ o+ P(t)[Yms1 — Ym]' (1) = 0 and there existg > 0
With Yime1(S) — Ym(S) > 0 fors € (0, w). Thus fort € (0, 1) we have fromZ.17) that

t
P(Ymi1 — Ym) (1) = / P(S)AS)[ f (S, Ym(S)) — (S, Ymr1(s))1ds > 0,
0
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a contradiction sincg,.1 — Y has a positive absolute maximumat0. As a reguit®
holds.
Lets look at the intervdl0, 1 — 1/ng]. Let

Ry, = sup{|f(t,y)| :t €[0,1—1/ng] and a(t) <y < a}; (2.19)

herea, = sup 4, A(1). In addition

t
Y] < %/ p(s)q(s)ds for t € (0,1 —1/np).
0

Thus {Ym}men, IS @ bounded, equicontinuous family ¢& 1 — 1/no]. The Arzela-
Ascoli theorem guarantees the existence of a subsequépad N, and a function
z,, € C[0, 1—1/ne] with y,, converging uniformly ori0, 1 — 1/ne] to z,, asm — oo
throughN,,,. Proceed inductively to obtain subsequences of integers

Npo 2 Nngp1 2 -+ 2 Ng 2 -

and functiong, € C[0, 1 — 1/K] with y;, converging uniformly orj0, 1 — 1/Kk] to z
asm — oo throughN,, andz.; = z.on[0,1— 1/K] .

Define a functiony : [0,1] — [0, 00) by y(X) = z(x) on[0,1 — 1/k] and
y(1) = 0. Noticey is well-defined andx(t) < y() < g fort € [0,1). Next
fix t € (0,1) and letk € {ng,ng+ 1,...} be suchthatO< t < 1 — 1/k. Let
Ny = {n € N¢ : n > k}. Nowyy,, m e N}, satisfies

t 1 S
Ym(D) = Ym(0) —/ / POOY(X) f (X, ym(X)) dx ds
0

o P(S)
Letm — oo throughN; to obtain

() (V) /t L /S (x)gx) f(x, y(x))dxd
= - — x)g(x) f(x, y(x))dx ds
y y CA px)q y

We can do this argument for eatke (0, 1), so(py)'(t) + pt)qt) f (t, yt)) =0
fort € (0,1) and lim_q: pH)y'(t) =0.

It remains to showy is continuous at 1. Let > O be given. Now since
Mg« Ym(1D) = 0 there exist®; € Ny with y,, (1) < €/2. Also sincey,, € C[O0, 1]
there exists,, > Owithy, (1) < ¢/2fort € [1—§,,, 1]. From .18 for m > n; we
haveyn,(t) <y, () <e/2fort € [1—6,,, 1]. As aresult fom > n; we have

O0<oa(t) <ynt) <e/2 fortel[l-4,,1].
Consequently
O<a)<yt)<e/2<e forte[l-46,,1),

soy is continuous at 1.
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REMARK 2.1. In Theorem?.1 () we can replaceZ.10 with

{ 1f(t, y)| < g(y) on [0, 1] x (0, a] with g > 0
: . . (2.20)
continuous and nonincreasing @@, oo)
and
1 1 S
/0 @/0 PC)A(x)g(er(x)) dx ds < oo; (2.21)

herea, = sup 4, A(1). Notice we only used.10 to show @.16. If we assume
(2.20 and Q.21 then Q.16 is immediate since

E(PMYL(1) = pHAM I (1) < p®)gMdgla(t)) for t e (0, 1),

SO
1

P

We next state and prove a more general result motivated from Thebg(hh).

t
Y] = / p(s)q(s)g(a(s))ds for t € (0,1).
0

THEOREM 2.2. Supposé€2.2—(2.7) hold and in addition assume the following con-
ditions are satisfied

for eachm e N, 38, € C[0, 1] N C?(0, 1), pB., € ACIO, 1]

with p(t)q(®) f (t, Bn(t)) + (P, (1)) <0 for t € (0,1), (2.22)
t””.; p(t)A, M) <0 and Bn(1) > 1/m
am(t) < Bn(t), te][0,1] foreachme Ny (2.23)

and

for eacht € [0, 1] we have that{n(t)}men, IS a
(2.24)

nonincreasing sequence anrgm Bm(D) = 0.
Then(2.1) has a solutiony € C[0, 1] N C?(0, 1) with y(t) > «(t) fort € [0, 1].

PrROOF. Fix m € No. Proceed as in Theorethl with 8., replacingg in f. The
same reasoning as in Theor@m guarantees that there exists a solutjgre CI[O0, 1]
to (2.14) with a(t) < an(t) < yn(t) < Bn(t) fort € [0, 1]. Also as in Theoren2.1
(from (2.19 onwards) there existg € C[0, 1) (as described in Theore?il (I1)) with

a(t) <y() <a = suppB,(t) fortel01), (2.25)

te[0,1]

with (py)'(t) + pH)a) f (t,y()) =0,0<t < 1 andlim_ o pt)y () =0.
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It remains to showy is continuous at 1. Let > O be given. Now since
liMgy . o Bm(1) = O there exist; € Ny with 8, (1) < €/2, and so there exists
8, > O with B, (t) < e/2fort € [1—4,,,1]. From .24 for m > n; we have

a(t) <o) < Yn) < fn(t) < Bn,(t) <€/2 for te[l-2s,, 1]

Thatis, form > n; we have O< a(t) < yn(t) < e/2fort € [1-6,,, 1]. Consequently
O<a() <y) <e¢/2<efort € [1-4,,1),soyis continuous at 1.

ExamvpPLE (Fluid problem).Consider the boundary value problem

1" /v 1
{y Loty =0, O0<t < 2.26)

y©) =y@d =0
where O< v < 1. We will show using Theorer2.1 (part (1) or (1)) that .26 has a

solution.
First we choos@, € {1, 2, ...} so that

1
+—<0. (2.27)

1
K+—§1 and (K—l)
U+l no

6 ng 6
Letp=1,q(t) = 2t and clearly2.2—(2.5) hold. Also let

oam®) =v(A—13%/6+1/m,
at) =v(1-1%/6 (2.28)

andB(t) = 1 —vt3/(v +1). To check 2.6), form € Ny = {ny, ng + 1, ...}, notice
am(1) = 1/m, o/, (0) = 0 and

> —pt+vt=0 forte(0,1),

"t ) = vt —
m T AT Om) = [T —

sincean(t) < v/6+1/ny < 1,t € [0, 1] from (2.27). Thus @.6) holds and 2.7) is
immediate. To check(8) notice(1) =1—v/v+ 1= By, B/(0) =0 and

6vt vt —6vt
+ < +vt(v + DY
+1 [BOY “v+1 ( )

—6
=vt]—— DYl <0 forte(0,1),
U{U+l+w+> }_ or t e (0,1)

W+QMJD=;

sincef(t) > 1/(v + 1) fort € [0, 1], and(v + )"*Y/" <4 <6 for 0 < v < 1 (note
with f(xX) = (x + 1)**V/* we havef (0") = e, f(1) = 4 andf’(x) > 0on(0, 1)).
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Thus @.8) holds. In addition 2.9) is true since®.27) implies form € N, that

v 3 1 v Voo 1
o

s+ L=+ {i +(5- l)ﬂ(t)}
B 6 no_ Ng 6
< pB(t) + {n—];)-l— (% —1) Fll} < B fort € (0,1)

sincev/(v +1) <land(v/6—1)/(v+ 1) + 1/ny < 0. Finally 2.10 with g(y) =
1/y* (or (2.1 sinceif 0< x < ythenx” < y)holds. The existence of a solution
y to (2.26 follows from Theoren®.1 (1) (or (Il)). Note as well thaty(t) > «(t) for

t € [0, 1] wherew is given in .29.

3. Initial value problems

In this section we consider the initial boundary value problem

y =qf(t,y), 0<t<T(<o0)
y(0) =0.

Our results in this section differ from those id][ that is, instead of assuming the
existence of a lower solution to the singular problem (which is difficult to construct
in practice) as in4] we assume only the existence of a lower solution to the “ap-
proximating nonsingular problem”. For our first result in this section we assume the
following conditions are satisfied:

(3.1)

f [0, T] x (0,00) — R is continuous 8.2)
T
geC@O,T], g>0o0n(0,T] and / g(x)dx < oo (3.3)
0

dng € {1, 2, ...} and associated with eaailn € Ng = {ng, ng+ 1, ...},
Ja, € C[0, TN CY(O, T] with (3.4)
q(t) f(t, am(t)) > o/ (t) for t € (0, T) and O< oy(0) <1/m

{ Ja € C[0, T], @ > 0 on (0, T] and a(t) < am(t), 35)

t € [0, T] foreachm e Ng

{ 3B € C[0, TINCXO, T1with qt) f(t, Bt)) < () (36
forte (0, T) and B(0) > By, >0

and
an(t) < B(t), te][0,T] foreachm e N,. (3.7)
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THEOREM3.1.  (I) Supposé3.2—3.7) hold and in addition assume the follow-
ing condition is satisfied

{ |f(t,y)| < g(y) on [0, T] x (0,a] with g >0 38)

continuous and nonincreasing of®, co);

herea;, = sup.or B(t). Then(3.1) has a solutiony € C[0, T] N CY(0, T] with
y(t) > «a(t) fort € [0, T].

(Il Suppos€3.2—3.7) hold and in addition assume the following condition is
satisfied

f(t,x)— f(t,y) >0 for 0 < x <y, foreach fixedt € (0, T). (3.9
Then(3.1) has a solutiony € C[0, T] N CY(0, T] with y(t) > «(t) fort € [0, T].

ProOOF. Without loss of generality assunfg > 1/n,. Fix m € Ng and consider

/= * T
{y qfrt,y), O<t< 310"

y(0) =1/m,
where
ft, ), y>pwn
fat,y) =1 f(t,y), am(t) <y = BV
ft, am®), Yy <an).
It is immediate from Schauder’s fixed point theorem (sé@)[that (3.10)™ has

a solutiony,, € C[0, T]. A standard argument (se&l Chapter 3]; notef} :
[0, 1] x R — R is continuous) guarantees that

am(t) < Ym(t) < B(t) for t €[0,T]. (3.11)

As a resulty,, is a solution of

y=qf(t,y), O<t<T (3.12)
y(0) =1/m
with
a(t) < am(t) < yn(t) < p) for t [0, T]. (3.13)

The proof is now broken into two cases.
Case (A).Suppose .8 holds.
We first show

{Ym}men, IS @bounded, equicontinuous family @0, T]. (3.14)
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To see this notice3.8) guarantees thay’ (t)|/g(ym(t)) < q(t) fort € (0, T), and so
+v/ (1) < q(t) fort € (0, T); here

Ym(t) d
Un(t) = / =L Gy,
0

g(u)
t
/ g(r)dr

t
/ v, () dt

This together with the uniform continuity &~ on [0, G(ay)] and

Fort,s e [0, T] we have

[Vm(t) — vm(S) = <

Y = Ym(S)| = IG"HG(Ym(1)) — G™HG(¥Ym(9)))]

immediately guarantee8.(l4). A standard argument] page 53] using the Arzela-
Ascoli theorem completes the proof.
Case (B).Supposed.9) holds.

We begin by showing

VYmr1(t) < ym(t) for t € [0, T] foreachm € Nq. (3.15)

Suppose .19 is false. Then for some € Ny there existg; < 1, with yi,1(11) =

Ym(71),s Ym1(T2) > Ym(T2) @ndym,a(t) > Y (1) fort € (7, 72). As aresult fromg.9)
we have

0 < Ymi1(12) — Ym(2) = / AT (S, Ym1(8)) — f(S, ym(S))1ds < 0,

a contradiction. As a resul8(15 holds.

Essentially the same reasoning as in Thea2elhguarantees that there exist subse-
quences of integef,, 2 Ny 1 2--- 2 Ny 2 -+ and functiong € C[T/k, T] with
Ym converging uniformly o T/k, T] to z, asm — oo throughNy, andz,; = z on
[T/k, T].

Define a functiory : [0, T] — [0, co) by y(X) = z(x) on[T/k, T]andy(0) = 0.
Noticey is well-defined and (t) < y(t) < a fort € (0, T]. Nextfixt € (0, T) and
letk € {ng,ng+1,...} besuchthal /k <t < T. LetN; = {n € Ny : n > k}.
Now yn,, m € N, satisfies

.
Ym() = Ym(T) —/ a(s) f (s, ym(s)) ds.
t

Letm — oo throughN; to obtainy(t) = y(T) — ftT q(s) f (s, y(s))ds. We can do
this argument for eache (0, T). It remains to showy is continuous at 0. Let > O
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be given. Then there existg € N, with y,,(0) < €/2, so there exist§,, > 0 with
Yo, (1) < €/2fort € [0, §,,]. From @3.15 for m > n; we have

at) < ym®) <y, 1) <€/2 fortel0,38,].

AsaresultO< a(t) < y(t) <e/2 <efort € (0, 8,1, SOy is continuous at 0.

In fact one can obtain a more general result motivated from The8r& ().

THEOREM 3.2. Supposé€3.2—(3.5) hold and in addition assume the following con-
ditions are satisfied

{for eachm e Ny, 38, € C[0, T1N CY(0, T] with (3.16)
q) f(t, Bn(t) < Bt for t € (0, T) and Bn(0) > 1/m
am(t) < Bn(t), te[0,T] foreachme N (3.17)
and
for eacht € [0, T] we have that{n(t)}men, IS a
{ nonincreasing sequence anﬂnoo Bm(0) = 0. (3.18)

Then(3.1) has a solutiony € C[0, T] N CY(0, T] with y(t) > «(t) fort € [0, T].

PrROOF. Fix m € No. Proceed as in Theoretl with 8., replacingg in f. The
same reasoning as in Theor8ri guarantees that there exists a solutygre C[0O, T]
to (3.12 with a(t) < an(t) < ym(t) < Bn(t) fort € [0, T]. Also as in Theoren3.1
there existyy € C(0, T] (as described in Theore®l (1)) with

a(t) <y) <a = sup B(t) forte(,T],

te[0,T]

withy =qf(t,y)forO<t < T. Itis easy to see (usin@(18) thaty is continuous
at0.
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