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Abstract

Existence criteria are presented for nonlinear singular initial and boundary value problems.
In particular our theory includes a problem arising in the theory of pseudoplastic fluids.

1. Introduction

This paper is motivated by the boundary value problem{
y1=ny′′ + nt = 0; 0< t < 1

y′.0/ = y.1/ = 0

which arises in the theory of pseudoplastic fluids. In particular we present existence
theory for the mixed boundary value problem{

1
p
.py′/′ + q.t/ f .t; y/ = 0; 0< t < 1

lim t→0+ p.t/y′.t/ = y.1/ = 0

where f : [0;1] × .0;∞/ → R is continuous. Noticef may be singular aty = 0.
Problems of the above form have been discussed extensively in the literature (see
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) usually whenf is positone, that is,f : .0;1/×.0;∞/ →
.0;∞/. Only a handful of papers (see [3, 4, 5] and the references therein) have
appeared where the nonlinearityf is allowed to change sign. This paper presents a
new theory, with the idea being to approximate the singular problem by a sequence
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of nonsingular problems each of which has a lower solutionÞm and a upper solution
þ, and then use a limiting argument. This seems to be more natural and more general
than the theory presented in [3, 4, 5] since the study of lower solutions to nonsingular
problems is well documented. Also in this paper we discuss the singular initial value
problem

{
y′ = q.t/ f .t; y/; 0 < t < T.< ∞/

y.0/ = 0:

For the remainder of this section we describe the physical problem which motivates
our study. The boundary layer equations for steady flow over a semi-infinite plate [1]
are

U
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@U

@Y
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²
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where theX andY axes are taken along and perpendicular to the plate,² is the density,
U andV are the velocity components parallel and normal to the plate and the shear
stress−XY = K .@U=@Y/n. The casen = 1 corresponds to a Newtonian fluid and for
0 < n < 1 the power law relation between shear stress and rate of strain describes
pseudoplastic non-Newtonian fluids. The fluid has zero velocity on the plate and the
flow approaches stream conditions far from the plate, that is,

U .X;0/ = V.X;0/ = 0; U .X;∞/ = U∞;

whereU∞ is the uniform potential flow. The above results (if we use stream function-
similarity variables) [1, 9] in a third-order infinite interval problem

F ′′′ + F.F ′′/2−n = 0; F.0/ = F ′.0/ = 0; F ′.∞/ = 1:

Now use the Crocco-type transformationu = F ′ andG = F ′′ to obtain

GnG′′ + .n − 1/Gn−1.G′/2 + u = 0; G′.0/ = 0; G.1/ = 0:

Settingy = Gn we obtain

{
y1=ny′′ + nu = 0; 0< u < 1

y′.0/ = y.1/ = 0:
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2. Mixed boundary value problems

Motivated by the example in Section1 concerning non-Newtonian fluids, we con-
sider the mixed boundary value problem{

1
p.py′/′ + q.t/ f .t; y/ = 0; 0< t < 1

lim t→0+ p.t/y′.t/ = y.1/ = 0:
(2.1)

We note also that we donot assume
∫ 1

0 ds=p.s/ < ∞. For our first result in this
section we will assume the following conditions are satisfied:

p ∈ C[0;1] ∩ C1.0;1/ with p > 0 on .0;1/ (2.2)

q ∈ C.0;1/ with q > 0 on .0;1/ (2.3)∫ 1

0

p.s/q.s/ds< ∞ and
∫ 1

0

1

p.t/

∫ t

0

p.s/q.s/ds dt< ∞ (2.4)

f : [0;1] × .0;∞/ → R is continuous (2.5)


∃n0 ∈ {1;2; : : : } and associated with eachm ∈ N0 = {n0;n0 + 1; : : : };
∃Þm ∈ C[0;1] ∩ C2.0;1/; pÞ′

m ∈ AC[0;1];
with p.t/q.t/ f .t; Þm.t// + .p.t/Þ′

m.t//
′ ≥ 0 for t ∈ .0;1/;

lim
t→0+

p.t/Þ′
m.t/ ≥ 0 and 0< Þm.1/ ≤ 1=m

(2.6)

{
∃Þ ∈ C[0;1]; Þ > 0 on [0;1/ and Þ.t/ ≤ Þm.t/;

t ∈ [0;1] for each m ∈ N0

(2.7)




∃þ ∈ C[0;1] ∩ C2.0;1/; pþ ′ ∈ AC[0;1] with

p.t/q.t/ f .t; þ.t// + .p.t/þ′.t//′ ≤ 0 for t ∈ .0;1/;
lim

t→0+
p.t/þ′.t/ ≤ 0 and þ.1/ ≥ þ0 > 0

(2.8)

and

Þm.t/ ≤ þ.t/; t ∈ [0;1] for each m ∈ N0: (2.9)

THEOREM 2.1. .I/ Suppose(2.2)–(2.9) hold and in addition assume the follow-
ing condition is satisfied:{

0 ≤ f .t; y/ ≤ g.y/ on [0;1] × .0;a0] with g > 0

continuous and nonincreasing on.0;∞/;
(2.10)

here a0 = supt∈[0;1] þ.t/. Then(2.1) has a solutiony ∈ C[0;1] ∩ C2.0;1/ with
y.t/ ≥ Þ.t/ for t ∈ [0;1].
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.II / Suppose(2.2)–(2.9) hold and in addition assume the following condition is
satisfied:

f .t; x/− f .t; y/ > 0 for 0< x < y; for each fixedt ∈ .0;1/: (2.11)

Then(2.1) has a solutiony ∈ C[0;1] ∩ C2.0;1/ with y.t/ ≥ Þ.t/ for t ∈ [0;1].

PROOF. Without loss of generality assumeþ0 ≥ 1=n0. Fix m ∈ N0 and consider
the boundary value problem



.py′/′ + pq f ?m.t; y/ = 0; 0 < t < 1

lim t→0+ p.t/y′.t/ = 0

y.1/ = 1=m;

.2:12/m

where

f ?m.t; y/ =




f .t; þ.t// + r .þ.t/ − y/; y > þ.t/

f .t; y/; Þm.t/ ≤ y ≤ þ.t/

f .t; Þm.t// + r .Þm.t/ − y/; y < Þm.t/

with r : R → [−1;1] the radial retraction defined by

r .u/ =
{

u; |u| ≤ 1

u=|u|; |u| > 1:

It is immediate from Schauder’s fixed point theorem (see [10]) that .2:12/m has a
solution ym ∈ C[0;1] (in fact ym ∈ C[0;1] ∩ C2.0;1/ with py′

m ∈ AC[0;1]). A
standard argument (see [10, Chapter 5]; notef ?m : [0;1] × R → R is continuous)
guarantees that

Þm.t/ ≤ ym.t/ ≤ þ.t/ for t ∈ [0;1]: (2.13)

As a resultym is a solution of

.py′/′ + pq f.t; y/ = 0; 0< t < 1

limt→0+ p.t/y′.t/ = 0

y.1/ = 1=m:

(2.14)

In addition (2.7) guarantees that

Þ.t/ ≤ Þm.t/ ≤ ym.t/ ≤ þ.t/ for t ∈ [0;1]: (2.15)

The proof is now broken into two cases.
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Case (A).Suppose (2.10) holds.
We first show

{ym}m∈N0 is a bounded, equicontinuous family on[0;1]: (2.16)

First notice from (2.10) that.py′
m/

′ ≤ 0 on.0;1/, so py′
m ≤ 0 on.0;1/. In addition

−.p.t/y′
m.t//

′ ≤ p.t/q.t/g.ym.t// for t ∈ .0;1/, so integration from 0 tot yields

−p.t/y′
m.t/ ≤ g.ym.t//

∫ t

0

p.s/q.s/ds for t ∈ .0;1/:
As a result

0 ≤ −y′
m.t/

g.ym.t//
≤ 1

p.t/

∫ t

0

p.s/q.s/ds for t ∈ .0;1/:

Now considerI .z/ = ∫ z

0 du=g.u/. For t; s ∈ [0;1] we have

|I .ym.t// − I .ym.s//| =
∣∣∣∣
∫ t

s

y′
m.x/

g.ym.x//

∣∣∣∣ ≤
∣∣∣∣
∫ t

s

1

p.x/

∫ x

0

p.z/q.z/dz dx

∣∣∣∣ ;
so

{I .ym/}m∈N0 is a bounded, equicontinuous family on[0;1]: (2.17)

The uniform continuity ofI −1 on [0; I .a0/] together with (2.17) and

|ym.t/ − ym.s/| = |I −1.I .ym.t/// − I −1.I .ym.s///|
guarantees (2.16). A standard argument [2, page 90] using the Arzela-Ascoli theorem
(and (2.15)) completes the proof.
Case (B).Suppose (2.11) holds.

We begin by showing

ym+1.t/ ≤ ym.t/ for t ∈ [0;1] for each m ∈ N0: (2.18)

Suppose (2.18) is false. Then for somem ∈ N0, ym+1 − ym would have a positive
absolute maximum at say−0 ∈ [0;1/. Suppose to begin with−0 ∈ .0;1/, so.ym+1 −
ym/

′.−0/ = 0 and.p.ym+1 − ym/
′/′.−0/ ≤ 0. On the other hand, (2.11) implies

.p.ym+1 − ym/
′/′.−0/ = −p.−0/q.−0/[ f .−0; ym+1.−0// − f .−0; ym.−0//] > 0;

a contradiction. If−0 = 0 then limt→0+ p.t/[ym+1 − ym]′.t/ = 0 and there exists¼ > 0
with ym+1.s/− ym.s/ > 0 for s ∈ .0; ¼/. Thus fort ∈ .0; ¼/ we have from (2.11) that

p.ym+1 − ym/
′.t/ =

∫ t

0

p.s/q.s/[ f .s; ym.s// − f .s; ym+1.s//]ds> 0;
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a contradiction sinceym+1−ym has a positive absolute maximum at 0. As a result (2.18)
holds.

Lets look at the interval[0;1− 1=n0]. Let

Rn0 = sup
{| f .t; y/| : t ∈ [0;1 − 1=n0] and Þ.t/ ≤ y ≤ a0

}
; (2.19)

herea0 = supt∈[0;1] þ.t/. In addition

|y′
m.t/| ≤ Rn0

p.t/

∫ t

0

p.s/q.s/ds for t ∈ .0;1 − 1=n0/:

Thus {ym}m∈N0 is a bounded, equicontinuous family on[0;1 − 1=n0]. The Arzela-
Ascoli theorem guarantees the existence of a subsequenceNn0 of N0 and a function
zn0 ∈ C[0;1− 1=n0] with ym converging uniformly on[0;1− 1=n0] to zn0 asm → ∞
throughNn0 . Proceed inductively to obtain subsequences of integers

Nn0 ⊇ Nn0+1 ⊇ · · · ⊇ Nk ⊇ · · ·
and functionszk ∈ C[0;1− 1=k] with ym converging uniformly on[0;1− 1=k] to zk

asm → ∞ throughNk, andzk+1 = zk on [0;1− 1=k] .
Define a functiony : [0;1] → [0;∞/ by y.x/ = zk.x/ on [0;1 − 1=k] and

y.1/ = 0. Notice y is well-defined andÞ.t/ ≤ y.t/ ≤ a0 for t ∈ [0;1/. Next
fix t ∈ .0;1/ and letk ∈ {n0;n0 + 1; : : : } be such that 0< t < 1 − 1=k. Let
N?

k = {n ∈ Nk : n ≥ k}. Now ym;m ∈ N?
k , satisfies

ym.t/ = ym.0/ −
∫ t

0

1

p.s/

∫ s

0

p.x/q.x/ f .x; ym.x//dx ds:

Let m → ∞ throughN?
k to obtain

y.t/ = y.0/−
∫ t

0

1

p.s/

∫ s

0

p.x/q.x/ f .x; y.x//dx ds:

We can do this argument for eacht ∈ .0;1/, so.py′/′.t/ + p.t/q.t/ f .t; y.t// = 0
for t ∈ .0;1/ and limt→0+ p.t/y′.t/ = 0.

It remains to showy is continuous at 1. Letž > 0 be given. Now since
limm→∞ ym.1/ = 0 there existsn1 ∈ N0 with yn1.1/ < ž=2. Also sinceyn1 ∈ C[0;1]
there existsŽn1 > 0 with yn1.t/ < ž=2 for t ∈ [1− Žn1;1]. From (2.18) for m ≥ n1 we
haveym.t/ ≤ yn1.t/ < ž=2 for t ∈ [1− Žn1;1]. As a result form ≥ n1 we have

0 ≤ Þ.t/ ≤ ym.t/ < ž=2 for t ∈ [1− Žn1;1]:
Consequently

0 ≤ Þ.t/ ≤ y.t/ ≤ ž=2< ž for t ∈ [1− Žn1;1/;

so y is continuous at 1.
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REMARK 2.1. In Theorem2.1(I) we can replace (2.10) with{
| f .t; y/| ≤ g.y/ on [0;1] × .0;a0] with g > 0

continuous and nonincreasing on.0;∞/
(2.20)

and ∫ 1

0

1

p.s/

∫ s

0

p.x/q.x/g.Þ.x//dx ds< ∞; (2.21)

herea0 = supt∈[0;1] þ.t/. Notice we only used (2.10) to show (2.16). If we assume
(2.20) and (2.21) then (2.16) is immediate since

±.p.t/y′
m.t//

′ ≤ p.t/q.t/g.ym.t// ≤ p.t/q.t/g.Þ.t// for t ∈ .0;1/;
so

|y′
m.t/| ≤ 1

p.t/

∫ t

0

p.s/q.s/g.Þ.s//ds for t ∈ .0;1/:

We next state and prove a more general result motivated from Theorem2.1(II).

THEOREM 2.2. Suppose(2.2)–(2.7) hold and in addition assume the following con-
ditions are satisfied:


for each m ∈ N0; ∃þm ∈ C[0;1] ∩ C2.0;1/; pþ ′

m ∈ AC[0;1]
with p.t/q.t/ f .t; þm.t// + .p.t/þ′

m.t//
′ ≤ 0 for t ∈ .0;1/;

lim
t→0+

p.t/þ′
m.t/ ≤ 0 and þm.1/ ≥ 1=m

(2.22)

Þm.t/ ≤ þm.t/; t ∈ [0;1] for each m ∈ N0 (2.23)

and {
for each t ∈ [0;1] we have that{þm.t/}m∈N0 is a

nonincreasing sequence andlim
m→∞

þm.1/ = 0:
(2.24)

Then(2.1) has a solutiony ∈ C[0;1] ∩ C2.0;1/ with y.t/ ≥ Þ.t/ for t ∈ [0;1].

PROOF. Fix m ∈ N0. Proceed as in Theorem2.1with þm replacingþ in f ?m. The
same reasoning as in Theorem2.1guarantees that there exists a solutionym ∈ C[0;1]
to (2.14) with Þ.t/ ≤ Þm.t/ ≤ ym.t/ ≤ þm.t/ for t ∈ [0;1]. Also as in Theorem2.1
(from (2.19) onwards) there existsy ∈ C[0;1/ (as described in Theorem2.1(II)) with

Þ.t/ ≤ y.t/ ≤ a0 = sup
t∈[0;1]

þn0.t/ for t ∈ [0;1/; (2.25)

with .py′/′.t/ + p.t/q.t/ f .t; y.t// = 0, 0< t < 1 and limt→0+ p.t/y′.t/ = 0.
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It remains to showy is continuous at 1. Letž > 0 be given. Now since
limm→∞ þm.1/ = 0 there existsn1 ∈ N0 with þn1.1/ < ž=2, and so there exists
Žn1 > 0 with þn1.t/ < ž=2 for t ∈ [1− Žn1;1]. From (2.24) for m ≥ n1 we have

Þ.t/ ≤ Þm.t/ ≤ ym.t/ ≤ þm.t/ ≤ þn1.t/ < ž=2 for t ∈ [1− Žn1;1]:

That is, form ≥ n1 we have 0≤ Þ.t/ ≤ ym.t/ < ž=2 for t ∈ [1−Žn1;1]. Consequently
0 ≤ Þ.t/ ≤ y.t/ ≤ ž=2< ž for t ∈ [1 − Žn1;1/, soy is continuous at 1.

EXAMPLE (Fluid problem).Consider the boundary value problem

{
y′′ + ¹t=y1=¹ = 0; 0< t < 1

y′.0/ = y.1/ = 0
(2.26)

where 0< ¹ ≤ 1. We will show using Theorem2.1 (part (I) or (II)) that (2.26) has a
solution.

First we choosen0 ∈ {1;2; : : : } so that

¹

6
+ 1

n0
≤ 1 and

(¹
6

− 1
) 1

¹ + 1
+ 1

n0
≤ 0: (2.27)

Let p = 1, q.t/ = 2t and clearly (2.2)–(2.5) hold. Also let

Þm.t/ = ¹.1− t3/=6 + 1=m;

Þ.t/ = ¹.1− t3/=6 (2.28)

andþ.t/ = 1 − ¹t3=.¹ + 1/. To check (2.6), for m ∈ N0 = {n0;n0 + 1; : : : }, notice
Þm.1/ = 1=m, Þ′

m.0/ = 0 and

Þ′′
m + q f .t; Þm/ = −¹t + ¹t

[Þm.t/]1=¹
≥ −¹t + ¹t = 0 for t ∈ .0;1/;

sinceÞm.t/ ≤ ¹=6 + 1=n0 ≤ 1, t ∈ [0;1] from (2.27). Thus (2.6) holds and (2.7) is
immediate. To check (2.8) noticeþ.1/ = 1 − ¹=¹ + 1 ≡ þ0, þ ′.0/ = 0 and

þ ′′ + q f .t; þ/ = −6¹t

¹ + 1
+ ¹t

[þ.t/]1=¹
≤ −6¹t

¹ + 1
+ ¹t .¹ + 1/1=¹

= ¹t

{ −6

¹ + 1
+ .¹ + 1/1=¹

}
≤ 0 for t ∈ .0;1/;

sinceþ.t/ ≥ 1=.¹ + 1/ for t ∈ [0;1], and.¹ + 1/.¹+1/=¹ ≤ 4 ≤ 6 for 0< ¹ ≤ 1 (note
with f .x/ = .x + 1/.x+1/=x we have f .0+/ = e, f .1/ = 4 and f ′.x/ ≥ 0 on.0;1/).
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Thus (2.8) holds. In addition (2.9) is true since (2.27) implies form ∈ N0 that

Þm.t/ = ¹

6
.1 − t3/ + 1

m
≤ ¹

6

(
1 − ¹

¹ + 1
t3

)
+ 1

n0

= ¹

6
þ.t/ + 1

n0
= þ.t/ +

{
1

n0
+

(¹
6

− 1
)
þ.t/

}

≤ þ.t/ +
{

1

n0
+

(¹
6

− 1
) 1

¹ + 1

}
≤ þ.t/ for t ∈ .0;1/

since¹=.¹ + 1/ ≤ 1 and.¹=6 − 1/=.¹ + 1/+ 1=n0 ≤ 0. Finally (2.10) with g.y/ =
1=y1=¹ (or (2.11) since if 0< x < y thenx1=¹ < y1=¹) holds. The existence of a solution
y to (2.26) follows from Theorem2.1 (I) (or (II)). Note as well thaty.t/ ≥ Þ.t/ for
t ∈ [0;1] whereÞ is given in (2.28).

3. Initial value problems

In this section we consider the initial boundary value problem{
y′ = q f .t; y/; 0< t < T.< ∞/

y.0/ = 0:
(3.1)

Our results in this section differ from those in [4], that is, instead of assuming the
existence of a lower solution to the singular problem (which is difficult to construct
in practice) as in [4] we assume only the existence of a lower solution to the “ap-
proximating nonsingular problem”. For our first result in this section we assume the
following conditions are satisfied:

f : [0;T] × .0;∞/ → R is continuous (3.2)

q ∈ C.0;T]; q > 0 on .0;T] and
∫ T

0

q.x/dx < ∞ (3.3)


∃n0 ∈ {1;2; : : : } and associated with eachm ∈ N0 = {n0;n0 + 1; : : : };
∃Þm ∈ C[0;T] ∩ C1.0;T ] with

q.t/ f .t; Þm.t// ≥ Þ′
m.t/ for t ∈ .0;T/ and 0< Þm.0/ ≤ 1=m

(3.4)

{
∃Þ ∈ C[0;T]; Þ > 0 on .0;T ] and Þ.t/ ≤ Þm.t/;

t ∈ [0;T] for eachm ∈ N0

(3.5)

{
∃þ ∈ C[0;T] ∩ C1.0;T ] with q.t/ f .t; þ.t// ≤ þ′.t/

for t ∈ .0;T/ and þ.0/ ≥ þ0 > 0
(3.6)

and

Þm.t/ ≤ þ.t/; t ∈ [0;T] for eachm ∈ N0: (3.7)
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THEOREM 3.1. .I/ Suppose(3.2)–(3.7) hold and in addition assume the follow-
ing condition is satisfied:{

| f .t; y/| ≤ g.y/ on [0;T] × .0;a0] with g > 0

continuous and nonincreasing on.0;∞/;
(3.8)

here a0 = supt∈[0;T] þ.t/. Then(3.1) has a solutiony ∈ C[0;T] ∩ C1.0;T] with
y.t/ ≥ Þ.t/ for t ∈ [0;T].
.II / Suppose(3.2)–(3.7) hold and in addition assume the following condition is

satisfied:

f .t; x/− f .t; y/ ≥ 0 for 0< x < y; for each fixedt ∈ .0;T/: (3.9)

Then(3.1) has a solutiony ∈ C[0;T] ∩ C1.0;T] with y.t/ ≥ Þ.t/ for t ∈ [0;T].

PROOF. Without loss of generality assumeþ0 ≥ 1=n0. Fix m ∈ N0 and consider{
y′ = q f ?m.t; y/; 0< t < T

y.0/ = 1=m;
.3:10/m

where

f ?m.t; y/ =




f .t; þ.t//; y > þ.t/

f .t; y/; Þm.t/ ≤ y ≤ þ.t/

f .t; Þm.t//; y < Þm.t/:

It is immediate from Schauder’s fixed point theorem (see [10]) that .3:10/m has
a solution ym ∈ C[0;T]. A standard argument (see [11, Chapter 3]; notef ?m :
[0;1] × R → R is continuous) guarantees that

Þm.t/ ≤ ym.t/ ≤ þ.t/ for t ∈ [0;T]: (3.11)

As a resultym is a solution of{
y′ = q f .t; y/; 0 < t < T

y.0/ = 1=m
(3.12)

with

Þ.t/ ≤ Þm.t/ ≤ ym.t/ ≤ þ.t/ for t ∈ [0;T]: (3.13)

The proof is now broken into two cases.
Case (A).Suppose (3.8) holds.

We first show

{ym}m∈N0 is a bounded, equicontinuous family on[0;T]: (3.14)
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To see this notice (3.8) guarantees that|y′
m.t/|=g.ym.t// ≤ q.t/ for t ∈ .0;T/, and so

±v′
m.t/ ≤ q.t/ for t ∈ .0;T/; here

vm.t/ =
∫ ym.t/

0

du

g.u/
= G.ym.t//:

For t; s ∈ [0;T] we have

|vm.t/ − vm.s/| =
∣∣∣∣
∫ t

s

v′
m.−/d−

∣∣∣∣ ≤
∣∣∣∣
∫ t

s

q.−/d−

∣∣∣∣ :
This together with the uniform continuity ofG−1 on [0;G.a0/] and

|ym.t/ − ym.s/| = |G−1.G.ym.t/// − G−1.G.ym.s///|
immediately guarantees (3.14). A standard argument [4, page 53] using the Arzela-
Ascoli theorem completes the proof.
Case (B).Suppose (3.9) holds.

We begin by showing

ym+1.t/ ≤ ym.t/ for t ∈ [0;T] for eachm ∈ N0: (3.15)

Suppose (3.15) is false. Then for somem ∈ N0 there exists−1 < −2 with ym+1.−1/ =
ym.−1/, ym+1.−2/ > ym.−2/ andym+1.t/ > ym.t/ for t ∈ .−1; −2/. As a result from (3.9)
we have

0< ym+1.−2/− ym.−2/ =
∫ −2

−1

q.s/[ f .s; ym+1.s//− f .s; ym.s//] ds ≤ 0;

a contradiction. As a result (3.15) holds.
Essentially the same reasoning as in Theorem2.1guarantees that there exist subse-

quences of integersNn0 ⊇ Nn0+1 ⊇ · · · ⊇ Nk ⊇ · · · and functionszk ∈ C[T=k;T] with
ym converging uniformly on[T=k;T] to zk asm → ∞ throughNk, andzk+1 = zk on
[T=k;T].

Define a functiony : [0;T] → [0;∞/ by y.x/ = zk.x/ on[T=k;T] andy.0/ = 0.
Notice y is well-defined andÞ.t/ ≤ y.t/ ≤ a0 for t ∈ .0;T ]. Next fix t ∈ .0;T/ and
let k ∈ {n0;n0 + 1; : : : } be such thatT=k < t < T . Let N?

k = {n ∈ Nk : n ≥ k}.
Now ym;m ∈ N?

k , satisfies

ym.t/ = ym.T/−
∫ T

t

q.s/ f .s; ym.s//ds:

Let m → ∞ throughN?
k to obtainy.t/ = y.T/ − ∫ T

t q.s/ f .s; y.s//ds. We can do
this argument for eacht ∈ .0;T/. It remains to showy is continuous at 0. Letž > 0
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be given. Then there existsn1 ∈ N0 with yn1.0/ < ž=2, so there existsŽn1 > 0 with
yn1.t/ < ž=2 for t ∈ [0; Žn1]. From (3.15) for m ≥ n1 we have

Þ.t/ ≤ ym.t/ ≤ yn1.t/ < ž=2 for t ∈ [0; Žn1]:

As a result 0≤ Þ.t/ ≤ y.t/ ≤ ž=2< ž for t ∈ .0; Žn1], soy is continuous at 0.

In fact one can obtain a more general result motivated from Theorem3.1(II).

THEOREM 3.2. Suppose(3.2)–(3.5) hold and in addition assume the following con-
ditions are satisfied:{

for each m ∈ N0; ∃þm ∈ C[0;T] ∩ C1.0;T ] with

q.t/ f .t; þm.t// ≤ þ′
m.t/ for t ∈ .0;T/ and þm.0/ ≥ 1=m

(3.16)

Þm.t/ ≤ þm.t/; t ∈ [0;T] for each m ∈ N0 (3.17)

and {
for each t ∈ [0;T] we have that{þm.t/}m∈N0 is a

nonincreasing sequence andlim
m→∞

þm.0/ = 0:
(3.18)

Then(3.1) has a solutiony ∈ C[0;T] ∩ C1.0;T] with y.t/ ≥ Þ.t/ for t ∈ [0;T].

PROOF. Fix m ∈ N0. Proceed as in Theorem3.1with þm replacingþ in f ?m. The
same reasoning as in Theorem3.1guarantees that there exists a solutionym ∈ C[0;T]
to (3.12) with Þ.t/ ≤ Þm.t/ ≤ ym.t/ ≤ þm.t/ for t ∈ [0;T]. Also as in Theorem3.1
there existsy ∈ C.0;T] (as described in Theorem3.1(II)) with

Þ.t/ ≤ y.t/ ≤ a0 = sup
t∈[0;T]

þn0.t/ for t ∈ .0;T ];

with y′ = q f .t; y/ for 0< t < T . It is easy to see (using (3.18)) that y is continuous
at 0.
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