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HARVESTING IN A TWO-PREY ONE-PREDATOR FISHERY:
A BIOECONOMIC MODEL
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Abstract

A multispecies harvesting model with interference is proposed. The model is based on
Lotka-Volterra dynamics with two competing species which are affected not only by har-
vesting but also by the presence of a predator, the third species. In order to understand the
dynamics of this complicated system, we choose to model the simplest possible predator
response function in which the feeding rate of the predator increases linearly with prey
density. We derive the conditions for global stability of the system using a Lyapunov
function. The possibility of existence of a bioeconomic equilibrium is discussed. The
optimal harvest policy is studied and the solution is derived in the equilibrium case using
Pontryagin’s maximal principle. Finally, some numerical examples are discussed.

1. Introduction

Bioeconomic modelling of the exploitation of biological resources such as fisheries and
forestries has gained importance in recentyears. The techniques and issues associat
with the bioeconomic exploitation of these resources have been discussed in detai
by Clark [5, 6]. Since most marine fisheries are essentially multispecies in nature,
exploitation of mixed-species fisheries has started to draw attention from researchers
Although numerous models on single species fisheries have so far appeared in th
fishery literature, no fully adequate studies on multispecies fisheries appear to exist.
Itis very difficult to construct a realistic model of a multispecies community. Even if
we succeed in formulating such a model, it is quite likely that the model may not be
analytically tractable. Not every part of the catch is edible and harvesting harms some
of the marine species which live on the other species in the sea. Thus the predato
species are likely to become extinct with an indiscrete increasein the harvesting of prey
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species. Therefore, how best to harvest ecologically or economically interdependent
populations in the sense of maximising the present value of a stream of revenues fron
them, while maintaining ecological balance, is an important optimal control problem
for fisheries. Clark %] discussed an optimal equilibrium policy for the combined
harvesting of two ecologically independent species. Chaudhuf][formulated

an optimal control problem for the combined harvesting of two competing species.
Models on the combined harvesting of a two-species prey-predator fishery have beer
discussed by Chaudhuri and Saha R}y Mesterton-Gibbons7], Ragozin and
Brown [3] etc. Most of the mathematical models on the harvesting of a multispecies
fishery have so far assumed that the species are affected by harvesting only. To the
authors’ knowledge, no attempt has yet been made to study a harvesting model of
two competing species in the presence of a predator, the third species which is not
harvested.

In this paper, we study the problem of harvesting two competing species in the
presence of a predator species which feeds on both the competing species. A combine
harvesting effort is devoted to the exploitation of the first two (prey) species while
the third (predator) species is not harvested. The problem is clearly stated in the
next section. We have analysed the existence and stability of the equilibria of the
system. We derive conditions fglobal stability of the system. Taking simple
economic considerations into account, we discuss the possibilities of the existence
of a bioeconomic equilibrium The optimal policy of exploitation is derived using
Pontryagin’s maximal principle. Last, some numerical illustrations are given.

2. Formulation of the problem

The ecological system is as follows. There are two fish species which compete
with each other for the use of a common resource and both of them are subjected tc
continuous harvesting. There is a predator (for examplbaeée feeding on both of
them. Itis assumed that the predator population is not harvested (for exatmalie
harvesting has been prohibitedThus the interaction between the harvesting agency
and the predator is through the third party, namely, the prey. Since we are not making
a case study in respect of a specific prey-predator community, we have opted for
the logistic growth function for both the prey species (that is, the population density
of each prey is resourdanited) and for simplicity, the feeding rate of the predator
species is assumed to increase linearly with prey density.

The governing equations of the system can be written as

dx/dt = X3 [A1(1 — X1/ Ky) — 012X — @13%s] — QL E X4,
dXz/dt = Xz[)\.z(l — Xz/ kz) — 01 X1 — 0(23X3] - quXZ, (21)
dXs/dt = X3[aa1Xy + atgpXp — X3l
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whereiq, Ao, Ki, Ko, ar10, 0013, 021, 03, 31 aNdars, are positive rate constants. Specifi-
cally A4, 1, are thebiotic potentialsandk,, k, are the environmentahrrying capacities
of the two prey speciesi,, @y, are the coefficients dhterspecific competitiobe-
tween the two prey species;s, a3 are the predation coefficientss;, as, are the
conversion parameterg is the harvesting efforty;, g, are thecatchability coeffi-
cientsof x; andx, respectively. The catch-rate functioqsE x; andg, Ex, are based
on the CPUE (catch-per-unit-effort) hypothe$i$ [

3. The steady states

The steady states of the syste2rl areP,(0, 0, 0), P;(0, X5, X3), P2(X1, 0, X3) and
Ps(X}, X3, X3), where

% — r2 — RE 20— az2(re — 2E)
°7 ho/Ke + orantas’ * 7 ha/ke + g0z

— M — O E = A —QE

% 1~ K = oz1(A — LE)

© ha/Kg + azans] © Ma/Ky + amans

We assume here that the interior equilibrium paiit x;, x3) exists. There are also
three other equilibria in th&;x,-plane &; = 0). But we are not interested in these
equilibria, since foxs = 0, this is a two-species competitive model which has been
studied in depth by Chaudhuri]f

The equilibrium pointP; exists if E < 1,/0», that is, if E < BTP,, and P, exists
if E < A1/qy, thatis, ifE < BTP,,. The ratio(1/q) of the biotic potential ) to
the catchability coefficienty) is known as th&iotechnical ProductivityBTP) of the
species}].

4. Local stability

The eigenvalues of the variational matkix0, 0, 0) are 0,A; — g, E andi, — g,E
(seeAppendix A). Hence the integral curves terminate in a plane corresponding to
the steady state.

One of the eigenvalues of the variational maWig0, X,, X3) iS A1 — at1oX> — 0t13%Xs —

0. E (seeAppendix B. This eigenvalue is negative or positive according to whether
A1/Qy is less or greater thafa X, + @13%3)/q; + E.
The other two eigenvalues are given by the roots of the following quadratic equation

e+ w(AaXa/ Ko 4+ X3) + (Aa/ Ko + arp3032) Xo X3 = 0. (4.1)

In (4.1), the sum of the roots= —(A,X>/ ks + X3), Which is always negative and the
product of the roots= (1,/ ks + aa3r30) X> X3, Which is always positive.
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Therefore the roots of4(1) are real and negative or complex conjugates having
negative real parts. Thug, is asymptotically stable only if

A/ < (@12X + 013%3) /0 + E.

We have already found that the steady stBfeexists if E < ,/0,. Hence the
condition for asymptotic stability o, becomes

A1 QX + 03X Ao
_ = "~ E<-—=.
Oz Oz 02

This defines a range in which the fishing effort must lie to ensure a stable equilib-
rium P;.

One of the eigenvalues of the variational mawig;, 0, X3) iS A» — @p1X1 — @p3X5 —
0. E (seeAppendix Q. This eigenvalue is negative or positive according to whether
12/0 is less or greater thafa,,X; + a3X3)/0e + E. The other two eigenvalues are
given by the roots of the quadratic equation

12+ (AaX1/ Ky + X3t + (ha/ Ky + azia13)X:X3 = 0. (4.2)

In (4.2), the sum of the rootss —(1,X1/k; + X3), which is always negative and the
product of the roots= (x1/k; 4 aa1013) X1 X3, Which is always positive.

Therefore the roots of4(2) are real and negative or complex conjugates having
negative real parts. Thug, is asymptotically stable only if

Ao/Up < (21X1 + 0123%3) /G + E.
SinceP; exists only ifE < A1/q;, the condition for asymptotic stability ¢f, becomes
Ao/Op — (a21X1 + 0023X3) /Up < E < A1/0h.

The effort level must lie within this range for the existence of a stable steady
stateP,. The characteristic equation for the variational ma¥ix;, x;, x3) is bsu®+
bou? + by + by = 0 (seeAppendix D).

Using the Routh-Hurwitz criterigg], it can be shown thal; is stable if

(i) A/Ky > aqo031/ a3 @and

(i) A2/ ky > 210032/ 31

5. Global stability

In this section, we shall prove the global stability of the systeri) py constructing
a suitable Lyapunov function.
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THEOREM 1. The interior equilibrium pointP; is globally asymptotically stable
if

(I) 013 = 31, 0oz = 32 and

(i) (4ri22)/(kiko) > (o2 + aa1)?.

PROOF. Let us consider a suitable Lyapunov function

V(Xg, X2, X3) = (X — X7) — X 10g(X, /X]) + (X, — X3) — X5 l0g(X,/X5)
+ (X3 — X3) — X3 100(X5/X3).

Obviouslyv is positive definite.
The time derivative ob along the solutions of( 1), after a little simplification, is
given by

d
70 = (P00 = XDkt 0 = X)) 06 — %5 (o2 + 02)
+ Aa(X, — X3)%/ Ko + (X, — X3) (X3 — X3) (0t23 — 0l32)
+ (X3 — X;)z + (X5 — X3)(X; — X{) (13 — 0531)]' (5.1)

The right-hand side of5 1) can be written as- X" AX, where

XT =[x, = X}), (% — X3), (X — X3)]
and
A1/ Ky (12 +021) /2 (o3 — 0231) /2
A= | (2 +az)/2 Ao/ Ko (023 — a32) /2
(013 —a31) /2 (023 — az2) /2 1

Thereforedv/dt < O if Ais positive definite. The matriA is positive definite if the
hypotheses of Theorefnare satisfied.

6. Bionomic equilibrium

The term bionomic equilibrium is an amalgamation of the concepts of biological
equilibrium as well as economic equilibrium. As we already saw, a biological equi-
librium is given byx; = 0, X, = 0, X3 = 0. The economic equilibrium is said to
be achieved when TR (the total revenue obtained by selling the harvested biomass
equals TC (the total cost for the effort devoted to harvesting).

Let C = constant fishing cost per unit effo; = constant price per unit biomass
of the first species, ang, = constant price per unit biomass of the second species.
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The economic rent (net revenue) at any time is given by

7T(X1, X2, X3, E) = TR—TC = (plqlxl + p2q2X2 — C)E

Now,
A A o o
X;=0=x,=0 or E=—l——lx1—£x2—ﬁx3,
G ks v Oz
A A o o
X,=0=>% =0 or E=22_ "2y Zyx 2y,

2
R ko 02 Gz
)'(3 =0= X3 = 0 or X3 = 31X1 + A32X5.

(6]

Hence the nontrivial biological equilibrium solution occurs at a point on the line

(A/KeQ1 — 021/ Q) Xq — (A2/C — @12/01) %2
+(a13/01 — ot23/0) X3 + (A2/02 — A1/01) =0,

031X1 + 0igoXp — X3 =0,

where 0< x; < ki, 0 < X, < k.
The equilibrium line §.1) meets the plang, = 0 at(0, X,, X3), where

. Aa/Oo — Ay /Ch

2= (ho/Kalp + 0230032/ 0p) — (Qta2/0l1 + 031032/ Xo = G2
provided either
(@) A2/02 > Max(ri/d1, Koa1/01) andays/Qp > ory3/0a OF
(b) A2/Qx < Min(Ay /0y, Koar1o/01) andaas/Q, < aq3/0; hold.
Similarly, (6.1) meets the plang, = 0 at(Xy, 0, X3), where
X 22/ — M/ % X3 = az1%;

X1 = )
! (0t21/Qp + 230031/ 0) — (Av/KiOhh + t130031/01)
provided either

(€) A1/Q1 > Max(hz/0g, Kiatz1/02) @andays/dh > az3/d, OF
(d) )\.1/q1 < min()\.z/qz, k]_O(zj_/qz) andot13/q1 < Ol23/q2 h0|d

(6.1)

The bionomic equilibriumR (X4, X200, X300) Will be the point of intersection (if it
exists) of 6.1) andsw (X¢, X, X3, E) = (p1GuX1 + P20-X. — C)E = 0 in the first octant.

After a little calculation, it is seen that,, > O provided either
© (i + O30l23 Q12 0513“32)
K20 07} (O[] 01
P20z (% n Q23031 Ay _ 0113“31) P20z (E _
P01 \ Q1 07 KOs v T c 07

> max|:
or

A

)
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0 (i + U303 1 0513“32)
K20 (o) (O[] (O[]

. |:p2CI2 <a21 3031 Ag 0513“31) P20 (Az M)]
< min = - _ , b2 _ M
P01 \ Q2 02 K101 01 C ¢ 0

holds.

When either (a) or (b) holds but neither (e) nor (f) holds, xhespecies faces
extinction in the bionomic equilibrium. Pceeding in a isnilar manner, one can
easily prove the possibility of extinction of tlxg-species.

Thus the combined harvesting of two competing fish species in the presence of a
predator may drive one species to extinction while the bionomic equilibrium of the
open-access fishing continues with the support of the other species. This phenomeno
has been noticed by Clark][also in the case of combined harvesting of two eco-
logically independent species. Explicit biological or bioeconomic interpretations of
the conditions (a)—(f) seems to be difficult. These may simply be regarded as some
conditions to be satisfied by the biological, technical and economic parameters for the
existence of a bionomic equilibrium.

7. Optimal harvesting policy

Thepresent valuel of a continuous time-stream of revenues is given by

J= / e [ PithiXs + PateXe — CIE dit,
0

wheres denotes the instantaneous annual rate of discdiwiht [Our problem is to
maximise J subject to the state equation.1) by invoking Pontryagin’s maximal
principle [9]. The control variable E(t) is subjected to the constraintsQ E(t) <
Emax SO thatV; = [0, Ea is thecontrol set

TheHamiltonianfor the problem is given by

H = e [pithXs + PoGo%, — CIE
+ Ml( — MXF/ Ky — X Xe — a13XaXg 4 Xy (Mg — Ot E))
+ Mz( - )»zxzz/ Kz — 021X X2 — @23XoX3 + Xo(Az — O E))

+ Ms( - ng, — (31X1X3 — 0532X2X3), (7.1)
whereu; (t),i =1, 2, 3, are theadjoint variables
Theadjoint equationsre
dus oH
dt o

= —[eﬂst PO E — M1(2)L1X1/ K1 + 12X + 13Xs — (A1 — Ot E))
— M2021Xp + ,U«30(31X3], (7.2)
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dus oH
dt o ox
= —[eﬂst PO E — MZ(Z)"ZXZ/ Kz + ato1X1 + ao3Xz — (A2 — O E))
— Ma1012Xq + Msaszxs], (7.3)
and
dus oH
dt T o
= —[ — [10013Xy — a03Xe — Ua(2X3 — ag1Xy — 0532X2)]~ (7.4)

Here we deal with ammptimal equilibrium solution Since we are considering an
equilibrium solution,x;, X, andx; are to be treated as constants in the subsequent
steps.

Now, by eliminatingu; and u, from (7.2—(7.4), we get a reduced differential
equation forus as

(asD? + 33,D% 4 33, D + ag)uz = Mze™, (7.5)
Whel’eD = d/dt, a3 = 1, %.2 = —(X3 + )\.2X2/ k2 + )\.1X1/ kl):

A1k A2 A1
3, = Kk X1 Xo + DA XoX3 + P X1X3 — @210(12X1 X + 0013031X1 X3 + X300023X0 X3,
1K2 2 1
Aohq 2 Ag
89 = — | 77— — 0oy + T 013003 T 303 — (3pllp10N3 — (U310013001n | X1 XoX3,
Koy k> ki

M; = plql[Xza238 + ( — Q130001 + A1023/ kl)XlXZ] E
+ DZQZ[OK13X15 + ( — 0230012 + Ap0t13/ kZ)XlXZ] E.
The complete solution of7(5) is
s = Ale™ + Ae™ + Age™ + (Mg/N)e™, (7.6)

whereA; (i = 1, 2, 3) are arbitrary constants ang (i = 1, 2, 3) are the roots of the
auxiliary equationazm*+3a,m?+3a;m+a; = 0OandN = §3—3a,62—3a;6—ay # 0.

Itis clear from {.6) that u3 is bounded if and only i, < 0, ( = 1, 2, 3) or the
A’s are identically equal to zero. It being very difficult to check whethek 0, we
takeA =0( =1, 2, 3). Thenus = Mze™/N.

By a similar process, we get, = M,e™®/N andu; = M;e~*'/N, where

M, = piGafaoXed + (oo + orao0t13) Xa X | E
— P87 + (Xs + A1Xe/ K18 + (A1/ Ky + craz030) X X3 | E

and

M; = Palo[21%28 + (a1 + 0ra10023) X3 %2 | E
— PL0u[8% 4 (Xs + AoXo/ ko) + (ha/ ko + ctaptras) XoXs | E.
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We find the shadow priceg; (t)€", i = 1,2, 3, of the three fish species remain
bounded as — oo and hence satisfy theansversality conditiorat co [5].

The Hamiltonian in 7.1) must be maximised foE € [0, Ead. Assuming that
the control constraints & E < E,are not binding (that is, the optimal equilibrium
does not occur either & = 0 or E = E,5), We have singular control given bg][
Therefore

oH st
9E =€ " (P1thXs + P20Xo — C) — paUi Xy — po0X, = 0 (7.7)

ore”(dn/dE) = piQuX1 + 20X

This indicates that the total user cost of harvest per unit effort must be equal to the
discounted value of the future profit at the steady-state effort |&}el [

Substitutingu; andu, into (7.7) we get

X101(Pr — M1/N) + Xo02(p. — My/N) = C. (7.8)

The value ofE at the interior equilibrium given by

E= [M(l — X1/ K1) — 10X — 0113X3]/CI1
= [)»2(1 — Xo/Kg) — 21X — 0123)(3]/%

is to be substituted in the expressions by and M,. We may then solve7(8) and
(6.2) to obtain the optimal equilibrium solutior; = X5, Xo = Xp5, X3 = X5 for
a given value ofs. For different values ob we have different optimal equilibria.
Whens — oo, (7.8) leads to the obvious resytt g; X1, + P202X2 = C that implies
7T (X100 5 X200, X200s E) = 0.

This shows that an infinite discount rate leads to complete dissipation of economic
revenue. This conclusion was also drawn by Clakifi the combined harvesting
of two ecologically independent populations and by ChaudHijrin[ the combined
harvesting of two competing species.

Using (7.8), we have

(M101X1 + MaQ2X%2) E
N )
Here we note that each &, and M, is 0(5%) whereN is 0(8%) so thatr is 0(571).

Thuszr is a decreasing function éf(> 0). We therefore conclude thé&t= 0 leads to
maximisation ofr.

7T = (PlhXy + P2OX, — C)E =

8. Numerical examples

Leta; = 2.09,A, = 2.07,k; = 200,k, = 300,q; = 0.04,q, = 0.01,¢;, = 0.001,
O = 0.001,(113 = 0.01,(131 = 0.30,(123 = 0.02,(132 = 03, pl = 6, pz = 8, E= 10,
C =50 ands = 0.05.
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FIGURE 1. Variation of the populations against time, beginning with= 150,x, = 250 andxs = 130.
Parameter values are the same as in Exathple
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FIGURE 2. Phase-space trajectories corresponding to the optimal harvestingeffertl1.43 units,
with reference to different initial levels. The trajectories clearly indicate that the optimal equilibrium
P (91, 102 58) is asymptotically stable.
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ExampLE 1. For the above parameter values, it is found that

(i) Py(0,0,0) is unstable,
(i) P.(0, 153 46) is unstable,
(i) P»(162 0, 48) is unstable,

but (iv) the only interior steady sta(96, 101, 59) is stable.

ExampLE 2. For the same parameter values as those used in Examyeléind that
the bionomic equilibriumR(184, 74, 77) and the optimal equilibriung91, 102 58)
both exist. We also find that the optimal harvesting effBrtwhich leads the system
to the optimal equilibrium(91, 102 58), is 1143 units.

9. Concluding remarks

In this paper, we have attempted to study the effects of harvesting in a two-species
competitive system in the presence of a predator species. We have first studied th
existence and stability (local as well as global) of the possible steady states.

We then examined the possibilities of the existence of a bionomic (biological as
well as economic) equilibrium of the exploited system.

Next, the optimal harvest policy was discussed. The present value of a continuous
time-stream of revenues is maximised by invoking Pontryagin's maximum princi-
ple. The case of an optimal equilibrium solution is studied. It is found that the
shadow prices remain constant over time in optimal equilibrium when they satisfy
the transversality condition. Also the total user cost of harvest per unit effort equals
the discounted value of the future profit at the steady state effort level. It is proved
that zero discounting leads to maximisation of economic revenue and that an infinite
discount rate leads to complete dissipation of economic rent.

Last, some numerical examples are taken to obtain steady states, bionomic equi
librium, optimal equilibriumetc. To get the numerical results, we used Lingo and
Matlab.

We have established the existence of an equilibrium solution that satisfies the
necessary conditions of the maximum principle. As pointed out by Cl&kit]
is extremely difficult to find an optimal approach path consisting of a combination
of bang-bang controls and non-equilibrium singular controls. It is also difficult to
carry out dynamic optimisatior?] taking the effort leveE to be a dynamic (that is,
time-dependent) variable. Due to these difficulties we have considered the optimal
equilibrium solution only. The model can also be improved by assuming that the
fishing effort E increases or decreases in proportion to the flow of net economic
revenue from the fishery. For such a dynamic reaction mo@el5{], one has to
introduce a fourth differential equation i.(Q) for d E/dt. Itis quite likely that such
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a complicated system may prove to be too formidable to solve.

Appendix A.

The variational matrix of the system of equatiofsly is

Viq —010Xg —013X3
V(Xl, X2, X3) = _0521X2 V22 —O{23X2 ’ (Al)
31X3 Xz (0gXy + orgaXo — 2X3)
where
21
Vii= A — k—X1 — a12Xp — 013Xs — GE |,
1
2,
Voo = | Ay — k—Xz — 01X1 — 03Xz — GRE ) .
2
Therefore
)\.1 — qlE 0 0
V(O, 0,0) - 0 )\.z—qu 0
0 0 0

The eigenvalues of this variational matrix are.@,— q; E andx, — g, E.

Appendix B.
From (A.1), we have
)\.1 — 0512)_(2 — 0613)_(3 — qlE 0 0
V (0, Xz, X3) = —01 %o —A2Xo/ Ko —apsXs
31X3 Q3oX3 —X3

The characteristic equation is
[(}»1 — apXp — og¥s — QU E) — M]

2 )"2 S - )\-2 [ - =
X (u=+u k_ Xo + X3 | + k_ XoX3 1+ 0p3030Xo X3 =0.
2

2
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[13]
Appendix C.
From (A.1), we have
_ _ —)»1)?1/ Ky :—0512)?1 _ —0513)?1
V (X1, 0, X3) = 0_ Ay — QX1 — 123)(3 — E 0:
031X3 32X3 —X3

The characteristic equation is
[)~2 — 01Xy — 0123Xs — G E — M]

2 M= = M == - —
X (u”+u k—X1+X3 + k—X1X3+(X31(X13X1X3 =0.

1 1

Appendix D.
From (A.1), we have
—MXi/Ky Xy~ X
VXT, X5, X3) = | —apXs  —AX5 /Ky —ap5Xs
0r31X3 0r3oX3 —X3
The characteristic equation is
e . A
i+ p? | X+ XX
k> ki
A2 Ao Al N s
T (k_ X5 X3 +035095X5 X3 + kK X1 X5+ K X1 X3 03100 3XT X3 — 00001 X1 X5
> 1Ko 1
Ahy A Ao s
( Kk + K Qp30lgy— Olgp0lpg — 01051 0lp3 — Oy 30lp Oyt k_2 o303 | X(XoX3 =0
1Ko 1

or bgu® + bou? + by + by = 0, whereb = 1, b, = 1,X;5/k, + 1,X; /K, + X3,

by = A,/ K)X3X5 + gp0tp5Xa X3 + (A A,/ KiK)XTXS + (Aq/ K ) XTI X3
+ 0g101 X X — 0051 X1 X,
by = (()“1)‘2/ KiKo) + (A /K elpg0tay — 0typ00p) — 05031055 — 0430051035

+ (2,/ k2)a13a31) X1 X5 X3
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