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Abstract

In this paper, we investigate minimal (weak) approximate Hessians, and completely answer
the open questions raised by V. Jeyakumar and X. Q. Yang. As applications, we first give a
generalised Taylor’s expansion in terms of a minimal weak approximate Hessian. Then we
characterise the convexity of acontinuously Ĝateaux differentiable function. Finally some
necessary and sufficient optimality conditions are presented.

1. Introduction

Recently, considerable attention has turned to second-order nonsmooth analysis and
its applications to optimisation by virtue of various kinds of generalised directional
derivatives and generalised Hessians (see for example [1, 2, 3, 5, 6, 7, 9, 10, 12,
13, 15, 18, 19, 20]). In particular, much effort has been concentrated on second-
order nonsmooth calculus forC1;1 functions and optimisation problems involvingC1;1

functions (see for example [11, 13, 17, 22, 23]).
In [14] V. Jeyakumar and X. Q. Yang extended optimality condition forC1;1 func-

tions to continuously Gˆateaux differentiable functions by using approximate gener-
alised Hessians. However, a continuously Gˆateaux differentiable function or aC1;1

function may admit several approximate generalised Hessians at a point. On the other
hand, from the point of view of optimisation, it is important to find approximate gen-
eralised Hessians as “small” as possible. So the issue of finding minimal approximate
Hessians was raised as an open problem in [14], and the following open questions
were given there.

(1) When can the generalised Hessian,@�� f .x/.u/ (see the definition in Section3),
be guaranteed as a minimal approximate Hessian for aC1;1 function f at x?
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(2) Can a minimal approximate Hessian be found for aC1;1 function or a continu-
ously Gâteaux differentiable function?
(3) When is the minimal approximate Hessian unique?

The purpose of this work is to investigate minimal approximate Hessians and min-
imal weak approximate Hessians for continuously Gˆateaux differentiable functions,
and to answer the above questions.

The outline of this paper is as follows. In Section2, we give the characterisa-
tion of minimal (weak) approximate Hessians for continuously Gˆateaux differentiable
functions, and a necessary and sufficient condition for the uniqueness of a minimal
(weak) approximate Hessian for continuously Gˆateaux differentiable functions. Con-
sequently, Questions2 and3 above are answered. Then, in Section3, we prove a
necessary and sufficient condition for a generalised Hessian@�� f .x/.u/ to be a mini-
mal approximate Hessian for aC1;1 function f at x. This answers Question1 above.
As applications, in Section4, we give a modified version of the generalised Taylor’s
expansion in [14]. Then we characterise the convexity of a continuously Gˆateaux
differentiable function in terms of a minimal approximate Hessian and a generalised
derivative in the sense of Michel-Penot. Moreover, we present some necessary and
sufficient optimality conditions for continuously Gˆateaux differentiable functions,
which modify the results in [14].

2. Minimal approximate Hessians

Let X be a Banach space andX∗ its dual space, and〈·; ·〉 denote the canonical
pair betweenX and X∗. Let f : X → R be continuously Gˆateaux differentiable
andx;u ∈ X. Thesecond-order upper Dini-directional derivativesof f at x in the
directions.u;u/ ∈ X × X and.u;−u/ ∈ X × X (see [14]) are defined, respectively,
by

f DD
++ .x;u/ = lim sup

s↓0

〈∇ f .x + su/;u〉 − 〈∇ f .x/;u〉
s

;

f DD
+− .x;u/ = lim sup

s↓0

〈∇ f .x + s.−u//;u〉 − 〈∇ f .x/;u〉
s

;

where∇ f .x/ is the Gâteaux derivative off at x. Similarly, second-order lower
Dini-directional derivativesof f at x in the directions.u;u/ and.u;−u/ are defined
respectively by

f DD
−+ .x;u/ = lim inf

s↓0

〈∇ f .x + su/;u〉 − 〈∇ f .x/;u〉
s

;

f DD
−− .x;u/ = lim inf

s↓0

〈∇ f .x + s.−u//;u〉 − 〈∇ f .x/;u〉
s

:
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Note that the first subscript+.−/ represents the upper (lower) Dini-directional
derivative, and the second subscript+.−/ denotes that the second direction is the
same as (the negative of) the first direction.

DEFINITION 2.1. A continuously Gâteaux differentiable functionf : X → R is said
to admit anapproximate generalised Hessian@aa f .x/.u/ at x for u if @aa f .x/.u/ 6= ∅
is a convex weak∗ compact set and satisfies

min{〈x∗;u〉 : x∗ ∈ @aa f .x/.u/} ≤ f DD
−+ .x;−u/ ≤ max{〈x∗;u〉 : x∗ ∈ @aa f .x/.u/}

and

min{〈x∗;u〉 : x∗ ∈ @aa f .x/.u/} ≤ f DD
++ .x;u/ ≤ max{〈x∗;u〉 : x∗ ∈ @aa f .x/.u/}:

The function f is said to admit anapproximate generalised Hessian atx if for each
u ∈ X, f admits an approximate generalised Hessian atx for u. An approximate
generalised HessianG for f at x for u is called aminimal approximate Hessian for
f at x for u if for each@aa f .x/.u/ ⊂ G, @aa f .x/.u/ = G. Denote suchG by
@aa

m f .x/.u/.

DEFINITION 2.2. A continuously Gâteaux differentiable functionf : X → R is
said to admit aweak approximate generalised Hessian@ww f .x/.u/ at x for u if
@ww f .x/.u/ 6= ∅ is a convex weak∗ compact set and satisfies

f DD
++ .x;−u/; f DD

++ .x;u/ ≥ min{〈x∗;u〉 : x∗ ∈ @ww f .x/.u/}
and

f DD
−+ .x;−u/; f DD

−+ .x;u/ ≤ max{〈x∗;u〉 : x∗ ∈ @ww f .x/.u/}:
The function f is said to admit aweak approximate generalised Hessian atx if
for eachu ∈ X, f admits a weak approximate generalised Hessian atx for u. A
weak approximate generalised HessianGw for f at x for u is called aminimal
weak approximate Hessian forf at x for u if for each@ww f .x/.u/ ⊂ Gw, we have
@ww f .x/.u/ = Gw. Denote suchGw by @wwm f .x/.u/.

Since f DD
++ .x;−u/ = − f DD

−− .x;u/; f DD
−+ .x;−u/ = − f DD

+− .x;u/, the definition of
a (weak) approximate generalised Hessian presented here is the same as that in [14].
Clearly, each approximate generalised Hessian off at x is also a weak approximate
generalised Hessian. Furthermore, the following result can be derived immediately
from Definitions2.1and2.2.

PROPOSITION2.1. Let f : X → Rbe continuously Ĝateaux differentiable. Then

.i/ f admits an approximate generalised Hessian atx for u if and only if both
f DD
++ .x;u/ and f DD

−+ .x;−u/ are limited.
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.ii/ f admits a weak approximate generalised Hessian atx for u if and only if
both f DD

−+ .x;u/ and f DD
−+ .x;−u/ are not+∞, and both f DD

++ .x;u/ and f DD
++ .x;−u/

are not−∞.
.iii / Each single-point.weak/ approximate generalised Hessian is a minimal
.weak/ approximate Hessian.
.iv/ f DD

++ .x;0/ = f DD
−+ .x;0/ = 0, and {x∗} can be chosen as@aa

m f .x/.0/ and
@wwm f .x/.0/ for eachx∗ ∈ X∗.

We are now in a position to characterise the minimal (weak) approximate Hessian.

THEOREM 2.1. Suppose that a continuously Gâteaux differentiable functionf :
X → R admits an approximate generalised Hessian atx for u.

.i/ If f DD
++ .x;u/ = f DD

−+ .x;−u/, thenG.x;u/ ⊂ X∗ is a minimal approximate
Hessian for f at x for u if and only if G.x;u/ = {x∗} for somex∗ ∈ X∗ s.t.
〈x∗;u〉 = f DD

++ .x;u/.
.ii/ If f DD

++ .x;u/ 6= f DD
−+ .x;−u/, thenG.x;u/ ⊂ X∗ is a minimal approximate

Hessian for f at x for u if and only if G.x;u/ = co{x∗
1; x∗

2} .the convex hull of
{x∗

1 ; x∗
2}/ for somex∗

1 ; x∗
2 ∈ X∗ s.t.〈x∗

1;u〉 = f DD
++ .x;u/ and〈x∗

2;u〉 = f DD
−+ .x;−u/.

PROOF. (i) If f DD
++ .x;u/ = f DD

−+ .x;−u/, by Definition2.1, for eachx∗ ∈ X∗ s.t.
〈x∗;u〉 = f DD

++ .x;u/, {x∗} is an approximate generalised Hessian forf at x for u.
Thus, by Proposition2.1 (iii) G.x;u/ = {x∗} is a minimal approximate Hessian for
f at x for u.

On the other hand, ifG.x;u/ is a minimal approximate Hessian forf at x for u,
we know from Definition2.1that there existsx∗ ∈ G.x;u/ s.t.〈x∗;u〉 = f DD

++ .x;u/,
and{x∗} is an approximate generalised Hessian forf at x for u. SoG.x;u/ = {x∗}.

(ii) If f DD
++ .x;u/ 6= f DD

−+ .x;−u/, then for eachx∗
1 ; x∗

2 ∈ X∗ s.t.〈x∗
1 ;u〉 = f DD

++ .x;u/
and 〈x∗

2;u〉 = f DD
−+ .x;−u/, it follows from Definition2.1 that co{x∗

1; x∗
2} is an ap-

proximate generalised Hessian forf at x for u. Let @aa f .x/.u/ ⊂ co{x∗
1; x∗

2} be an
approximate generalised Hessian forf at x for u. Again by Definition2.1, there
existsx∗ ∈ @aa f .x/.u/ s.t. 〈x∗;u〉 = f DD

++ .x;u/, thenx∗
1 = x∗ ∈ @aa f .x/.u/ since

there is only one point inco{x∗
1; x∗

2} satisfying〈x∗;u〉 = f DD
++ .x;u/, that is,x∗

1. Sim-
ilarly we can derivex∗

2 ∈ @aa f .x/.u/. Then@aa f .x/.u/ = co{x∗
1 ; x∗

2}, and hence
G.x;u/ = co{x∗

1 ; x∗
2} is a minimal approximate Hessian forf at x for u.

On the other hand, ifG.x;u/ is a minimal approximate Hessian forf at x for
u, by Definition 2.1, there existx∗

1; x∗
2 ∈ G.x;u/ s.t. 〈x∗

1;u〉 = f DD
++ .x;u/ and

〈x∗
2 ;u〉 = f DD

−+ .x;−u/. So co{x∗
1; x∗

2} ⊂ G.x;u/. Noticing thatco{x∗
1; x∗

2} is an
approximate generalised Hessian forf at x for u, we haveG.x;u/ = co{x∗

1; x∗
2}. The

proof is complete.
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THEOREM 2.2. Suppose that a continuously Gâteaux differentiable functionf :
X → R admits a weak approximate generalised Hessian atx for u. Let A = {x∗ ∈
X∗ : f DD

−+ .x;u/ ≤ 〈x∗;u〉 ≤ f DD
++ .x;u/} and B = {x∗ ∈ X∗ : f DD

−+ .x;−u/ ≤
〈x∗;u〉 ≤ f DD

++ .x;−u/}.
.i/ If A ∩ B 6= ∅, F.x;u/ ⊂ X∗ is a minimal weak approximate Hessian off at

x for u if and only if F.x;u/ = {x∗} for somex∗ ∈ A ∩ B.
.ii/ If A ∩ B = ∅, we have two cases:

(a) If f DD
++ .x;u/ < f DD

−+ .x;−u/, then F.x;u/ is a minimal weak approximate
Hessian forf at x for u if and only if F.x;u/ = co{x∗

1; x∗
2} for somex∗

1; x∗
2 ∈ X∗ s.t.

〈x∗
1 ;u〉 = f DD

++ .x;u/ and〈x∗
2;u〉 = f DD

−+ .x;−u/.
(b) If f DD

++ .x;−u/ < f DD
−+ .x;u/, then F.x;u/ is a minimal weak approximate

Hessian forf at x for u if and only if F.x;u/ = co{x∗
1; x∗

2} for somex∗
1; x∗

2 ∈ X∗ s.t.
〈x∗

1 ;u〉 = f DD
++ .x;−u/ and〈x∗

2;u〉 = f DD
−+ .x;u/.

PROOF. (i) If A ∩ B 6= ∅, it follows from Definition 2.2 that {x∗} is a weak
approximate generalised Hessian forf at x for u for eachx∗ ∈ A ∩ B. Thus
F.x;u/ = {x∗} is a minimal weak approximate Hessian forf at x for u since{x∗} is
single-point.

On the other hand, ifF.x;u/ is a minimal weak approximate Hessian forf at x
for u, it follows from Definition2.2that there existsx∗ ∈ F.x;u/ s.t.x∗ ∈ A ∩ B. So
F.x;u/ = {x∗} since{x∗} is a weak approximate generalised Hessian forf atx for u.

(ii) (a). If f DD
++ .x;u/ < f DD

−+ .x;−u/, then for eachx∗
1; x∗

2 ∈ X∗ s.t. 〈x∗
1 ;u〉 =

f DD
++ .x;u/ and〈x∗

2 ;u〉 = f DD
−+ .x;−u/, we know thatco{x∗

1; x∗
2} is a weak approximate

generalised Hessian forf at x for u by Definition2.2. Let @ww f .x/.u/ ⊂ co{x∗
1; x∗

2}
be any weak approximate generalised Hessian forf atx for u. Again by Definition2.2,
there existsx∗ ∈ @ww f .x/.u/ s.t. 〈x∗;u〉 = f DD

++ .x;u/. But there is only one point
in co{x∗

1 ; x∗
2} satisfying〈x∗;u〉 = f DD

++ .x;u/, that is,x∗
1 , sox∗

1 = x∗ ∈ @ww f .x/.u/.
Similarly we can derivex∗

2 ∈ @ww f .x/.u/, which implies@ww f .x/.u/ = co{x∗
1; x∗

2}.
HenceF.x;u/ = co{x∗

1 ; x∗
2} is a minimal weak approximate Hessian forf at x for u.

On the other hand, ifF.x;u/ is a minimal weak approximate Hessian forf atx for
u, there existx∗

1; x∗
2 ∈ G.x;u/ s.t. 〈x∗

1 ;u〉 = f DD
++ .x;u/ and〈x∗

2;u〉 = f DD
−+ .x;−u/,

butco{x∗
1 ; x∗

2} is a weak approximate generalised Hessian forf atx for u, soF.x;u/ =
co{x∗

1 ; x∗
2}.

(b) The proof in this case is similar to (a) and so is omitted. The proof is complete.

REMARK 2.1. .i/ By Theorems2.1and2.2, we can see easily that there exists
a minimal (weak) approximate Hessian (@wwm f .x/.u/) @aa

m f .x/.u/ in each (weak) ap-
proximate generalised Hessian (@ww f .x/.u/) @aa f .x/.u/ for a continuously Gˆateaux
differentiable functionf at x for u. Moreover, each (@wwm f .x/.u/) @aa

m f .x/.u/ is a
compact set of a one-dimensional subspace ofX∗.
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.ii/ By Proposition2.1(i), (ii) and Theorems2.1and2.2, a continuously Gˆateaux
differentiable function admits a minimal (weak) approximate Hessian if and only if
it admits a (weak) approximate generalised Hessian. In particular, aC1;1 function,
that is, a Gâteaux differentiable function with locally Lipschitz derivative, admits a
minimal (weak) approximate Hessian at eachx ∈ X for eachu ∈ X, since f DD

++ .x;u/,
f DD
++ .x;−u/, f DD

−+ .x;u/ and f DD
−+ .x;−u/ are all limited foreachx;u ∈ X.

Now Question2 presented in Section1 is completely answered. Let us answer
Question3 by the following result, which shows us that the uniqueness of a minimal
approximate Hessian for a continuously Gˆateaux differentiable function is not true in
general, say if the underlying space is not one-dimensional.

THEOREM 2.3. Let f : X → R be a continuously Ĝateaux differentiable function,
then the following statements are true.

.i/ If f admits an approximate generalised Hessian atx for u, then the minimal
approximate Hessian forf at x for u is unique if and only ifu 6= 0 and X is one
dimensional.
.ii/ If f admits a weak approximate generalised Hessian atx for u, then the

minimal weak approximate Hessian forf at x for u is unique if and only ifu 6= 0, X
is one dimensional, and there is at most one point inA ∩ B.

PROOF. (i) If u = 0, Proposition2.1 (iv) shows that the minimal approximate
Hessians forf at x for u are not unique. Ifu 6= 0 and X is not one dimensional,
both{x∗ ∈ X∗ : 〈x∗;u〉 = f DD

++ .x;u/} and{x∗ ∈ X∗ : 〈x∗;u〉 = f DD
++ .x;−u/} are not

single-point sets. So, by Theorems2.1 and2.2, the minimal approximate Hessians
for f at x for u are not unique.

On the other hand, ifu 6= 0 and X is one dimensional,{x∗ ∈ X∗ : 〈x∗;u〉 =
f DD
++ .x;u/}; {x∗ ∈ X∗ : 〈x∗;u〉 = f DD

++ .x;−u/}; {x∗ ∈ X∗ : 〈x∗;u〉 = f DD
−+ .x;u/}

and{x∗ ∈ X∗ : 〈x∗;u〉 = f DD
−+ .x;−u/} are all single-point sets, which together with

Theorems2.1and2.2 imply that the minimal approximate Hessian forf at x for u is
unique.

(ii) This statement follows from Theorem2.2 (i) and a slight modification of the
proof of (i). The proof is complete.

3. Minimal approximate Hessians forC1,1 functions

Thegeneralised upper and lower second-order directional derivativeandgener-
alised Hessianfor a C1;1 function f : X → R at x in the sense of Michel-Penot are



[7] Minimal approximate Hessians for continuously Gâteaux differentiable functions 355

given as follows:

f ��
+ .x; u; v/ = sup

z∈X
lim sup

s↓0

〈∇ f .x + sz+ su/; v〉 − 〈∇ f .x + sz/; v〉
s

;

f ��
− .x; u; v/ = inf

z∈X
lim inf

s↓0

〈∇ f .x + sz+ su/; v〉 − 〈∇ f .x + sz/; v〉
s

;

@�� f .x/.u/ = {x∗ ∈ X∗ : f ��
− .x; u; v/ ≤ 〈x∗; v〉 ≤ f ��

+ .x; u; v/ for eachv ∈ X}:

Moreover, the following formulas hold for allx;u ∈ X.

f DD
++ .x;u/; f DD

−+ .x;u/ ∈ {Þ : f ��
− .x; u;u/ ≤ Þ ≤ f ��

+ .x; u;u/}; (3.1)

f ��
− .x; u; v/ = min{〈x∗; v〉 : x∗ ∈ @�� f .x/.u/} for eachv ∈ X; (3.2)

f ��
+ .x; u; v/ = max{〈x∗; v〉 : x∗ ∈ @�� f .x/.u/} for eachv ∈ X: (3.3)

The definitions and formulas for theC1;1 functions mentioned above can be found
or derived from those in [14, 23].

Note that (3.1) implies that@�� f .x/.u/ can be chosen as an approximate generalised
Hessian for f at x for u, so there always exists a minimal approximate Hessian in
@�� f .x/.u/ by Remark2.1 (i). Then we may ask naturally: when can@�� f .x/.u/
itself be a minimal approximate Hessian? This is Question1 from Section1 and the
following theorem gives the answer.

THEOREM 3.1. Let f : X → R be aC1;1 function andx;u ∈ X. Then@�� f .x/.u/
is a minimal approximate Hessian forf at x for u if and only if @�� f .x/.u/ is a
compact set of a one-dimensional subspace ofX∗, and

f ��
+ .x; u;u/ = max{ f DD

++ .x;u/; f DD
−+ .x;−u/}; (3.4)

f ��
− .x; u;u/ = min{ f DD

++ .x;u/; f DD
−+ .x;−u/}: (3.5)

PROOF. If @�� f .x/.u/ is a minimal approximate Hessian forf at x for u, we have
two cases.

Case a. If f DD
++ .x;u/ = f DD

−+ .x;−u/, Theorem2.1 shows that a minimal ap-
proximate Hessian forf at x for u is a single-point set{x∗}, wherex∗ ∈ X∗ s.t.
〈x∗;u〉 = f DD

++ .x;u/. So@�� f .x/.u/ is a compact set of a one dimensional subspace
of X∗. Moreover, by (3.1), we have f ��

− .x; u;u/ = f DD
++ .x;u/ = f DD

−+ .x;−u/ =
f ��
+ .x; u;u/. Thus (3.4) and (3.5) hold.

Case b.If f DD
++ .x;u/ 6= f DD

−+ .x;−u/, Theorem2.1shows that a minimal approx-
imate Hessian forf at x for u is a convex hullco{x∗

1; x∗
2}, wherex∗

1; x∗
2 ∈ X∗ s.t.

〈x∗
1 ;u〉 = f DD

++ .x;u/ and〈x∗
2;u〉 = f DD

−+ .x;−u/. Thus@�� f .x/.u/ is a compact set of
a one dimensional subspace ofX∗. Furthermore, (3.1)–(3.3) implies (3.4) and (3.5).
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On the other hand, if@�� f .x/.u/ is a compact set of a one-dimensional subspace
of X∗ and (3.4) and (3.5) hold, we also have two cases.

Case 1. If f DD
++ .x;u/ = f DD

−+ .x;−u/, @�� f .x/.u/ is single-point, and hence
@�� f .x/.u/ is a minimal approximate Hessian off at x for u.

Case 2.If f DD
++ .x;u/ 6= f DD

−+ .x;−u/, there exist a uniquex∗
1 ∈ X∗ and a unique

x∗
2 ∈ X∗ s.t.〈x∗

1 ;u〉 = f ��
+ .x; u;u/ and〈x∗

2;u〉 = f ��
− .x; u;u/. Then it follows from

(3.2)–(3.5) that@�� f .x/.u/ = co{x∗
1; x∗

2}, which implies that@�� f .x/.u/ is a minimal
approximate Hessian forf at x for u by Theorem2.1. This completes the proof.

Since in a reflexive Banach spaceX, the mappingx → @�� f .x/.u/ is single-
valued for eachu ∈ X if and only if f is twice weakly Gâteaux differentiable atx
(see [14, 23]), we have the following corollary by Theorem3.1 immediately.

COROLLARY 3.1. Let f : X → R be twice weakly Ĝateaux differentiable atx ∈ X
,with Banach spaceX reflexive, then@�� f .x/.u/ is a minimal approximate Hessian
for f at x for u.

4. Applications

4.1. Generalised Taylor’s expansions and convexityWe now apply a minimal
approximate Hessian to give the following modified version of the generalisedTaylor’s
expansions given in [14] for continuously Gâteaux differentiable functions.

THEOREM 4.1. Suppose a continuously Gâteaux differentiable functionf : X → R
admits a weak approximate generalised Hessian at eachz ∈ X. Then for each
x; y ∈ X, there exists¾ ∈ .x; y/ (the open line segment fromx to y/ s.t.

f .y/ ∈ f .x/+ 〈∇ f .x/; y − x〉 + 1

2
〈@wwm f .¾/.y − x/; y − x〉:

PROOF. The proof follows immediately from [14, Theorem 4.1] and Remark2.1(i).

By applying this generalised Taylor’s expansion, we characterise the convexity of
a continuously Gˆateaux differentiable function in terms of a minimal approximate
Hessian and generalised derivative.

THEOREM 4.2. Suppose a continuously Gâteaux differentiable functionf : X → R
admits a weak approximate generalised Hessian at eachx ∈ X. Then the following
statements are equivalent:

.i/ f is convex.
.ii/ f ��

− .x; u;u/ ≥ 0 for eachx;u ∈ X.
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.iii / min{〈x∗;u〉 : x∗ ∈ @wwm .x/.u/} ≥ 0 for eachx;u ∈ X.

PROOF. (i) ⇒ (ii). Since f is convex,〈∇ f .y/ − ∇ f .x/; y − x〉 ≥ 0 for each
x; y ∈ X, and then

f ��
− .x; u;u/ = inf

z∈X
lim inf

s↓0

〈∇ f .x + sz+ su/;u〉 − 〈∇ f .x + sz/;u〉
s

≥ 0;

for eachx;u ∈ X.
(ii) ⇒ (iii). Note that (ii) and (3.1) imply f DD

−+ .x;u/ ≥ 0 for eachx;u ∈ X. Then
f DD
++ .x;u/ ≥ f DD

−+ .x;u/ ≥ 0 for eachx;u ∈ X. Hence (iii) holds by Theorem2.2.
(iii) ⇒ (i). By Theorem4.1, for eachx;u ∈ X, there exists¾ ∈ .x; y/ and

x∗ ∈ @wwm f .¾/.y − x/ s.t.

f .y/ = f .x/+ 〈∇ f .x/; y − x〉 + 1

2
〈x∗; y − x〉;

which together with (iii) implies

f .y/ ≥ f .x/+ 〈∇ f .x/; y − x〉 for each x; y ∈ X:

Hence f is convex.

REMARK 4.1. By [21, Theorem 3.1], we know that, although we have (3.1), the
condition (ii) in Theorem4.2 is equivalent to the condition below:

(iv) f DD
−+ .x;u/ ≥ 0 for eachx;u ∈ X,

provided that the continuously Gˆateaux differentiable functionf : X → R admits
a weak approximate generalised Hessian at eachx ∈ X. In particular, for aC1;1

function f , the condition (iii) in Theorem4.2 is equivalent to

(v) min{〈x∗;u〉 : x∗ ∈ @�� f .x/.u/} ≥ 0 for eachx;u ∈ X.

This can also be derived from [14, Corollary 4.1].

4.2. Second-order optimality conditions Here we present some second-order
necessary and sufficient optimality conditions, by using minimal approximate Hes-
sians, so that the range of the feasible points can be chosen as “small” as possible.
This is important for optimisation problems. Consider the following optimisation
problem:

(P) Minimise f .x/ subject tox ∈ X,

where f : X → R is a continuously Gˆateaux differentiable function.
It follows from Remark2.1 (i) that Theorems 5.1–5.3 in [14] can be modified

immediately as the following Theorems4.3and4.4, where we just need to consider
the “smaller” feasible point set@aa

m f .x/.u/ or @wwm f .x/.u/ rather than the whole
@aa f .x/.u/ or @ww f .x/.u/.



358 Hongxu Li and Falun Huang [10]

THEOREM 4.3. Supposef admits an approximate generalised Hessian atx ∈ X
for eachu ∈ X.

.i/ If x is a local minimum of the problem(P), then∇ f .x/ = 0 and for each
u ∈ X there existsx∗ ∈ @aa

m f .x/.u/ such that〈x∗;u〉 ≥ 0.
.ii/ If x is a local maximum of the problem(P), then∇ f .x/ = 0 and for each

u ∈ X there existsx∗ ∈ @aa
m f .x/.u/ such that〈x∗;u〉 ≤ 0.

THEOREM 4.4. Let x̄ ∈ X. Assume thatf admits a weak approximate generalised
Hessian at eachx near x̄ for eachu ∈ X. If ∇ f .x̄/ = 0 and for0 < Þ < 1, each
u ∈ X with u 6= 0, the following holds:

〈x∗;u〉 ≥ 0 for all x∗ ∈ @wwm f .x̄ + Þu/.u/ (4.1)

and sox̄ is a local minimum of the problem(P). Furthermore, if the inequality(4.1) is
strict, x̄ is a strict local minimum of the problem(P).
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