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Abstract

In this paper, we investigate minimal (weak) approximate Hessians, and completely answer
the open questions raised by V. Jeyakumar and X. Q. Yang. As applications, we first give a
generalised Taylor’s expansion in terms of a minimal weak approximate Hessian. Then we
characterise the cwexity of acontinuously Gteaux differentiable function. Finally some
necessary and sufficient optimality conditions are presented.

1. Introduction

Recently, considerable attention has turned to second-order nonsmooth analysis an
its applications to optimisation by virtue of various kinds of generalised directional
derivatives and generalised Hessians (see for exanpl2, B, 5, 6, 7, 9, 10, 12,
13, 15, 18, 19, 20]). In particular, much effort has been concentrated on second-
order nonsmooth calculus f@** functions and optimisation problems involviag*
functions (see for examplé 1, 13, 17, 22, 23)).

In [14] V. Jeyakumar and X. Q. Yang extended optimality conditionGé# func-
tions to continuously @teaux differentiable functions by using approximate gener-
alised Hessians. However, a continuouslgté&iux differentiable function or@*!
function may admit several approximate generalised Hessians at a point. On the othe
hand, from the point of view of optimisation, it is important to find approximate gen-
eralised Hessians as “small” as possible. So the issue of finding minimal approximate
Hessians was raised as an open probleniLif, [and the following open questions
were given there.

(1) When can the generalised Hessiafi,f (X)(u) (see the definition in Sectid),
be guaranteed as a minimal approximate Hessian @f'dunction f atx?
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(2) Can a minimal approximate Hessian be found f@*a function or a continu-
ously Gdteaux differentiable function?
(3) When is the minimal approximate Hessian unique?

The purpose of this work is to investigate minimal approximate Hessians and min-
imal weak approximate Hessians for continuoushté€ziux differentiable functions,
and to answer the above questions.

The outline of this paper is as follows. In Sectidnwe give the characterisa-
tion of minimal (weak) approximate Hessians for continuoustyeaux differentiable
functions, and a necessary and sufficient condition for the uniqueness of a minimal
(weak) approximate Hessian for continuouslgt€aux differentiable functions. Con-
sequently, Question® and3 above are answered. Then, in Sect&)rnve prove a
necessary and sufficient condition for a generalised He8sidr(x) (u) to be a mini-
mal approximate Hessian forG!* function f atx. This answers Questidhabove.

As applications, in Sectiod, we give a modified version of the generalised Taylor’s
expansion in 14]. Then we characterise the convexity of a continuouséteatix
differentiable function in terms of a minimal approximate Hessian and a generalised
derivative in the sense of Michel-Penot. Moreover, we present some necessary an
sufficient optimality conditions for continuously a&aux differentiable functions,
which modify the results in14].

2. Minimal approximate Hessians

Let X be a Banach space antt its dual space, and, -) denote the canonical
pair betweenX and X*. Let f : X — R be continuously @feaux differentiable
andx, u € X. Thesecond-order upper Dini-directional derivative$ f atx in the
directions(u, u) € X x X and(u, —u) € X x X (see 14]) are defined, respectively,

by

fff(x, U = Iimsup(Vf(X + su), uS) —(Vf(X),u) ’
s|0

£2°(x, u) = lim sup (VIx+ S(—U));w —(Vieo,up
s|0

whereV f (x) is the Giteaux derivative off at x. Similarly, second-order lower
Dini-directional derivative®f f atx in the directiongu, u) and(u, —u) are defined
respectively by
v f —(Vf
sl0 S
(x. u) = liminf (VX +s(=u)),u) = (VF(x), U)‘
sl0 S

fDD
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Note that the first subscript(—) represents the upper (lower) Dini-directional
derivative, and the second subscript—) denotes that the second direction is the
same as (the negative of) the first direction.

DEeFINITION 2.1. A continuously Giteaux differentiable functiofi: X — Ris said
to admit arapproximate generalised Hessiait f (x)(u) atx for u if 322 f (x)(u) # @
is a convex weakcompact set and satisfies

min{(x*, u) : x* € 3% f (x)(u)} < f° (x —U) < max{(x*,u) : x* € 9% f (x)(u)}
and
min{(x*, u) : x* € 9% f (X)(u)} < f (x u) < max{(x*,u) : x* € 9®f (x)(u)}.

The functionf is said to admit ampproximate generalised Hessianxaif for each
u € X, f admits an approximate generalised Hessiax ir u. An approximate
generalised Hessidaa for f atx for u is called aminimal approximate Hessian for
f at x for u if for eacho??f (x)(u) c G, 9*2f(x)(u) = G. Denote suchG by
a2 f (x)(u).

DEFINITION 2.2. A continuously Gteaux differentiable functiorh : X — R is
said to admit aweak approximate generalised Hessiaft’ f (x)(u) at x for u if
9" f (x)(u) # @ is a convex weakcompact set and satisfies

f2P(x, —u), F2P(x, u) = min{(x*, u) : x* € 3" f (x)(u)}
and
fPP(x, —u), FPP(x, u) < max{(x*,u) : x* € 3" f (X)(W)}.

The function f is said to admit aveak approximate generalised Hessianxaif

for eachu € X, f admits a weak approximate generalised Hessianfar u. A

weak approximate generalised Hessfap for f at x for u is called aminimal
weak approximate Hessian fdr at x for u if for eacho»> f (x)(u) c G,,, we have
3" f (x)(u) = G,,. Denote suclG,, by 32" f (x)(u).

Since f2P(x, —u) = —fPP(x, u), fPP(x, —u) = —fPP(x, u), the definition of
a (weak) approximate generalised Hessian presented here is the same asl#at in [
Clearly, each approximate generalised Hessiah afx is also a weak approximate
generalised Hessian. Furthermore, the following result can be derived immediately
from Definitions2.1and2.2

ProPOSITION2.1. Let f : X — Rbe continuously @teaux differentiable. Then

(i) f admits an approximate generalised Hessiarxdor u if and only if both
fPP(x, u) and fPP(x, —u) are limited.
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(i) f admits a weak approximate generalised Hessiar &r u if and only if
both f°P(x, u) and fPP(x, —u) are not+oo, and bothf P (x, u) and f2P(x, —u)
are not—oo.

(i) Each single-point(weak approximate generalised Hessian is a minimal
(weak approximate Hessian.

(iv) fPP(x,0) = fPP(x,0) = 0, and {x*} can be chosen ag2*f (x)(0) and
3" f(x)(0) for eachx* € X*.

We are now in a position to characterise the minimal (weak) approximate Hessian.

THEOREM2.1. Suppose that a continuouslya@aux differentiable functiorf :
X — Radmits an approximate generalised Hessiam &r u.

(i) If £22(x,u) = fPP(x, —u), thenG(x,u) C X* is a minimal approximate
Hessian for f at x for u if and only if G(x,u) = {x*} for somex* € X* s.t.
(x*,u)y = fPP(x, u).

(i) |If fDD(x u) # fPP(x, —u), thenG(x,u) C X* is a minimal approximate
Hessian forf at x for u if and only if G(x,u) = co{x;, x;} (the convex hull of
{x;, x3}) for somex;, x; € X* s.t.(x;, u) = f2P(x,u) and (x5, u) = fPP(x, —u).

PrROOF. (i) If f2P(x,u) = fPP(x, —u), by Definition2.1, for eachx* € X* s.t.
(x*,u)y = fPP(x, u) {x*} is an approximate generalised Hessian foat x for u.
Thus, by Propositior2.1 (iii) G(x, u) = {x*} is a minimal approximate Hessian for
f atx for u.

On the other hand, iG(x, u) is a minimal approximate Hessian férat x for u,
we know from Definition2.1that there existg* € G(x, u) s.t. (x*,u) = f2P(x, u),
and{x*} is an approximate generalised Hessianffatx for u. SoG(x, u) = {x*}.

(i If £2P(x,u) # fPP(x, —u), thenforeach;, x3; € X*s.t.(x;, u) = f2P(x,u)
and (x;, ) fPP(x, —u), it follows from Definition 2.1 that cof{x}, x;} is an ap-
proximate generalised Hessian fbrat x for u. Letd f(x)(u) C co{x], x;} be an
approximate generalised Hessian forat x for u. Again by Definition2.1, there
existsx* € 9% f (x)(u) s.t. (x*,u) = fPP(x, u), thenx; = x* € 82f (x)(u) since
there is only one point igo{x;, x5} satisfying(x*, u) = fDD(x u), thatis,x;. Sim-
ilarly we can derivex; € 9%*f(x)(u). Thend**f(x)(u) = cofx;, x;}, and hence
G(x, u) = cofx;, X3} is a minimal approximate Hessian férat x for u.

On the other hand, iG(x, u) is a minimal approximate Hessian fdr at x for
u, by Definition 2.1, there existxj,x; € G(x,u) s.t. (x;,u) = fPP(x,u) and
(x3,u) = fPP(x,—u). Socofxi,x3} C G(x,u). Noticing thatco{x;, x3} is an
approximate generalised Hessian foat x for u, we haveG(x, u) = co{x;, X3}. The
proof is complete.
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THEOREM 2.2. Suppose that a continuouslya@aux differentiable functiorf :
X — R admits a weak approximate generalised Hessiax fir u. Let A = {x* €
X* o fPP(x,u) = (x,u) < fPP(x,w}and B = {x* € X* : fPP(x,—u) <
(x*,u) < FPP(x, —u)}.

(i IfANB #d, F(x,u) C X*is a minimal weak approximate Hessian fohat
x for u if and only if F(x, u) = {x*} for somex* € AN B.

(i) If AnB =@, we have two cases

(@) If f2P(x,u) < fPP(x,—u), then F(x,u) is a minimal weak approximate
Hessian forf atx foru |f and only if F(x, u) = cofx;, x5} for somex;, x; € X* s.t.
(X, uy = fDD(x u) and (x3, u) = f2P(x, —u).

(b) If £PP(x,—u) < fPP(x,u), then F(x,u) is a minimal weak approximate
Hessian forf atx for u if and only if F(x, u) = cofx;, x3} for somex;, x; € X* s.t.
(x;,u)y = fPP(x, —u) and (x3, u) = fPP(x, u).

ProOOF (i) If AN B # @, it follows from Definition 2.2 that {x*} is a weak
approximate generalised Hessian fbrat x for u for eachx* € AN B. Thus
F(x, u) = {x*} is a minimal weak approximate Hessian foat x for u since{x*} is
single-point.

On the other hand, iF (x, u) is a minimal weak approximate Hessian fbrat x
for u, it follows from Definition2.2that there existg* € F(x, u) s.t.x* € AN B. So
F(x, u) = {x*} since{x*} is a weak approximate generalised Hessianffatx for u.

(i) (@). If £PP(x,u) < fPP(x, —u), then for eachx;, x; € X* s.t. (x;,u) =
f2P(x, u) and(x3, u) = fP°(x, —u), we know thato(x;, x3} is a weak approximate
generalised Hessian fdratx for u by Definition2.2. Leta™* f (X)(u) C cofx;, x;}
be any weak approximate generalised Hessialff & for u. Again by Definition2.2,
there exists<* € 9" f(x)(u) s.t. (x*,u) = fPP(x,u). But there is only one point
in cofx;, x;} satisfying(x*,u) = fP°(x,u), thatis,x;, sox; = x* € 9" f (x)(u).
Similarly we can derives; € 9*" f (x)(u), which impliesa™" f (x)(u) = cofx;, X3}.
HenceF (x, u) = co{x;, x5} is a minimal weak approximate Hessian fioatx for u.

On the other hand, iF (x, u) is a minimal weak approximate Hessian foatx for
u, there exisixj, x; € G(x,u) s.t. (x;, u) = f2P(x,u) and(x;,u) = fPP(x, —u),
butcofx;, x;} is aweak approximate generalised Hessiarffarx for u, soF (x, u) =
cof{xy, X3}.

(b) The proof in this case is similar to (a) and so is omitted. The proof is complete.

REMARK 2.1. (i) By Theorem£.1and2.2, we can see easily that there exists
a minimal (weak) approximate Hessiad} (' f (x)(u)) 922 f (x)(u) in each (weak) ap-
proximate generalised Hessia¥{ f (x)(u)) 22 f (x)(u) for a continuously @feaux
differentiable functionf atx for u. Moreover, eachd" f (x)(u)) 322 f (x)(u) is a
compact set of a one-dimensional subspac¥*of
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(i) By Proposition2.1(i), (i) and Theorem®.1and2.2, a continuously @feaux
differentiable function admits a minimal (weak) approximate Hessian if and only if
it admits a (weak) approximate generalised Hessian. In particuatdunction,
that is, a Giteaux differentiable function with locally Lipschitz derivative, admits a
minimal (weak) approximate Hessian at each X for eachu € X, sincefPP(x, u),
f2P(x, —u), fPP(x, u) and f°P(x, —u) are all limited foreachx, u € X.

Now Question2 presented in Sectioh is completely answered. Let us answer
Question3 by the following result, which shows us that the uniqueness of a minimal
approximate Hessian for a continuouslgt@aux differentiable function is not true in
general, say if the underlying space is not one-dimensional.

THEOREM2.3. Let f : X — R be a continuously &eaux differentiable function,
then the following statements are true.

(i) If f admits an approximate generalised Hessiax &br u, then the minimal
approximate Hessian fof at x for u is unique if and only iu # 0 and X is one
dimensional.

(i) If f admits a weak approximate generalised Hessiax dbr u, then the
minimal weak approximate Hessian forat x for u is unique if and only ifi # 0, X
is one dimensional, and there is at most one poirAin B.

PrOOF. (i) If u = 0, Proposition2.1 (iv) shows that the minimal approximate
Hessians forf at x for u are not unique. i # 0 andX is not one dimensional,
both{x* € X* : (x*,u) = f2P(x,u)} and{x* € X*: (x*,u) = fLP(x, —u)} are not
single-point sets. So, by Theore@d and2.2, the minimal approximate Hessians
for f atx for u are not unique.

On the other hand, it # 0 and X is one dimensional{x* € X* : (x*,u) =
fPP(x, W}, {x* € X* : (x*,u) = fPP(x, —w}, {x* € X* : (x*,u) = fDD(x u}
and{x* € X* : (x*,u) = fPP(x, —u)} are all single-point sets, which together with
TheoremQ.landZ.ZimpIy that the minimal approximate Hessian fbiatx for u is
unique.

(ii) This statement follows from Theoregh2 (i) and a slight modification of the
proof of (i). The proofis complete.

3. Minimal approximate Hessians forC*! functions

The generalised upper and lower second-order directional derivatindgener-
alised Hessiarfor aC** function f : X — R atx in the sense of Michel-Penot are
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given as follows:

vo . (VE(X+sz+su),v) — (VI(X+s2,v)
f7°(x;u, v) = suplimsup ,

zeX sl0 S
v —(Vf
foo(x;u, v) = |an|m¢|nf (VIX+sz+ s“)’vs> ( (X+SZ),U)’

X)) = {x" e X*: £2°(x;u,v) < (X', v) < f7°(x;u,v) foreachv e X}.

Moreover, the following formulas hold for a¥l, u € X.

2P fPP(x,u) € {a: f2°(x;u,u) <o < f°(x;u, W)}, (3.1)

feo(x;u, v) = min{(x*, v) : X* € 3°°f (x)(u)} foreachv e X, (3.2)
f7(X;u, v) = max{(x*, v) : X" € 9°° f(x)(u)} foreachv e X. (3.3)

(X, u),

The definitions and formulas for tf@"* functions mentioned above can be found
or derived from those inlf4, 23].

Note that 8.1) implies that*® f (x) (u) can be chosen as an approximate generalised
Hessian forf at x for u, so there always exists a minimal approximate Hessian in
9°° f (x)(u) by Remark2.1 (i). Then we may ask naturally: when caff f (x)(u)
itself be a minimal approximate Hessian? This is Questifnom Sectionl and the
following theorem gives the answer.

THEOREM3.1. Let f : X — Rbe aCk?! function andx, u € X. Thend®® f (x)(u)
is a minimal approximate Hessian fdr at x for u if and only if 3°° f (x)(u) is a
compact set of a one-dimensional subspac¥‘gfand

fooou,u) = max 22 (x, u), £o°(x, —u)}, (3.4)
feox;u,u) = min{ £2P (x, u), 2P (x, —u)}. (3.5)

PrOOF. If 9°° f (x)(u) is a minimal approximate Hessian férat x for u, we have
two cases.

Case a. If fPP(x,u) = fPP(x, —u), Theorem2.1 shows that a minimal ap-
proximate Hessian forf at x for u is a single-point sefx*}, wherex* € X* s.t.
(x*,u) = fPP(x,u). S09°° f(x)(u) is a compact set of a one dimensional subspace
of X*. Moreover, by 8.1), we havef*°(x;u,u) = fPP(x,u) = fPP(x,—u) =
fy°(x;u, u). Thus @.4) and @.5 hold.

Case b.If fPP(x,u) # fPP(x, —u), Theoren®.1shows that a minimal approx-
imate Hessian forf at x for u is a convex hullco{x;, x5}, wherex;, x5 € X* s.t.
(x;,u) = fPP(x,u) and(x3, u) = f°P(x, —u). Thusd** f (x)(u) is a compact set of
a one dimensional subspaceXf. Furthermore,.1)—(3.3) implies (3.4) and 3.5).
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On the other hand, i#°° f (x)(u) is a compact set of a one-dimensional subspace
of X* and @.4) and @3.5 hold, we also have two cases.

Case 1. If fP°(x,u) = fPP(x,—u), 9°°f(x)(u) is single-point, and hence
9°° f (x)(u) is a minimal approximate Hessian éfatx for u.

Case 2.1f f2P(x,u) # fPP(x, —u), there exist a uniquej € X* and a unique
X5 € X*s.t.(x;,u) = f°(x;u, u) and(x3, u) = f°°(x;u, u). Then it follows from
(3.2—(3.9 thata** f (x)(u) = cofx;, X3}, which implies thad* f (x) (u) is a minimal

approximate Hessian fdr atx for u by Theoren®.1 This completes the proof.

Since in a reflexive Banach spagg the mappingx — 9°°f(X)(u) is single-
valued for eaclu € X if and only if f is twice weakly Giteaux differentiable at
(see [L4, 23]), we have the following corollary by Theore®ilimmediately.

CoROLLARY 3.1. Let f : X — Rbe twice weakly @teaux differentiable at € X
,with Banach spac« reflexive, therp* f (x)(u) is a minimal approximate Hessian
for f atx for u.

4. Applications

4.1. Generalised Taylor's expansions and convexityWe now apply a minimal
approximate Hessian to give the following modified version of the generalised Taylor’s
expansions given inl{] for continuously Giteaux differentiable functions.

THEOREM4.1. Suppose a continuoushé@aux differentiable functioh : X — R
admits a weak approximate generalised Hessian at eaeh X. Then for each
X,y € X, there exist§ € (X, y) (the open line segment froxto y) s.t.

1
f(y)e fO+(VIx),y—x) + 5(3,1‘{”(5)(}’— X), Y = X).

PrOOF. The proof follows immediately fromil4, Theorem 4.1] and Rema#k1 (i).

By applying this generalised Taylor’s expansion, we characterise the convexity of
a continuously @feaux differentiable function in terms of a minimal approximate
Hessian and generalised derivative.

THEOREM4.2. Suppose a continuoushé@aux differentiable functioh : X — R
admits a weak approximate generalised Hessian at eaehX. Then the following
statements are equivalent

(i) f isconvex.
(i) f°°(x;u,u) > Ofor eachx, u e X.
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(i) min{(x*, u) : x* € 9*"(x)(u)} > Ofor eachx,u e X.

PrOOF. (i) = (ii). Since f is convex,(V f(y) — Vf(x),y — x) > 0 for each
X,y € X, and then
(VE(X+sz+su),u) — (VX +s2,u)

f°°(x;u, u) = inf liminf > 0,
zeX sl0 S

for eachx, u € X.
(i) = (iii). Note that (ii) and 8.1) imply f°P(x, u) > 0 for eachx, u € X. Then
fPP(x,u) = fPP(x,u) > 0 for eachx, u € X. Hence (iii) holds by Theorerd.2.
(i) = (i). By Theorem4.l, for eachx,u € X, there exist& € (x,y) and
x* e f(&)(y —X) s.t.

1
f(y) =100+ (VIX),y—x)+ E(X*, y =X,
which together with (iii) implies
f(y) > f(X)+ (VFf(x),y—x) foreachx,ye X.

Hencef is convex.

REMARK 4.1. By [21, Theorem 3.1], we know that, although we hag@el), the
condition (ii) in Theoremt.2is equivalent to the condition below:

(iv) fPP(x,u) > 0foreachx,u e X,
provided that the continuouslya®aux differentiable functiori : X — R admits

a weak approximate generalised Hessian at eaeh X. In particular, for aC!
function f, the condition (iii) in Theorerd.2is equivalent to

(V) min{(x*,u) : x* € 3°° f (x)(u)} > O for eachx, u € X.
This can also be derived from4, Corollary 4.1].

4.2. Second-order optimality conditions Here we present some second-order
necessary and sufficient optimality conditions, by using minimal approximate Hes-
sians, so that the range of the feasible points can be chosen as “small” as possible
This is important for optimisation problems. Consider the following optimisation
problem:

(P) Minimise f (x) subjecttox € X,
wheref : X — Ris a continuously @feaux differentiable function.

It follows from Remark2.1 (i) that Theorems 5.1-5.3 inlfl] can be modified
immediately as the following Theorems3and4.4, where we just need to consider

the “smaller” feasible point set2?f (x)(u) or 9" f (x)(u) rather than the whole
322 f (x)(u) or 9»* f (x)(u).
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THEOREM4.3. Supposef admits an approximate generalised Hessianxat X
for eachu € X.

(i) If x is a local minimum of the problerfP), thenV f (x) = 0 and for each
u € X there existsx* € 922 f (x)(u) such that(x*, u) > 0.

(i) If x is a local maximum of the probleff), thenV f (x)
u € X there existx* € 922 f (x)(u) such that(x*, u) < 0.

0 and for each

THEOREM4.4. LetX € X. Assume thaf admits a weak approximate generalised
Hessian at eacl nearx for eachu € X. If Vf(X) = 0andfor0 < « < 1, each
u € X with u # 0, the following holds:

(x*,u)y >0 forall x* e d " f(X+ au)(u) (4.2)

and sox is a local minimum of the probleli®). Furthermore, if the inequalit{4.1) is
strict, X is a strict local minimum of the proble(®).
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