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RUMOURS WITH GENERAL INITIAL CONDITIONS
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Abstract

An analysis is made of the Daley-Kendall and Maki-Thompson rumour models starting
from general initial proportions of ignorants, spreaders and stiflers in the population. We
investigate as a function of the initial conditions the composition of the final population
when the rumour has run its course.

1. Introduction

The stochastic theory of rumours,with interacting subpopulations of ignorants, spread-
ers and stiflers, began with the seminal paper of Daley and Kendall [4]. The most
striking result in the area—that if there is one spreader initially, then the proportion
of the population never to hear the rumour converges almost surely to a proportion
0:203188 of the population size as the latter tends to infinity—was first signalled
in that article. This result occurs also in the variant stochastic model of Maki and
Thompson [5], although a typographic error has resulted in the value 0:238 being cited
in a number of consequent papers.

A rigorous treatment of the limiting behaviour of these processes proved unexpect-
edly tricky and the literature has mainly addressed technical questions of stochastic
convergence, mostlyvia diffusion-type approximations and martingale arguments
(see, for example, Barbour [1], Sudbury [7], Pittel [6] and Watson [8]). Broader
questions for those models are still largely unexplored. For example, the standard
assumption that a rumour is initiated by a single spreader, while doubtless true in
many concrete examples, is certainly inappropriate for others in this current age of
mass communication, where a rumour may be initiated by television or radio.

In this paper we adopt general initial conditions and consider the evolution of the
models. We examine how the initial conditions bear on what proportion of ignorants
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and of the total population never get to hear the rumour. Our formulæ have direct
consequences to several questions of physical interest which we shall treat fully
elsewhere.

We discoverinter alia the perhaps surprising result that, even when the initial pro-
portion of spreaders in the population tends to unity, the fraction of the subpopulation
of initial ignorants that never hear the rumour does not approach zero.

In order to uncover some new results without becoming enmeshed in technicalities
we shall adopt a broad brush stroke and, after introducing stochastic rumours in
Section2, proceed using a continuous deterministic approximationvia differential
equations as in the seminal article of Daley and Kendall [4]. In Section3 we treat the
evolution of the deterministic model with time. In Section4 we find the proportion of
the initial ignorants who never hear the rumour and in Section5 the proportion of the
whole population who never hear the rumour.

2. The model

A stochastic rumour pertains to a fixed population ofn individuals consisting of
subpopulations of ignorants, spreaders and stiflers. Homogeneous mixing of indi-
viduals occurs, with a given proportion of ignorant-spreader interactions leading to
the ignorant becoming a spreader and the same proportion of spreader-stifler inter-
actions resulting in the spreader becoming a stifler. A similar phenomenon occurs
with spreader-spreader interactions. In the Daley-Kendall version, the outcome is
two stiflers. The Maki-Thompson version distinguishes between an initiating and a
receptor spreader in such an interaction and only one spreader converts to being a
stifler as a result of the encounter.

With these models a sequence of state transitions occurs. These are of three types.
Let i , s, r be the respective numbers of ignorants, spreaders and stiflers at a given
moment. The ignorant-spreader and spreader-stifler interactions respectively may be
expressed as state transitions

.i; s; r / −→ .i − 1; s + 1; r /;

.i; s; r / −→ .i; s − 1; r + 1/:
(2.1)

The spreader-spreader interaction is

.i; s; r / −→ .i; s − 2; r + 2/

for the Daley-Kendall version of the process and

.i; s; r / −→ .i; s − 1; r + 1/ (2.2)
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for the Maki-Thompson version. We remark that (2.1) and (2.2) are formally the
same, though the first (the spreader-stifler interaction) occurs at a rate proportional to
sr and the latter (the spreader-spreader interaction) at a rate proportional tos.s − 1/.
Such sequences lead inexorably (after a finite number of transitions) to states in which
there are no spreaders left.

We restrict our attention to the limiting form of these models as the total population
size tends to infinity. We adopt a continuum formulation. Leti .t/, s.t/, r .t/ denote
respectively the proportions of the total population at timet that are respectively
ignorants, spreadersand stiflers. With an appropriate choice of time scale, the common
coefficient for interactions leading to a change of subpopulation of an individual can
be taken as unity. The Daley-Kendall and Maki-Thompson stochastic models lead to
the same set of coupled deterministic subpopulation equations

di=dt = −is; (2.3)

ds=dt = −s.1 − 2i /; (2.4)

dr=dt = s.1 − i /; (2.5)

which apply in the limit of a total population size tending to infinity.
We adopt the initial conditions

i .0/ = Þ > 0; s.0/ = þ > 0; r .0/ = ; with Þ + þ +  = 1: (2.6)

We remark that (2.5) may be considered redundant, since

r = 1− i − s: (2.7)

It is convenient to introduce the parameter� = �.−/ := i =Þ, the ratio of the proportion
of ignorants at time− to the initial proportion. In the next section we address the
dynamics and asymptotics of the continuum rumour process.

3. Evolution of the system

THEOREM 1. The evolution of the rumour process prescribed by(2.3)–(2.6) is given
parametrically in terms ofi by

s = þ − 2.i − Þ/+ ln.i =Þ/ (3.1)

= þ − 2Þ.� − 1/ + ln � (3.2)

and (2.7).
The process evolves towards an asymptotic state.i∞;0; r∞/, with

i ↓ i∞ = i∞.Þ; þ/ as − → ∞
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and

0< i∞ < 1=2: (3.3)

The parameter�∞ := i∞=Þ satisfies the transcendental equation

�∞e2Þ.1−�∞/ = e−þ: (3.4)

Further,s → 0 andr .−/ ↑ r∞ = 1− i∞ as− → ∞.

PROOF. Equation (2.3) implies thati is a strictly decreasing function of− and may
therefore be used as an independent parameter. Combining (2.3) and (2.4) provides
the relation

ds

di
= 1 − 2i

i
; (3.5)

which integrates to give (3.1). The value ofr is then determined by (2.7).
Being strictly decreasing and bounded below by zero and above by unity,i must

therefore tend to some limiti∞ < 1 as− → ∞. By (2.5), r is strictly increasing with
time. Since it is bounded above by unity, it must tend to a limitr∞ > 0 as− → ∞.
Also, sincei∞ < 1, we have from (2.5) thats → 0 as− → ∞, or equivalentlys → 0
asi → i∞.

If Þ ≤ 1=2, theni .−/ < 1=2 for all − > 0 sincei is strictly decreasing, and hence
i∞ < 1=2. If Þ > 1=2, then by (3.5) ds=di < 0 and

ds

d−
= ds

di
· di

d−
> 0

initially. Since s → 0 as− → ∞, s.−/ must first increase to a local (and global)
maximum (at which timei = 1=2) and by (3.5) decrease thereafter. Becausei
is strictly decreasing, we thus havei∞ < 1=2. Sincer∞ > 0, we have also that
i∞ = 1 − r∞ > 0.

Finally, letting− → ∞ in (3.2) yields

0 = þ − 2Þ.�∞ − 1/+ ln �∞; (3.6)

which is just (3.4).

Equation (3.6) may be expressed as

wew = −2Þe−2Þ−þ; (3.7)

wherew := −2Þ�∞.
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FIGURE 1. The graph of the equationy = xex

The equation

xex = y (3.8)

has two real solutions when−1=e < y < 0 (see Figure1). For Þ; þ > 0 we have
−2Þe−2Þ < −2Þe−2Þ−þ, so thatxex|x=−2Þ < xex|x=−2Þ� for 0 < Þ < 1. Hence one
of the real solutions of (3.7) is less than−2Þ and the other greater than−2Þ. As we
must have 0< � < 1, the physical solution to (3.7) is the one greater than−2Þ, that
is, the numerically smaller real solution of (3.8). The functionw = w.y/ giving the
unique real solution to (3.8) for y ≥ 0 and the numerically smaller real solution for
y < 0 has been in the literature for over 200 years and is known as theLambertW
function (see [2]). Lagrange’s expansion provides an explicit series evaluation

w =
∞∑

k=1

.−y/k

k! kk−1:

Thus forÞ; þ > 0

� = − 1

2Þ
w.−2Þe−2Þ−þ/ =

∞∑
k=1

.−2Þk/k−1

k! exp.−k.2Þ + þ// :

4. Proportion of ignorants never hearing the rumour

THEOREM 2. (a) For Þ +  = 1 − þ fixed,�∞ is strictly decreasing inÞ.
(b) For þ +  = 1 − Þ fixed,�∞ is strictly decreasing inþ.
(c) For Þ + þ = 1 −  fixed,�∞ is strictly decreasing inÞ.
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PROOF. Consider situation (a). Implicit differentiation of (3.6) with respect toÞ
provides

@�∞
@Þ

= −�∞.1 − �∞/
1 − 2Þ�∞

;

which is negative by (3.3), sinceÞ�∞ = i∞. This establishes the result in (a).
Similarly in the context of (b), we have

@�∞
@þ

= − �∞
1 − 2Þ�∞

< 0;

giving the requisite result.
Finally, for (c), supposeÞ + þ = c, fixed, so that�∞ = �∞.Þ/ and

c − Þ − 2Þ.�∞ − 1/+ ln �∞ = 0:

Implicit differentiation yields

d�∞
dÞ

= −2�∞.1 − �∞/
1− 2Þ�∞

< 0; (4.1)

and we are done.

Figure2depicts the situation for case (c) with the standard = 0, so thatÞ+þ = 1.
For simplicity, we commit an abuse of notation and set�.Þ/ = �∞.Þ/. We have seen
that� is a strictly monotone decreasing function ofÞ on .0;1/. Its infimum satisfies
the Daley-Kendall equation 2.1 − �/ + ln � = 0 and is�.1/ ≈ 0:2031878. The other
real solution� = 1 to this equation is aphysical, as noted in [4]. The supremum of� is
�.0/ = 1=e ≈ 0:36787944. That is, we have the somewhat surprising result that when
nearly all the population are initially spreaders, it is still the case that a proportion 1=e
of the initial ignorants never hear the rumour.

The infimum value�.1/ arises in the limit of total population tending to infinity for
a fixed finite initial number of spreaders. The supremum value�.0/ arises similarly
with a fixed finite number of ignorants.

Despite the suggestion from Figure2, � is not a concave function ofÞ throughout
.0;1/. We may see this as follows. Implicit differentiation of (3.6) twice with respect
to Þ yields

�.1 − 2Þ�/
d2�

dÞ2
= d�

dÞ

[
4�2 + d�

dÞ

]

or, using (4.1),

.1 − 2Þ�/
d2�

dÞ2
= d�

dÞ

[
4� − 1− 2�

1 − 2�Þ

]
:
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FIGURE 2. The behaviour of the function�

For Þ ≈ 0, the expression in brackets on the right is≈ 4�.0/ − [1 − 2�.0/] > 0, so
d2�=dÞ2 is negative and� is a strictly concave function ofÞ. On the other hand, for
Þ ≈ 1, the expression in brackets is≈ 4�.1/ − 1 < 0, sod2�=dÞ2 is positive and� is
a strictly convex function ofÞ.

In the concluding section we examine the variation of� := i∞ = Þ�∞ with the
initial conditions.

5. Proportion of total population never hearing the rumour

The dependence on initial conditions of the proportion� of the total population
who never hear the rumour is also of interest.

THEOREM 3. (a) For Þ+ = 1−þ fixed,� is strictly increasing inÞ for Þ < 1=2
and strictly decreasing inÞ for Þ > 1=2.
(b) For þ +  = 1 − Þ fixed,� is strictly decreasing inþ.
(c) For Þ + þ = 1 −  fixed,� is strictly increasing inÞ.

PROOF. We may rewrite (3.6) as

þ − 2.� − Þ/+ ln � − lnÞ = 0: (5.1)

The argument now follows that of Theorem2. In (a), (b), (c) we have respectively
from implicit differentiation of (5.1) that

@�

@Þ
= �

Þ
· 1 − 2Þ

1 − 2�
;

@�

@þ
= −�

1 − 2�
;

d�

dÞ
= �

Þ
· 1 − Þ

1 − 2�
;

from which the conclusions follow directly, since� < 1=2.



400 Selma Belen and C. E. M. Pearce [8]

COROLLARY 4. We have� ∗ := sup� = 1=2. This occurs in the limiting case
Þ = 1=2 =  , with þ = 0.

PROOF. From (c) of Theorem2, we have for fixed that � has supremum ap-
proached in the limitÞ = 1 −  with þ = 0. But from (a), we have in the limit
þ = 0 that� has supremum arising fromÞ = 1=2. This gives the second part of the
enunciation.

From (5.1), � ∗ satisfies

0 = −2� ∗ + 1 + ln .2� ∗/ : (5.2)

For x > 0, setg.x/ := ln x − x +1. Theng is strictly increasing on.0;1/ and strictly
decreasing on.1;∞/. It follows that x = 1 is the only solution tog.x/ = 0. We
deduce from (5.2) that� ∗ = 1=2.
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