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Abstract

We study the structure of solutions of an initial value problem arising in the study of steadily
rotating spiral waves in the kinematic theory of excitable media. In particular, we prove that
under certain conditions there is a unique global positive monotone increasing solution.

1. Introduction

In this paper, we study the initial value problem (P):

w′′ − a.w/w′ + � = 0; y > 0; (1.1)

w.0/ = 0; w′.0/ = 1; (1.2)

where� ∈ R is a parameter anda.s/ is a piecewiseC1 function satisfyinga.0/ = 0,
a′.s/ > 0 for s 6= 0, a.s/ → −∞ ass → −∞, and

∫ ∞

0

ds

1+ A.s/
< ∞; (1.3)

whereA.s/ := ∫ s

0 a.t/dt. Note thatA.s/ → ∞ ass → −∞. A typical example is

a.s/ = |s|Þ−1s; Þ > 0:

In particular, whena.s/ = s the initial value problem (P) arises in the study of
steadily rotating spiral waves in the kinematic theory of excitable media. See, for
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example, [1, 4, 5], especially the nice review article of Meron [4] in 1992 and the
references cited therein. Let� be the curvature of a steadily rotating spiral wave
whose tip neither grows nor retracts,�c be the curvature of the spiral arm at the tip,cr

be the normal velocity,s be the arc length, and! be the constant frequency. Then we
have the following relation (see, for example, (4.48) and (4.49) in [4]):

�

(∫ s

0

�.¾/cr .¾/d¾

)
+ dcr

ds
= !; s> 0; (1.4)

lim
s→0

�.s/ = �c; lim
s→∞

�.s/ = 0:

Using the following curvature-speed relationcr = c− D� , wherec andD are positive
constants, and by neglecting the higher order term of� in the integral of (1.4), we
have

c�

(∫ s

0

�.¾/d¾

)
− D

d�

ds
= !:

Set

q.s/ =
∫ s

0

�.¾/d¾: (1.5)

Thenq′.s/ = �.s/ andq satisfies

Dq′′ − cqq′ + ! = 0; s> 0:

Now we introduce the change of variables:

y =
√

c�c

D
s; w.y/ =

√
c

D�c
q.s/; � = !√

cD�3
c

:

Thenw.y/ satisfies (1.1) with a.s/ = s. Alsow.0/ = 0,w′.0/ = 1 andw′.y/ → 0
asy → ∞.

For more references on spiral waves, we refer the reader to the paper of Ikota,
Ishimura and Yamaguchi [3], the recent paper of Giga, Ishimura and Kohsaka [2], and
the references cited therein.

The local existence and uniqueness of solutions of (P) for any given� ∈ R is trivial.
We denote this solution byw.y;�/. Note thatw > 0 andw′ > 0 for smally > 0.

The main theorem of this paper is as follows.

THEOREM 1.1. There is a unique positive constant�∗ such that the following
hold:

.i/ if � > �∗, thenw.y;�/ has exactly one critical point andw exists globally
such thatw.y;�/ → −∞ andw′.y;�/ → 0 as y → ∞;
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.ii/ if � = �∗, thenw∗.y/ := w.y;�∗/ is a global positive monotone increasing
solution such thatw∗.y/ → ∞ and.w∗/′.y/ → 0 as y → ∞;
.iii / if � < �∗, thenw.y;�/ is monotone increasing in[0; R/ such thatw.y;�/ →

∞ andw′.y;�/ → ∞ as y → R− for someR< ∞.

We give an interpretation of Theorem1.1 for the case whena.s/ = s as follows.
In this case, we have found a family of steadily rotating spiral waves. In this family
there is a unique frequency!∗ := �∗√cD�3

c such that any curve in the plane with
this frequency is a spiral wave with positive curvature. If we increase the frequency
! so that! > !∗, then the curvature of the curve would change sign exactly once.
Furthermore, it follows from (1.5) that the rotation number defined by

1

2³

∫ ∞

0

�.s/ds

is +∞ when! = !∗ and is−∞ when! > !∗. Hence they are indeed spiral waves.
This paper is organised as follows. In Section2, we study the properties of various

solutions of (P) for different values of the parameter�. After deriving a comparison
principle, we prove Theorem1.1 in Section3. In particular, there is a unique global
positive monotone increasingsolution of (P). Finally, we give a discussion in Section4.

2. Structure of solutions

We first note that, by (1.3), A.s/ → ∞ as s → ∞. Moreover,a.s/ → ∞ as
s → ∞. OtherwiseA.s/ grows at most linearly and so the first integral in (1.3)
diverges.

Letw.y;�/ be the solution of (P) for a given� ∈ R. Let

F.y/ = w′.y/ − A.w.y//; y ≥ 0: (2.1)

By (1.1) and (1.2), it is easy to see thatF ′.y/ = −� andF.0/ = 1. Hence we obtain
that

w′.y/− A.w.y// = 1 − �y: (2.2)

We shall see that the above relation plays an important role in this study.

LEMMA 2.1. Suppose that� ≤ 0. Thenw.y;�/ is monotone increasing in[0; R/
such thatw.y;�/ → ∞ andw′.y;�/ → ∞ as y → R− for someR< ∞.

PROOF. Letw.y/ = w.y;�/. By assumption, we have

w′.y/ ≥ A.w.y// + 1> 0 (2.3)
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for y ≥ 0. Hencew > 0 in its existence interval[0; R/.
We claim thatR < ∞. For contradiction, we suppose thatR = ∞. By (2.3), we

have
w′.y/

1 + A.w.y//
≥ 1; ∀y ≥ 0;

and so ∫ w.y/

0

ds

1 + A.s/
≥ y → ∞

as y → ∞, contradicting (1.3). HenceR < ∞. It is trivial thatw.y/ → ∞ and
w′.y/ → ∞ asy → R−. This completes the proof.

In what follows, we always assume that� > 0. Sincew′′ < 0 for any critical point
of w, there is at most one critical point ofw.

LEMMA 2.2. Suppose that for some� > 0 the corresponding solutionw.y;�/
has exactly one critical point. Thenw is global such thatw.y;�/ → −∞ and
w′.y;�/ → 0 as y → ∞.

PROOF. Note that by assumption there is a uniquey0 > 0 such thatw′.y0/ = 0.
Thenw′ > 0 in [0; y0/ andw′ < 0 for y > y0 as long asw exists.

Suppose thatw is not global. Thenw.y/ → −∞ asy → R− for someR < ∞.
Otherwise, if limy→R− w.y/ is finite, then there is a sequence{yn} such thatyn → R
andw′.yn/ → 0 asn → ∞. By (2.2), the limit limy→R− w′.y/ exists. Then we
havew′.y/ → 0 asy → R−. This implies thatw can be continued beyondR, a
contradiction. Hencew.y/ → −∞ asy → R−. But from (2.2) again it follows that
w′.y/ = A.w.y// + 1 − �y → +∞ asy → R−, another contradiction. Hencew is
global.

Note that the limit l := lim y→∞w.y/ exists. If l > −∞, then, by (2.2),
lim y→∞w′.y/ = −∞. This is impossible. Hencew.y/ → −∞ asy → ∞.

Next, we claim that eitherw′′ < 0 in [0;∞/ orw′′ > 0 in .y1;∞/ for somey1 > 0
with w′′.y1/ = 0. Indeed, if there existsy1 > 0 such thatw′′ < 0 in [0; y1/ and
w′′.y1/ = 0, then, by (1.1), w.y1/ 6= 0 andw′.y1/ 6= 0. By differentiating (1.1) with
respect toy, we obtain that

w′′′ = a.w/w′ ′ + a′.w/.w′/2: (2.4)

Hencew′′′.y1/ > 0 and sow′′.y/ > 0 for y ∈ .y1; y1 + Ž/ for someŽ > 0. It follows
from (2.4) and the fact thata′.s/ > 0, ∀ s 6= 0, thatw′′′ > 0 whenw′′ = 0. Therefore
w′′ > 0 in .y1;∞/.

In any case, the limitL := lim y→∞w′.y/ exists andL ≤ 0. If L < 0, then, by
(1.1), w′′.y/ → ∞ as y → ∞. This contradicts the assumptionw′ < 0 in .y0;∞/.
We conclude thatw′.y/ → 0 asy → ∞. This proves the lemma.
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From now on we assume thatw′ > 0 in its existence interval. By differentiating
(1.1) with respect toy, we obtain forv.y/ := w′.y/ that

v′′ = a.w/v′ + a′.w/v2; v.0/ = 1: (2.5)

Hence by (2.5) the functionv has at most one critical point. Note thatv′.0/ = w′′.0/ =
−� < 0.

LEMMA 2.3. Given� > 0, suppose thatw′.y;�/ > 0 in its existence interval and
thatw′.y;�/ has exactly one critical point. Thenw.y;�/ → ∞ andw′.y;�/ → ∞
as y → R− for someR< ∞.

PROOF. Suppose thatw is global. We claim thatw.y/ → ∞ andw′.y/ → ∞
as y → ∞. Sincew′ > 0, the limit l := lim y→∞w.y/ exists andl > 0. By (2.2),
A.w.y// = w′.y/ + �y − 1 ≥ �y − 1 → ∞ as y → ∞. Hencel = ∞. Suppose
thatv′.y0/ = 0 for somey0 > 0. Then by assumptionv′ > 0 for y > y0. Hence the
limit L := lim y→∞w′.y/ exists andL > 0. If L < ∞, then, by (1.1),w′′.y/ → ∞ as
y → ∞, a contradiction. ThereforeL = ∞. It follows from l’Hôpital’s rule that

lim
y→∞

y

1 + A.w.y//
= lim

y→∞
1

a.w.y//w′.y/
= 0: (2.6)

Now, from (2.2) and (2.6) it follows that

lim
y→∞

w′.y/
1 + A.w.y//

= 1 − � lim
y→∞

y

1 + A.w.y//
= 1:

Thus there existsy1 > y0 such that

w′.y/
1 + A.w.y//

≥ 1

2
; ∀y ≥ y1: (2.7)

By integrating (2.7) from y1 to y and lettingy → ∞, this leads to a contradiction.
Hencew cannot be global.

It is clear thatw.y;�/ → ∞ andw′.y;�/ → ∞ as y → R− for someR < ∞.
The lemma follows.

The following lemma is about the case whenv has no critical point.

LEMMA 2.4. Suppose thatw.y;�/ is a global solution such thatw′.y;�/ > 0 for all
y ∈ .0;∞/ for some� > 0. Thenw′′ < 0 in .0;∞/,w.y;�/ → ∞ andw′.y;�/ → 0
as y → ∞. Conversely, ifw′.y;�/ > 0 andw′′.y;�/ < 0 as long asw exists for
some� > 0, thenw.y;�/ is global.
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PROOF. From A.w.y// = w′.y/ + �y − 1, it follows thatw.y/ → ∞ asy → ∞.
Sincew is global, by Lemma2.3, w′′ < 0 in .0;∞/. For the contradiction, suppose
that the limit l := limy→∞w′.y/ > 0. Then, by (1.1), w′′.y/ → ∞ as y → ∞, a
contradiction. Hencew′.y;�/ → 0 asy → ∞.

Now, suppose that there is an� > 0 such thatw′.y;�/ > 0 andw′′.y;�/ < 0 in
the existence interval and thatw.y;�/ is not global. Thenw.y/ → ∞ asy → R− for
someR< ∞. Otherwise, by (2.2), bothw.y/ andw′.y/ have finite limits and thenw
can be continued beyondR, a contradiction. Hencew.y/ → ∞ asy → R− for some
R < ∞. Therefore, by (2.2) again,w′.y/ → ∞ asy → R−, which contradicts the
assumption thatw′′ < 0. Hencew.y;�/ is global ifw′.y;�/ > 0 andw′′.y;�/ < 0 as
long asw exists. This proves the lemma.

3. Proof of Theorem1.1

For convenience, we denote the existence interval ofw.y;�/ by [0; R/ for some
R = R.�/ > 0. We begin with the following comparison principle.

LEMMA 3.1. Letwi .y/ = w.y;�i /, Ri = R.�i /, i = 1;2, and R = min{R1; R2}.
Suppose thatw′

2 > 0 in [0; R2/ and�1 < �2. Thenw′
1 > w′

2 in .0; R/ andw′′
1 > w′′

2

in [0; R/.

PROOF. Note that, by (1.1), the lemma holds fory small, since�1 < �2. Let
vi = w′

i . It follows from (1.1) that

.v1 − v2/
′ = a.w1/v1 − a.w2/v2 + .�2 − �1/

= a.w1/.v1 − v2/+ [a.w1/ − a.w2/]v2 + .�2 − �1/: (3.1)

Therefore to prove the lemma it suffices to prove thatw′
1 > w

′
2 in .0; R/.

For the contradiction, suppose that there isy0 ∈ .0; R/ such thatw′
1 > w′

2 in .0; y0/

andw′
1.y0/ = w′

2.y0/. Thenw1.y0/ > w2.y0/ > 0 andv′
1.y0/ ≤ v′

2.y0/, contradicting
(3.1). This completes the proof.

The following lemma gives the uniqueness of a global monotone increasingsolution
of (P).

LEMMA 3.2. There is at most one global monotone increasing solution of(P) such
thatw.y/ → ∞ andw′.y/ → 0 as y → ∞.

PROOF. Suppose that there are two distinct global monotone increasing solutions
w1;w2 of (P) such thatwi .y/ → ∞ andw′

i .y/ → 0 asy → ∞, i = 1;2. Suppose that
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�1 < �2, where�i = −w′′
i .0/, i = 1;2. Then, by Lemma3.1, [w′

1.y/−w′
2.y/]′ > 0 in

[0;∞/. Sincew′
1.1/−w′

2.1/ > 0, the limit limy→∞[w′
1.y/−w′

2.y/] is strictly bigger
than zero, a contradiction. The lemma follows.

We introduce the following two sets:

I1 = {� > 0 | w.y;�/ → ∞ andw′.y;�/ → ∞ asy → R− for someR< ∞};
I2 = {� > 0 | w.y;�/ has exactly one critical point}:

By the continuous dependence on the parameter� in (1.1), it is trivial that the setI2 is
open.

LEMMA 3.3. The setI2 is nonempty.

PROOF. Suppose thatI2 = ∅. Thenw′.y;�/ > 0, ∀y ≥ 0, for all � > 0. We claim
that R.�/ ≥ R.0/ for all � > 0. From (2.2) it follows that

w′.y/
1 + A.w.y//

≤ 1; ∀y ∈ [0; R.�//: (3.2)

By an integration of (3.2), we getw.y/ ≤ u.y/ as long asw andu exist, whereu.y/
is the solution of (1.1) with � = 0. Note thatu′ > 0 in [0; R0/ andu.y/ → ∞ as
y → R−

0 for someR0 := R.0/ ∈ .0;∞/. HenceR.�/ ≥ R0 for all � > 0. Notice
that{w.R0=2;�/}�>0 is uniformly bounded.

On the other hand, from (2.2) it follows that

w′.R0=2;�/ = A.w.R0=2;�// + 1 − �R0=2 → −∞
as� → ∞, a contradiction. ThusI2 is nonempty and the proof is complete.

We observe that for any� ∈ .0;∞/ \ I2 the solutionw satisfiesw′.y/ > 0 in
[0; R.�//. HenceI2 is connected by the comparison principle (Lemma3.1). Therefore
I2 = .�∗;∞/ for some�∗ ≥ 0. Indeed,�∗ = inf I2.

By Lemmas2.3 and2.4, the solutionv.y;�/ of (2.5) has one critical point if and
only if � ∈ I1. By the continuous dependence on the parameter� in (2.5), the setI1

is open. Hence�∗ 6∈ I1 ∪ I2.
Letw∗ be the corresponding solution of (1.1) for � = �∗. Then.w∗/′ > 0 as long

asw∗ exists. Moreover,w∗ is global. Otherwise, ifR.�∗/ < ∞, thenw∗.y/ → ∞
asy → R−.�∗/. Hence.w∗/′.y/ → ∞ asy → R−.�∗/, by (2.2). This implies that
�∗ ∈ I1, a contradiction. Hencew∗ is global. Also, it follows from Lemma2.4 that
w∗.y/ → ∞ and .w∗/′.y/ → 0 asy → ∞. We conclude from Lemma2.1 that
�∗ > 0.

Observe that any solutionw.y;�/ of (P) with � 6∈ I1 ∪ I2 is global and satisfies
w.y/ → ∞ andw′.y/ → 0 asy → ∞. HenceI1 = .0; �∗/. This completes the
proof of Theorem1.1.
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4. Discussion

In this paper, we first reduce the initial value problem (P) for a second-order ODE to
a first-order ODE (2.2) by an integration. It is trivial that the problem (P) is equivalent
to (2.2) with the initial valuew.0/ = 0. Using this important relationship, we are
able to classify the structure of solutions of (P). Then in Theorem1.1 we prove the
characterisation of solutions of (P) with respect to the parameter�.

In the case of excitable media, that is, whena.s/ = s, we have found a family of
steadily rotating spiral waves. In this family there is a unique frequency!∗ such that
any curve in the plane with this frequency is a spiral wave with positive curvature. If
we increase the frequency! so that! > !∗, then the curvature of the wave would
change sign exactly once.
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