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Abstract

We study the structure of solutions of an initial value problem arising in the study of steadily
rotating spiral waves in the kinematic theory of excitable media. In particular, we prove that
under certain conditions there is a unique global positive monotone increasing solution.

1. Introduction

In this paper, we study the initial value problem (P):

w' —aw)w +n=0 y=>0, (1.2)
w0 =0, w(0)=1, (1.2)

wheren € R is a parameter anals) is a piecewiséC! function satisfyinga(0) = 0,
a'(s) > 0fors # 0,a(s) > —oo ass - —oo, and

* ds
A m < 00, (13)

whereA(s) := fos a(t) dt. Note thatA(s) — oo ass — —oo. A typical example is

ais)=1s|*'s, «>0.

In particular, whera(s) = s the initial value problem (P) arises in the study of
steadily rotating spiral waves in the kinematic theory of excitable media. See, for
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example, L, 4, 5], especially the nice review article of Merod][in 1992 and the
references cited therein. Letbe the curvature of a steadily rotating spiral wave
whose tip neither grows nor retractg,be the curvature of the spiral arm at the tip,
be the normal velocitys be the arc length, and be the constant frequency. Then we
have the following relation (see, for example, (4.48) and (4.49]n [

s d
« (/ K(S)Cr(é)d%) + d—c' =w, $>0, (1.4)
0 S

lImi(s) =«., lim«(s)=0.
s—0 S—00

Using the following curvature-speedrelatiogn= c— D«, wherec andD are positive
constants, and by neglecting the higher order term of the integral of {.4), we

have
d/c
(/ K(S)d€> D =0,

acs) = / (&) di. (1.5)
0

Set

Thenq'(s) = «(s) andq satisfies
Dg'—cqd +w=0, s=>0.

Now we introduce the change of variables:

y= s w(y) = qs), n=—
D y = CDK

Thenw(y) satisfies {.1) with a(s) = s. Alsow(0) = 0, w'(0) = 1 andw'(y) — 0
asy — oo.
For more references on spiral waves, we refer the reader to the paper of Ikota,
Ishimura and Yamaguch], the recent paper of Giga, Ishimura and Kohs&{adnd
the references cited therein.
The local existence and uniqueness of solutions of (P) for any giveR is trivial.
We denote this solution by (y; n). Note thatw > 0 andw’ > 0 for smally > 0.
The main theorem of this paper is as follows.

THEOREM1.1. There is a unique positive constant such that the following
hold:

() if n > n*, thenw(y;n) has exactly one critical point and exists globally
such thatw(y; n) - —oo andw’'(y;n) — 0asy — oc;
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(i) if n = n*, thenw*(y) := w(y;n*) is a global positive monotone increasing
solution such thatv*(y) — oo and (w*)'(y) — 0asy — oo;

(i) if n < n*, thenw(y;n) is monotone increasing ifD, R) such thatw(y; n) —
oo andw'(y;n) — oo asy — R~ for someR < oco.

We give an interpretation of Theoreinl for the case whea(s) = s as follows.
In this case, we have found a family of steadily rotating spiral waves. In this family
there is a unique frequeney* := n*,/cD«2 such that any curve in the plane with
this frequency is a spiral wave with positive curvature. If we increase the frequency
o so thatw > *, then the curvature of the curve would change sign exactly once.
Furthermore, it follows from1.5) that the rotation number defined by

1 o0
Z/o k(s)ds

is +o0o whenw = w* and is—oo whenw > w*. Hence they are indeed spiral waves.
This paper is organised as follows. In Sectiymve study the properties of various
solutions of (P) for different values of the parameterAfter deriving a comparison
principle, we prove Theorerh.1in Section3. In particular, there is a unique global
positive monotone increasing solution of (P). Finally, we give a discussion in Séction

2. Structure of solutions

We first note that, by1(.3), A(s) — oo ass — oco. Moreover,a(s) — oo as
s — oo. OtherwiseA(s) grows at most linearly and so the first integral in3)
diverges.

Let w(y; n) be the solution of (P) for a giveme R. Let

F(y) =w'(y) — Aw(y)), y=0. (2.1)

By (1.1) and (L.2), it is easy to see thd'(y) = —n andF(0) = 1. Hence we obtain
that

w'(y) = Alw(y)) =1—ny. (2.2)
We shall see that the above relation plays an important role in this study.

LEMMA 2.1. Suppose thah < 0. Thenw(y;n) is monotone increasing if0, R)
such thatw(y; n) — oo andw'(y;n) — oo asy — R~ for someR < co.

PrROOF. Letw(y) = w(y;n). By assumption, we have

w'(y) = A(w(y)) +1>0 (2.3)
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fory > 0. Hencew > 0 in its existence intervdD, R).
We claim thatR < oco. For contradiction, we suppose that= co. By (2.3, we
have

w'(y)
_— 1, V
T+ Ay — V=0

and so

w(y) ds
/0 1tAs — ) %

asy — oo, contradicting {.3). HenceR < oco. lItis trivial that w(y) — oo and
w'(y) — oo asy — R~. This completes the proof.

In what follows, we always assume that- 0. Sincew” < 0 for any critical point
of w, there is at most one critical point of.

LEMMA 2.2. Suppose that for some > 0 the corresponding solutiom(y; n)
has exactly one critical point. Them is global such thatw(y;n) — —oco and
w'(y;n) - 0asy — oo.

PrOOF. Note that by assumption there is a unigge> 0 such thatw'(yo) = O.
Thenw' > 0in[0, yp) andw’ < 0 fory > y, as long asv exists.

Suppose that is not global. Thenv(y) - —oco asy — R~ for someR < oo.
Otherwise, if lim,_, g- w(y) is finite, then there is a sequenpg} such thaty, — R
andw'(y,) — 0 asn — oco. By (2.2, the limit limy_ g w'(y) exists. Then we
havew’(y) — 0 asy — R~. This implies thatw can be continued beyon, a
contradiction. Hence(y) — —oo asy — R~. But from (2.2) again it follows that
w'(y) = Alw(y)) +1—ny — +oo asy — R, another contradiction. Heneeis
global.

Note that the limitl := lim,_ . w(y) exists. Ifl > —oo, then, by 2.2),
limy_. . w'(y) = —oo. This is impossible. Hence(y) — —oo asy — oo.

Next, we claim that eithew” < 0in [0, co) or w” > 0in (yy, co) for somey; > 0
with w”(y;) = 0. Indeed, if there existg; > 0 such thatw” < 0 in [0, y;) and
w”(y1) = 0, then, by {.1), w(yy) # 0 andw’(y,) # 0. By differentiating {.1) with
respect toy, we obtain that

w” =aw)w’ + a’ (w)(w)?. (2.4)

Hencew” (y;) > 0 and saw”(y) > O fory € (yi, y1 + 8) for somes > 0. It follows
from (2.4) and the factthaa'(s) > 0,V s # 0, thatw” > 0 whenw” = 0. Therefore
w” > 0in (yy, 00).

In any case, the limit. := lim,_ ., w'(y) exists and. < 0. If L < O, then, by
(1.2), w”’(y) — oo asy — oo. This contradicts the assumptiari < 0 in (Yo, 00).
We conclude that’(y) — 0 asy — oo. This proves the lemma.
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From now on we assume that > O in its existence interval. By differentiating
(1.2) with respect toy, we obtain forv(y) := w’'(y) that

v =aw)v +aw)v?, v0) =1 (2.5)

Hence by 2.5) the functiorw has at most one critical point. Note thét0) = w”(0) =
—n < 0.

LEMMA 2.3. Givenn > 0, suppose that’(y; n) > 0in its existence interval and
that w'(y; n) has exactly one critical point. Than(y;n) — oo andw'(y;n) — oo
asy — R~ for someR < oco.

PrROOF. Suppose thatv is global. We claim thatv(y) — oo andw/(y) — oo
asy — oo. Sincew’ > 0, the limitl := lim,_ ., w(y) exists and > 0. By (2.2,
Aw(y)) =w(y)+ny—1>ny—1— ocoasy — oo. Hencel = co. Suppose
thatv'(yo) = O for somey, > 0. Then by assumption’ > O fory > y,. Hence the
limit L :=lim,_, ., w'(y) exists and_ > 0. If L < oo, then, by {.1), w”(y) — oo as
y — o0, a contradiction. Therefore = co. It follows from I'HOpital’s rule that

im—Y  —im—~ _0 (2.6)
y=oo 14+ A(w(y))  y=oca(w(y)w'(y)
Now, from (2.2) and @.6) it follows that
im &zl—nlim +=1
y=oo 14+ A(w(y)) y=oo 14+ A(w(y))
Thus there existy; > Y, such that
w'(y) 1
——2 > Vy>y,. 2.7
1+ Awy) — 2 =% @7

By integrating 2.7) from y; to y and lettingy — oo, this leads to a contradiction.
Hencew cannot be global.

It is clear thatw(y;n) — oo andw'(y;n) — oo asy — R~ for someR < oco.
The lemma follows.

The following lemma is about the case whehas no critical point.

LEMMA 2.4. Suppose thab(y; n) is a global solution such thai'(y; n) > Oforall
y € (0, 00) forsome) > 0. Thenw” < 01in (0, 00), w(y;n) — coandw'(y;n) — 0
asy — oo. Conversely, ifw'(y;n) > 0andw’(y;n) < 0 as long asw exists for
somen > 0, thenw(y; n) is global.



590 Jong-Shenq Guo, Chu-Pin Lo and Je-Chiang Tsai [6]

PrOOF. From A(w(y)) = w'(y) + ny — 1, it follows thatw(y) — oo asy — oc.
Sincew is global, by Lemm&.3 w” < 0in (0, co). For the contradiction, suppose
that the limitl := limy_ . w'(y) > 0. Then, by {.1), w"(y) - oo asy — oo, a
contradiction. Hence’'(y; n) — 0 asy — oo.

Now, suppose that there is gn> 0 such thatw'(y;n) > 0 andw”(y;n) < 0in
the existence interval and thaty; n) is not global. Thenv(y) — coasy — R~ for
someR < oco. Otherwise, byZ.2), bothw(y) andw’(y) have finite limits and thew
can be continued beyori®, a contradiction. Hence(y) — oo asy — R~ for some
R < oo. Therefore, by 2.2) again,w’(y) — oo asy — R~, which contradicts the
assumption that” < 0. Hencew(y; n) is global ifw'(y; n) > 0 andw’(y;n) < 0as
long asw exists. This proves the lemma.

3. Proof of Theorem1.1

For convenience, we denote the existence interval @f; n) by [0, R) for some
R = R(») > 0. We begin with the following comparison principle.

LEMMA 3.1. Letw;(Y) = w(Y;n), R = R(mp), 1 = 1,2, andR = min{Ry, Ry}.
Suppose thaiw, > 0in [0, Ry) andn; < n,. Thenw| > w, in (0, R) andw] > w}
in [0, R).

PrOOF. Note that, by {.1), the lemma holds foy small, sincen; < n,. Let
v = w!. It follows from (1.1) that

(v1 — vp) = a(wy) vy — a(wp) v, + (N2 — N1)
= a(wy)(v1 — vp) + [a(w1) — a(wyz)vo + (12 — n1). (3.1)

Therefore to prove the lemma it suffices to prove that- wj in (0, R).

For the contradiction, suppose that thergis (0, R) such thatw; > w)in (0, yo)
andw)(Yo) = w,y(Yo). Thenw;(Yo) > wa(Yo) > 0 andv;(yo) < vy(Yo), contradicting
(3.2). This completes the proof.

The following lemma gives the uniqueness of a global monotone increasing solution
of (P).

LEMMA 3.2. There is at most one global monotone increasing solutiofPdsuch
thatw(y) - oo andw'(y) — 0asy — oo.

PROOF. Suppose that there are two distinct global monotone increasing solutions
wy, w, of (P) suchthaty; (y) — oo andw/(y) — Oasy — oo,i = 1, 2. Suppose that
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n1 < n2, Wheren; = —w!’(0),i = 1, 2. Then, by Lemma&.1, [w)(y) —w,(y)]' > 0in
[0, 00). Sincew] (1) — w5(1) > 0, the limit limy_, .[w](y) — w)y(y)] is strictly bigger
than zero, a contradiction. The lemma follows.

We introduce the following two sets:

I, ={n>0]w(y;n — ocoandw'(y;n) — oo asy - R for someR < oo},
I, ={n > 0| w(y;n) has exactly one critical poiht

By the continuous dependence on the paramgie(1.1), it is trivial that the set, is
open.

LEMMA 3.3. The setl, is nonempty.

PrROOF. Suppose that, = @. Thenw'(y;n) > 0,Vy > 0, foralln > 0. We claim
thatR(n) > R(0) for all » > 0. From @.2) it follows that

w'(y)
T AwG) = 1, Vyel[0, R®)). (3.2)

By an integration of 8.2), we getw(y) < u(y) as long asv andu exist, wherau(y)
is the solution of {.1) with » = 0. Note thatu" > 0 in [0, Ry) andu(y) — oo as
y — Ry for someR, := R(0) € (0, 00). HenceR(n) > R, for all n > 0. Notice
that{w(Ry/2;n)},-0 is uniformly bounded.

On the other hand, fron2(2) it follows that

w'(Ro/2;m) = Aw(Ry/2;m)) +1—nRy/2 - —0o0
asn — oo, a contradiction. Thus, is nonempty and the proof is complete.

We observe that for any € (0, 00) \ I, the solutionw satisfiesw'(y) > 0 in
[0, R(n)). Hencel, is connected by the comparison principle (Len@. Therefore
I, = (n*, 00) for somen* > 0. Indeedp* = inf I.

By Lemmas2.3and2.4, the solutionv(y; n) of (2.5 has one critical point if and
only if n € I;. By the continuous dependence on the paramgter(2.5), the setl,
is open. Hence* ¢ |, U |,.

Let w* be the corresponding solution df.{) for n = »*. Then(w*) > 0 as long
asw* exists. Moreoverw* is global. Otherwise, iR(n*) < oo, thenw*(y) — oo
asy — R (n*). Hence(w*)' (y) — oo asy — R (n*), by (2.2). This implies that
n* € |3, a contradiction. Hence* is global. Also, it follows from Lemma&.4 that
w*(y) — oo and(w*)'(y) — 0 asy — oo. We conclude from Lemma.1 that
n* > 0.

Observe that any solutiom(y; n) of (P) withn ¢ I, U |, is global and satisfies
w(y) — oo andw'(y) — 0 asy — oo. Hencel,; = (0, n*). This completes the
proof of Theoreni.l
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4. Discussion

Inthis paper, we first reduce the initial value problem (P) for a second-order ODE to
a first-order ODEZ.2) by an integration. Itis trivial that the problem (P) is equivalent
to (2.2) with the initial valuew(0) = 0. Using this important relationship, we are
able to classify the structure of solutions of (P). Then in Theotehwe prove the
characterisation of solutions of (P) with respect to the parameter

In the case of excitable media, that is, wtegs) = s, we have found a family of
steadily rotating spiral waves. In this family there is a unique frequeriguch that
any curve in the plane with this frequency is a spiral wave with positive curvature. If
we increase the frequenayso thatw > »*, then the curvature of the wave would
change sign exactly once.
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