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Abstract

This paper deals with the combined bioeconomic harvesting of two competing fish species,
each of which obeys the Gompertz law of growth. The catch-rate functions are chosen so as
to reflect saturation effects with respect to stock abundance as well as harvesting effort. The
stability of the dynamical system is discussed and the existence of a bionomic equilibrium
is examined. The optimal harvest policy is studied with the help of Pontryagin’s maximum
principle. The results are illustrated with the help of a numerical example.

1. Introduction

Harvesting of multispecies fisheries is an important area of study in fishery mod-
elling. The basic ideas related to this field of study were first provided by Clark [
Clark also considered the harvesting of one species in a fishery consisting of two
competing species. Chaudhug, [4] has studied the combined harvesting of two
competing species from the standpoint of bioeconomic harvesting and has discusse
dynamic optimisation of the harvest policy. Chaudhuri and Saha&daje studied
combined harvesting of a prey-predator community with some prey hiding in refuges.
The problem of nonselective (that is, combined) harvesting of a prey-predator fishery
with infected prey has been studied by Chattopadhyay, Ghosal and Chauglhuri [
Pradhan and Chaudhurld developed a dynamic reaction model for harvesting a
two-species fishery with taxation as a control instrument. Multispecies harvesting
models have also been studied by Silvert and Sniiff§, [Ragozin and Brown14],

Wilen and Brown [L6] and Mesterton-Gibbonsq[ 10]) amongst others.

In almost all of the multispecies fishery models referred to above, the rate of growth

was considered to follow tHegistic law of growth 7]. In the present paper, we have
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considered th&ompertz law of growthbecause of its superiority over the logistic law

of growth as discussed in detail by Pradhan and Chaudh#ti The existence of the
possible steady states along with their local stability is discussed. The optimal harves
policy is discussed using tmeaximum principlelue to Pontryagini1]. A numerical
example is taken up to illustrate how the system works.

2. Formulation of the problem

The population dynamics of the fishery are modelled by the equations

dx

a = F(Xs y) - hl(t)7
d

d_ty = G(X’ y) - hz(t)7

wherex(t) andy(t) are the population densities of the two species at timé is
assumed that the growth of each species is governed bgdhgertz law of growth
The harvest rates atg(t) andh,(t) respectively.

We take

F(x,y) =rxlog(K/x) —axy
and

G(x,y) =sylog(L/y) — Bxy,

wherer, s are theintrinsic growth rates(or biotic potential3, and K, L are the

carrying capacitieof the two species. The interaction termgxy and—gxy imply

that the two species compete with each other for the use of a common resource.
Here the rates of harvest are taken in the fobin [

QE®)X(t)
hy(t) = ————~
{0 =2E0 +bx® 2.1)
ha(t) = —REOYO

aE() +by()

whereq; andq, are thecatchability coefficientsf the two specied; denotes theffort
devoted to their nonselective harvesting anda,, b,, b, are positive parameters of
the system.

The catch-rate function generally used in fishery models is of the fosmg Ex.
This is based on the constant CPUE (catch-per-unit-effort) hypothésisl{ has
several limitations including:

(i) random search for fish;
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(i) each fish having an equal likelihood of being captured:;
(iii) unbounded linear increase mwith E for a fixedx; and
(iv) unbounded linear increase nwith x for a fixed E.

These unrealistic features are largely removed2id)( whereh; — (q;/a;)x as
E — oo for a fixed value ofx andh; — (q;/b,)E asE — oo for a fixed value
of E. Similarly h, — (g,/a,)y asE — oo for a fixed value ofy andh, — (g./b») E
asE — oo for a fixed value ofE. Thus the catch-rate function if2.1) embodies
saturation efforts with respect to the effort level as well as stock abundaAog
realistic catch-rate function should exhibit these features. These features also revee
the characteristics of the parametarsa,, b; andb,. We note thag; anda, are each
proportional to the ratio of the stock-level to the catch-rate at higher levels of effort
andb, andb, are each proportional to the ratio of the effort level to the catch-rate at
higher stock-levels.

Therefore we have the following system of equations:

dX =rX |0 K XV — ql—EX
dt 9% — @Y a E + byx’
2.2)
9 _ sylog = — pxy— —2=Y_
dt y aE + by’

3. The steady states

The possible trivial steady-state points &f3) areP; (0, 0), Py(X, 0) andP,(0, ¥*).
These steady states cannot exist due to the presence of logarithmic functions ir
(2.2. The nontrivial steady statBs(X, y), given byx = y = 0, is obtained by
simultaneously solving the equations

K . E
rlog— —ay aE + bx (3.1)
and
L 0:E
slog— — X — — = 3.2
J y P aE + by (3:2)

We may solve §.1) and@.2) simultaneously for given parameter values to obtain the
steady statéx, y) corresponding to a special effort level.
Eliminating E from (3.1) and@.2), we have the equation

bix(rlog(K/x) —ay)  _boy(slogL/y) = px)
o —ay(r log(K/x) —ay) o —ax(slog(L/y) — x)

Any point (x, y) on this curve is a nontrivial steady state. We refer3d)(as the
biological equilibrium path.

(3.3)
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4. Local stability

The variational matrix of the system (4) Bi(X, y) is

b EX —
— - _|@E+bxz I
VX, y) =" _ﬂlz szIZE)7 _s
Y (@E + b,y

The eigenvalues; (i = 1,2) of the systemZ.2) at Py(x, y) are the roots of the
following quadratic equation in:

_DaEX_ ok
(& E + byx)? - -0
_'37 bzq;Ey_ —S—A
(& E + byy)?
or
22— (M + N)x +MN — afxy =0, (4.1)
where _ _
b1 EX —r and N= _DeGEY S.

 (&%E + byy)?

In (4.1), the sum of the roots: M + N and the product of the roots MN — a8Xy.
Now

B (@ E + b;x)?

) by EX b.0,Ey
M+ N)>0 if — — A
MAN) >0 T RE+b? T @E+bye ' 5 Q)
and _ _
. blqlE)? bquE)7
M+ N f — — : B
M+N) <O T B E+bx?  @E+bgr ' 5 ®)
Also
MN —afxy >0 if MN > aBxy (C)
and
MN —aBfxy <0 if MN < aBxy. (D)

Considering the various possibilities, we have the following cases.

Case |: The conditions(A) and (C) hold simultaneously Here we have either
() A > 0,i = 1,2 or (ii) the »;’s are complex, Rg; > 0,i = 1,2. The non-
trivial steady statéx, y) is either an unstable node in (i) or an unstable focus in (ii).
Case II: The conditiongA) and (D) hold simultaneouslyHere eithen; < 0 < A,
or i, < 0 < A,. The steady statéx, y) is a saddle point.
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Case lll: The conditiongB) and (C) hold simultaneously Here either (i, < 0,

i = 1,2 or (i) the A;’s are complex, Rg; < 0,i = 1, 2. The steady stat, y) is
either an asymptotically stable node in (i) or an asymptotically stable focus in (ii).
Case IV: The conditiongB) and (D) hold simultaneouslyThe conclusion in Case I
holds.

Besides the above four cases, the following two cases may ariseMkeN = 0.
Case V: The condition(C) together with the conditiom + N = 0 holds Here the
Ai's are complex, Rg; = 0,i = 1, 2. The steady stat, y) is a centre.

Case VI: The conditionD) together with the conditiodM + N = 0 holds Herex,
andax, are both real, equal in magnitude and of opposite signs. The steadystgje
is a saddle point.

5. Bionomic equilibrium

Thebionomic equilibriums an amalgamation of the conceptbaflogical equilib-
riumas well agconomic equilibriumA biological equilibriumis givenbyx =y = 0.
Theeconomic equilibriunis said to be achieved when TR (the total revenue obtained
by selling the harvested biomass) equals TC (the total cost for the effort devoted to
harvesting).

The net economic revenue obtained from the fishery is

P1chX E p.0Ly E

[M=TR-TC = —
a,E +bx  aE+ by

CE,

where p; and p, are the constant prices per unit biomass of xhand y species
respectively and is the constant cost per unit effort. Hence the economic equilibrium
is given by

P01 X P2y
a,E +bx  aE+ by

(5.1)
We refer to 6.1) as the economic equilibrium path. The bionomic solutigg y,) is

obtained by solving3.3) and 6.1) simultaneously for givere and other parameter
values.

6. Optimal harvest policy

The present valud of a continuous time-stream of revenues is given by

J= Ooe*‘St PuthX PV —c) E(t)dt. 6.1
\/0‘ <a1E+b1X a2E+b2y () ( )
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We now intend to maximises(1) subject to the state equatich ) usingPontryagin’s
maximum principlg11]. The control variableE(t) is subjected to the constraints
0 < E(t) < Enax WhereEn is a feasible upper limit of the effort and it may be a
constant or a function of andt. HereV, = [0, E. is thecontrol set

The Hamiltonian function for the optimisation problem is

_ P10:X P20y
H=¢" — E(t
© |:a1E+b1X a2E+b2y Ci| ()
M) [ rxlo K X GEX
L GEy }
Ao(t) | sylog— — Xy — ————

_ | gt ((Pa9X POy C) o MGX RGY g
a,E+bix  aE -+ by a,E +bix aE-+ by

K L
+ A (rx log v axy) + Ao (sylog ; — ﬂxy) , (6.2)
wherei; (1), A,(t) are theadjoint variables The adjoint equations are

dxr, —aH__{eM a1 E A E }

dt - ax (E + b;x)2  (&E + byx)2
K
— A1 (" log < ' OllY) — A2p1y (6.3)
and
dr,  —0H —{e‘“ aPRRE  &hgE }
dt ay (E +byy)2  (aE + byy)?

L
+ AaX — Ay (slog ; —s— ﬂx) . (6.4)

We now try to derive aptimal equilibrium solutiorof the problem. For the equlib-
rium solution,x andy are treated as constants in the subsequent calculations. From
the equilibrium equations3(1) and @.2), we have

K 0. E L 0:E
log— —ay = —— log— — X = ————. 6.5
riog X @y alE -+ b1X and s °9 Yy ﬂx azE + bzy ( )
Substituting 6.5) in (6.3 and ©.4), we have
dxrg s apaE A E 0. E >
—_— = — E—t| ——— — A
at [e @E +bxX)?  (AE + byx)? N aGErox 1) TPy
2
_ e APE sy (6.6)

(8, E + byx)?
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and

di, st QaPapE?
—_— = ———— — NX A . 6.7
dt ~ ° @E by 2Tt ©9

Eliminating A, from (6.6) and 6.7), we have

dx dx
G T (M N)—= + (MN —apxy)i, = Que™, (6.8)
where
Q= [al PGLE’S +5)  apgpByE? b, p1uGpy E ]
Tl @E+bx? @E+by?  @E+bix?@E+by)? ]

The particular integral ofd.8) is (Q./R)e™*, where
R=6%— (M + N)§ + (MN — apxy).
Takingr; = A€’t, A # 0, to be a trial solution of the homogeneous equation

d?x4
dt2

the auxiliary equation is

da
+(M + N)d—tl + (MN — afxy)r;, = 0,

0?4+ (M + N)o +(MN — afxy) =0,

having two rootss;, i =1, 2. Hereo; + 0, = —(M + N) andoyo0, = MN — afXy.

We now have the following cases.

Case I: The conditiongA) and (C) hold simultaneouslyIn this caseg; ando, are

both either real and negative or complex conjugates with negative real parts. The
general solution of.8) is A,(t) = Aje™ + B’ + (Q1/R)e™. Hencery(t) — 0

ast — oo. We may similarly prove that,(t) — 0 ast — oc.

Case Il: The conditiongA) and (D) hold simultaneously Hereo; ando, are real

and unequal, the negative root having a greater magnitude. Thekgfore—> oo as

t — oo. A similar result holds foi,.

Case IIl: The conditiongB) and (C) hold simultaneouslyHereo; ando, are either

both real and positive or complex conjugates with positive real parts. Therefore
A(t) — oo ast — oo. Similarly, A,(t) — oo ast — oco.

Case |V: The conditiongB) and (D) hold simultaneously Hereo; ando, are real

and unequal, the positive root having a greater magnitude. Theref@ie— oo as

t — oo. We note that.,(t) behaves similarly. We therefore find that a finite optimal
equilibrium solution exists in Case | only. We then have

A)E = At 4 Bt 4 Q,/R. (6.9)
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Similarly, we have

A()E = At 4 Be®tt 4 Q,/R, (6.10)
where
Q, = [az PRE*G +1)  aipithaxE* ab; P0:0px E3 }
? @E+by)?  (&E+bx)2  (&E +bix)%(@E + by)? |

The transversality condition at infinityequires that theshadow pricese®2; (t),

i = 1,2, of the two populations remain boundedtas> oo ([1, 7, 8]). To sat-

isfy this condition, we must assum& = B, = 0,i = 1,2. We then have from
(6.9 and 6.10 thata;(t) = Q;/R = constanti = 1,2. We also know that the
Hamiltonian given in §.2) must be maximised foE € [0, Ea]. Assuming that
the optimum equilibrium does not occur eithertat= 0 or E = E o [7], we must
therefore have singular control given by

’

OH _ o (PaOiX P2y C) o MmX Ay

9E aE+bx  aE+by aE+bx  aE+by
P101X P02y qiX 5t Gy

—Cc=—>"__ (A 7

a,E+bix  aE-+ by ¢ a1E+b1x( 1€ )+a2E+b2y

(A"

or

P1G1X PGy . GXQ Ry Q.
aE+bx  aE+hby R(@E +bx)  R(aE+by)’

G X Q1 Gy Q>
S oY (PO <1 R - AN (PO <) B 11
aE + bix (pl R>+a2E+b2y (pz R) ¢ (6.11)

For a given effort level, we may obtain the optimal equilibrium solutign ys) by
solving (3.3) and 6.1 simultaneously.

As § — oo, we may easily check that bofQ;/R and Q,/R tend to zero. Then
(6.17) yields the result

P101 X5 P202 Yoo

—c=0
aE +bix, aE+by,

or (X, Y=, E) = 0. This implies that the economic rent is fully dissipated when
the discount rate is very high. We thus have an open-access fisheryiamoras
d — +oo.

Our control problem, therefore, possesses an equilibrium solution that satisfies
the necessary conditions of the maximum trinciple. However, this solution has the
following two limitations:

(i) thereis no obvious economic interpretation of this solution;

(ii) itis too difficult to find the optimal approach path consisting of some combi-
nation of bang-bang controls and nonequilibrium singular controls.
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TABLE 1.

X y
Steady state 883 5333
Binomial equilibrium 9481 2791
Optimal equilibrium 3207 3153

These difficulties weredfced and pointed out by ClarK][even in his simple model
of the combined harvesting of two ecologically independent fish populations where the
catch-rate functions were based on the simple CPUE hypothesis. Compared to Clark’
model, the present model is much more complicated and hence we are compelled tc
restrict our attention to the optimal equilibrium solution only with singular control.

7. Numerical example

Letr = 15,s = 09, K = 1000,L = 800,9; = 0.9, ¢, = 0.8, « = 0.07,

B =0.03,p, =14,p, = 18,3 = 20,8, = 16,c =8,b; = 2,b, =4.0,6 = 4.71
andE = 10 in appropriate units.

Using these parameter values, we numerically determine the solutions for the steady
state(x, y), bionomic equilibrium(%,, y,,) and optimal equilibriuntx;, ys) using the
Newton-Raphson method. The results are given in Table

The steady-state solutiof80.53, 53.33) is obtained by solving3.1) and @.2)
corresponding to a given effort levél. We examine each case from)(to (D) and
find that conditions B) and D) are satisfied simultaneously. Hence Case IV holds
and the steady stat&, y) is a saddle point.

The bionomic equilibrium(94.81, 27.91) is obtained by solving3.3) and 6.1),
and the optimal equilibrium solutio82.97, 31.53) is given by @8.3) and 6.11).
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