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Abstract

This paper deals with the combined bioeconomic harvesting of two competing fish species,
each of which obeys the Gompertz law of growth. The catch-rate functions are chosen so as
to reflect saturation effects with respect to stock abundance as well as harvesting effort. The
stability of the dynamical system is discussed and the existence of a bionomic equilibrium
is examined. The optimal harvest policy is studied with the help of Pontryagin’s maximum
principle. The results are illustrated with the help of a numerical example.

1. Introduction

Harvesting of multispecies fisheries is an important area of study in fishery mod-
elling. The basic ideas related to this field of study were first provided by Clark [7].
Clark also considered the harvesting of one species in a fishery consisting of two
competing species. Chaudhuri [3, 4] has studied the combined harvesting of two
competing species from the standpoint of bioeconomic harvesting and has discussed
dynamic optimisation of the harvest policy. Chaudhuri and SahaRay [6] have studied
combined harvesting of a prey-predator community with some prey hiding in refuges.
The problem of nonselective (that is, combined) harvesting of a prey-predator fishery
with infected prey has been studied by Chattopadhyay, Ghosal and Chaudhuri [2].
Pradhan and Chaudhuri [13] developed a dynamic reaction model for harvesting a
two-species fishery with taxation as a control instrument. Multispecies harvesting
models have also been studied by Silvert and Smith [15], Ragozin and Brown [14],
Wilen and Brown [16] and Mesterton-Gibbons ([9, 10]) amongst others.

In almost all of the multispecies fishery models referred to above, the rate of growth
was considered to follow thelogistic law of growth[7]. In the present paper, we have
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considered theGompertz law of growthbecause of its superiority over the logistic law
of growth as discussed in detail by Pradhan and Chaudhuri [12]. The existence of the
possible steady states along with their local stability is discussed. The optimal harvest
policy is discussed using themaximum principledue to Pontryagin [11]. A numerical
example is taken up to illustrate how the system works.

2. Formulation of the problem

The population dynamics of the fishery are modelled by the equations

dx

dt
= F.x; y/− h1.t/;

dy

dt
= G.x; y/− h2.t/;

wherex.t/ and y.t/ are the population densities of the two species at timet . It is
assumed that the growth of each species is governed by theGompertz law of growth.
The harvest rates areh1.t/ andh2.t/ respectively.

We take

F.x; y/ = r x log.K=x/− Þxy

and

G.x; y/ = sylog.L=y/− þxy;

wherer , s are theintrinsic growth rates(or biotic potentials), and K , L are the
carrying capacitiesof the two species. The interaction terms−Þxy and−þxy imply
that the two species compete with each other for the use of a common resource.

Here the rates of harvest are taken in the form [5]

h1.t/ = q1E.t/x.t/

a1E.t/ + b1x.t/
;

h2.t/ = q2E.t/y.t/

a2E.t/ + b2y.t/
;

(2.1)

whereq1 andq2 are thecatchability coefficientsof the two species,E denotes theeffort
devoted to their nonselective harvesting anda1, a2, b1, b2 are positive parameters of
the system.

The catch-rate function generally used in fishery models is of the formh = q Ex:
This is based on the constant CPUE (catch-per-unit-effort) hypothesis [7]. It has
several limitations including:

(i) random search for fish;



[3] Bioeconomic harvesting of two competing fish species 301

(ii) each fish having an equal likelihood of being captured;
(iii) unbounded linear increase inh with E for a fixedx; and
(iv) unbounded linear increase inh with x for a fixedE.

These unrealistic features are largely removed in (2.1), whereh1 → .q1=a1/x as
E → ∞ for a fixed value ofx andh1 → .q1=b1/E as E → ∞ for a fixed value
of E. Similarly h2 → .q2=a2/y asE → ∞ for a fixed value ofy andh2 → .q2=b2/E
as E → ∞ for a fixed value ofE. Thus the catch-rate function in(2.1) embodies
saturation efforts with respect to the effort level as well as stock abundance. Any
realistic catch-rate function should exhibit these features. These features also reveal
the characteristics of the parametersa1, a2, b1 andb2. We note thata1 anda2 are each
proportional to the ratio of the stock-level to the catch-rate at higher levels of effort
andb1 andb2 are each proportional to the ratio of the effort level to the catch-rate at
higher stock-levels.

Therefore we have the following system of equations:

dx

dt
= r x log

K

x
− Þxy − q1Ex

a1E + b1x
;

dy

dt
= sylog

L

y
− þxy − q2Ey

a2E + b2y
:

(2.2)

3. The steady states

The possible trivial steady-state points of (2.2) areP1.0;0/; P1.x̄;0/ andP2.0; ȳ∗/.
These steady states cannot exist due to the presence of logarithmic functions in
(2.2). The nontrivial steady stateP3. ¯̄x; ¯̄y/, given by ẋ = ẏ = 0, is obtained by
simultaneously solving the equations

r log
K

x
− Þy − q1E

a1E + b1x
= 0 (3.1)

and

s log
L

y
− þx − q2E

a2E + b2y
= 0: (3.2)

We may solve (3.1) and(3.2) simultaneously for given parameter values to obtain the
steady state. ¯̄x; ¯̄y/ corresponding to a special effort level.

Eliminating E from (3.1) and(3.2), we have the equation

b1x.r log.K=x/− Þy/

q1 − a1.r log.K=x/− Þy/
− b2y.s log.L=y/− þx/

q2 − a2.s log.L=y/ − þx/
= 0: (3.3)

Any point .x; y/ on this curve is a nontrivial steady state. We refer to (3.3) as the
biological equilibrium path.
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4. Local stability

The variational matrix of the system (4) atP3. ¯̄x; ¯̄y/ is

V. ¯̄x; ¯̄y/ =

∣∣∣∣∣∣∣∣

b1q1E ¯̄x

.a1E + b1 ¯̄x/2
− r −Þ ¯̄x

−þ ¯̄y
b2q2E ¯̄y

.a2E + b2 ¯̄y/2
− s

∣∣∣∣∣∣∣∣
:

The eigenvalues½i (i = 1;2) of the system (2.2) at P3. ¯̄x; ¯̄y/ are the roots of the
following quadratic equation in½:∣∣∣∣∣∣∣∣

b1q1E ¯̄x

.a1E + b1 ¯̄x/2
− r − ½ −Þ ¯̄x

−þ ¯̄y
b2q2E ¯̄y

.a2E + b2 ¯̄y/2
− s − ½

∣∣∣∣∣∣∣∣
= 0

or

½2 − .M + N/½ + M N − Þþ ¯̄x ¯̄y = 0; (4.1)

where

M = b1q1E ¯̄x

.a1E + b1 ¯̄x/2
− r and N = b2q2E ¯̄y

.a2E + b2 ¯̄y/2
− s:

In (4.1), the sum of the roots= M + N and the product of the roots= M N − Þþ ¯̄x ¯̄y.
Now

.M + N/ > 0 if
b1q1E ¯̄x

.a1E + b1 ¯̄x/2
+ b2q2E ¯̄y

.a2E + b2 ¯̄y/2
> r + s (A)

and

.M + N/ < 0 if
b1q1E ¯̄x

.a1E + b1 ¯̄x/2
+ b2q2E ¯̄y

.a2E + b2 ¯̄y/2
< r + s: (B)

Also

M N − Þþ ¯̄x ¯̄y > 0 if M N > Þþ ¯̄x ¯̄y (C)

and

M N − Þþ ¯̄x ¯̄y < 0 if M N < Þþ ¯̄x ¯̄y: (D)

Considering the various possibilities, we have the following cases.
Case I: The conditions(A) and (C) hold simultaneously. Here we have either
(i) ½i > 0, i = 1;2 or (ii) the ½i ’s are complex, Re½i > 0, i = 1;2. The non-
trivial steady state. ¯̄x; ¯̄y/ is either an unstable node in (i) or an unstable focus in (ii).
Case II: The conditions(A) and (D) hold simultaneously. Here either½1 < 0 < ½2

or ½2 < 0< ½1. The steady state. ¯̄x; ¯̄y/ is a saddle point.



[5] Bioeconomic harvesting of two competing fish species 303

Case III: The conditions(B) and (C) hold simultaneously. Here either (i)½i < 0,
i = 1;2 or (ii) the½i ’s are complex, Re½i < 0, i = 1;2. The steady state. ¯̄x; ¯̄y/ is
either an asymptotically stable node in (i) or an asymptotically stable focus in (ii).
Case IV: The conditions(B) and (D) hold simultaneously. The conclusion in Case II
holds.

Besides the above four cases, the following two cases may arise whenM + N = 0.
Case V:The condition(C) together with the conditionM + N = 0 holds. Here the
½i ’s are complex, Re½i = 0, i = 1;2. The steady state. ¯̄x; ¯̄y/ is a centre.
Case VI: The condition(D) together with the conditionM + N = 0 holds. Here½1

and½2 are both real, equal in magnitude and of opposite signs. The steady state. ¯̄x; ¯̄y/
is a saddle point.

5. Bionomic equilibrium

Thebionomic equilibriumis an amalgamation of the concepts ofbiological equilib-
riumas well aseconomic equilibrium. A biological equilibriumis given byẋ = ẏ = 0.
Theeconomic equilibriumis said to be achieved when TR (the total revenue obtained
by selling the harvested biomass) equals TC (the total cost for the effort devoted to
harvesting).

The net economic revenue obtained from the fishery is

5 = TR−TC = p1q1x E

a1E + b1x
+ p2q2y E

a2E + b2y
− cE;

where p1 and p2 are the constant prices per unit biomass of thex and y species
respectively andc is the constant cost per unit effort. Hence the economic equilibrium
is given by

p1q1x

a1E + b1x
+ p2q2y

a2E + b2y
− c = 0: (5.1)

We refer to (5.1) as the economic equilibrium path. The bionomic solution.xb; yb/ is
obtained by solving (3.3) and (5.1) simultaneously for givenE and other parameter
values.

6. Optimal harvest policy

The present valueJ of a continuous time-stream of revenues is given by

J =
∫ ∞

0

e−Žt
(

p1q1x

a1E + b1x
+ p2q2y

a2E + b2y
− c

)
E.t/dt: (6.1)
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We now intend to maximise (6.1) subject to the state equation (2.2) usingPontryagin’s
maximum principle[11]. The control variableE.t/ is subjected to the constraints
0 ≤ E.t/ ≤ Emax, whereEmax is a feasible upper limit of the effort and it may be a
constant or a function ofx andt . HereVt = [0; Emax] is thecontrol set.

The Hamiltonian function for the optimisation problem is

H = e−Žt
[

p1q1x

a1E + b1x
+ p2q2y

a2E + b2y
− c

]
E.t/

+ ½1.t/

[
r x log

K

x
− Þxy − q1Ex

a1E + b1x

]

+ ½2.t/

[
sylog

L

y
− þxy − q2Ey

a2E + b2y

]

=
[

e−Žt
(

p1q1x

a1E + b1x
+ p2q2y

a2E + b2y
− c

)
− ½1q1x

a1E + b1x
− ½2q2y

a2E + b2y

]
E

+ ½1

(
r x log

K

x
− Þxy

)
+ ½2

(
sylog

L

y
− þxy

)
; (6.2)

where½1.t/, ½2.t/ are theadjoint variables. The adjoint equations are

d½1

dt
= −@H

@x
= −

{
e−Žt a1 p1q1E

.a1E + b1x/2
− a1½1q1E

.a1E + b1x/2

}
E

− ½1

(
r log

K

x
− r − Þ1y

)
− ½2þ1y (6.3)

and
d½2

dt
= −@H

@y
= −

{
e−Žt a2 p2q2E

.a2E + b2y/2
− a2½2q2E

.a2E + b2y/2

}
E

+ ½1Þx − ½2

(
s log

L

y
− s − þx

)
: (6.4)

We now try to derive anoptimal equilibrium solutionof the problem. For the equlib-
rium solution,x andy are treated as constants in the subsequent calculations. From
the equilibrium equations (3.1) and (3.2), we have

r log
K

x
− Þy = q1E

a1E + b1x
and s log

L

y
− þx = q2E

a2E + b2y
: (6.5)

Substituting (6.5) in (6.3) and (6.4), we have

d½1

dt
= −

[
e−Žt a1 p1q1E

.a1E + b1x/2
− a1½1q1E

.a1E + b1x/2

]
E − ½1

(
q1E

a1E + b1x
− r

)
+ ½2þy

= −e−Žt a1 p1q1E2

.a1E + b1x/2
− M½1 + ½2þy (6.6)
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and

d½2

dt
= −e−Žt a2 p2q2E2

.a2E + b2y/2
− N½2 + ½1Þ1x: (6.7)

Eliminating½2 from (6.6) and (6.7), we have

d2½1

dt2
+ .M + N/

d½1

dt
+ .M N − Þþxy/½1 = Q1e−Žt; (6.8)

where

Q1 =
[

a1 p1q1E2.Ž + s/

.a1E + b1x/2
− a2 p2q2þy E2

.a2E + b2y/2
− a1b2 p1q1q2y E3

.a1E + b1x/2.a2E + b2y/2

]
:

The particular integral of (6.8) is .Q1=R/e−Žt , where

R = Ž2 − .M + N/Ž + .M N − Þþxy/:

Taking½1 = Ae¦ t , A 6= 0, to be a trial solution of the homogeneous equation

d2½1

dt2
+ .M + N/

d½1

dt
+ .M N − Þþxy/½1 = 0;

the auxiliary equation is

¦ 2 + .M + N/¦ + .M N − Þþxy/ = 0;

having two roots¦i ; i = 1;2. Here¦1 + ¦2 = −.M + N/ and¦1¦2 = M N − Þþxy.
We now have the following cases.
Case I: The conditions(A) and (C) hold simultaneously. In this case,¦1 and¦2 are
both either real and negative or complex conjugates with negative real parts. The
general solution of (6.8) is ½1.t/ = A1e¦1t + B1e¦2t + .Q1=R/e−Žt. Hence½1.t/ → 0
ast → ∞: We may similarly prove that½2.t/ → 0 ast → ∞.
Case II: The conditions(A) and (D) hold simultaneously. Here¦1 and¦2 are real
and unequal, the negative root having a greater magnitude. Therefore½1.t/ → ∞ as
t → ∞. A similar result holds for½2.
Case III: The conditions(B) and (C) hold simultaneously. Here¦1 and¦2 are either
both real and positive or complex conjugates with positive real parts. Therefore
½1.t/ → ∞ ast → ∞. Similarly,½2.t/ → ∞ ast → ∞.
Case IV: The conditions(B) and (D) hold simultaneously. Here¦1 and¦2 are real
and unequal, the positive root having a greater magnitude. Therefore½1.t/ → ∞ as
t → ∞. We note that½2.t/ behaves similarly. We therefore find that a finite optimal
equilibrium solution exists in Case I only. We then have

½1.t/e
Žt = A1e.¦1+Ž/t + B1e.¦2+Ž/t + Q1=R: (6.9)
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Similarly, we have

½2.t/e
Žt = A2e.¦1+Ž/t + B2e.¦2+Ž/t + Q2=R; (6.10)

where

Q2 =
[

a2 p2q2E2.Ž + r /

.a2E + b2y/2
− a1 p1q1Þx E2

.a1E + b1x/2
− a2b1 p2q1q2x E3

.a1E + b1x/2.a2E + b2y/2

]
:

The transversality condition at infinityrequires that theshadow priceseŽt½i .t/,
i = 1;2, of the two populations remain bounded ast → ∞ ([1, 7, 8]). To sat-
isfy this condition, we must assumeAi = Bi = 0, i = 1;2. We then have from
(6.9) and (6.10) that ½i .t/ = Qi =R = constant,i = 1;2. We also know that the
Hamiltonian given in (6.2) must be maximised forE ∈ [0; Emax]. Assuming that
the optimum equilibrium does not occur either atE = 0 or E = Emax [7], we must
therefore have singular control given by

@H

@E
= e−Žt

(
p1q1x

a1E + b1x
+ p2q2y

a2E + b2y
− c

)
− ½1q1x

a1E + b1x
− ½2q2y

a2E + b2y
= 0;

p1q1x

a1E + b1x
+ p2q2y

a2E + b2y
− c = q1x

a1E + b1x
.½1eŽt/+ q2y

a2E + b2y
.½2eŽt/

or
p1q1x

a1E + b1x
+ p2q2y

a2E + b2y
− c = q1x Q1

R.a1E + b1x/
+ q2y Q2

R.a2E + b2y/
;

q1x

a1E + b1x

(
p1 − Q1

R

)
+ q2y

a2E + b2y

(
p2 − Q2

R

)
= c: (6.11)

For a given effort level, we may obtain the optimal equilibrium solution.xŽ; yŽ/ by
solving (3.3) and (6.11) simultaneously.

As Ž → ∞, we may easily check that bothQ1=R and Q2=R tend to zero. Then
(6.11) yields the result

p1q1x∞
a1E + b1x∞

+ p2q2y∞
a2E + b2y∞

− c = 0

or 5.x∞; y∞; E/ = 0. This implies that the economic rent is fully dissipated when
the discount rate is very high. We thus have an open-access fishery condition as
Ž → +∞.

Our control problem, therefore, possesses an equilibrium solution that satisfies
the necessary conditions of the maximum trinciple. However, this solution has the
following two limitations:

(i) there is no obvious economic interpretation of this solution;
(ii) it is too difficult to find the optimal approach path consisting of some combi-

nation of bang-bang controls and nonequilibrium singular controls.
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TABLE 1.

x y
Steady state 80:53 53:33
Binomial equilibrium 94:81 27:91
Optimal equilibrium 32:97 31:53

These difficulties were faced and pointed out by Clark [7] even in his simple model
of the combined harvesting of two ecologically independent fish populations where the
catch-rate functions were based on the simple CPUE hypothesis. Compared to Clark’s
model, the present model is much more complicated and hence we are compelled to
restrict our attention to the optimal equilibrium solution only with singular control.

7. Numerical example

Let r = 1:5, s = 0:9, K = 1000, L = 800, q1 = 0:9, q2 = 0:8, Þ = 0:07,
þ = 0:03, p1 = 14, p2 = 18, a1 = 20, a2 = 16, c = 8, b1 = 2, b2 = 4:0, Ž = 4:71
andE = 10 in appropriate units.

Using these parametervalues, we numerically determine the solutions for the steady
state. ¯̄x; ¯̄y/, bionomic equilibrium.x̄b; ȳb/ and optimal equilibrium.xŽ; yŽ/ using the
Newton-Raphson method. The results are given in Table1.

The steady-state solution.80:53;53:33/ is obtained by solving (3.1) and (3.2)
corresponding to a given effort levelE. We examine each case from (A) to (D) and
find that conditions (B) and (D) are satisfied simultaneously. Hence Case IV holds
and the steady state. ¯̄x; ¯̄y/ is a saddle point.

The bionomic equilibrium.94:81;27:91/ is obtained by solving (3.3) and (5.1),
and the optimal equilibrium solution.32:97;31:53/ is given by (3.3) and (6.11).
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