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Abstract

In this paper, we prove a new regularity criterion in terms of the direction of vorticity for
the weak solution to 3-D incompressible Navier-Stokes equations. Under the framework
of Constantin and Fefferman, a more relaxed regularity criterion in terms of the direction
of vorticity is established.

1. Introduction

We consider the following Cauchy problem for the incompressible Navier-Stokes
equations irR® x [0, T]:

ou
¥+U-Vu+Vp=Au,

divu =0, (1.1)
u(x, 0) = up(x),

whereu = (ul(x, t), Ux(X, 1), uz(x, t)) is the velocity field p(x, t) isa scalar pressure,
anduy(x) with divug = 0 in the sense of distribution is the initial velocity field.

The study of the incompressible Navier-Stokes equations in three space dimension:
has a long history. In the pioneering worl® and [3], Leray and Hopf proved the
existence of weak solutiongx, t) € L>(0, T; L2(R®%) N L2(0, T; HY(R?)) for any
given up(x) € L2(R®). But the uniqueness and regularity of the Leray-Hopf weak
solutions are still big open problems. [][they considered the direction of vorticity

w(X, 1)

)= — 1.2
§(X, 1) PR (1.2)
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and proved that the solution of the Navier-Stokes equatitri$ ¢orresponding to
Uo, Which is divergence-free, smooth and has compact support, is strong and hence
smooth(C>) on the time intervalO, T) if the following assumption holds.

Assumption (A). There exist constars> 0 andp(t) > 0 such that

|Piyy EX+Y, 1) < ikl for p(t) 2 e L0, T) (1.3)

p ()
holds if both |w(x,t)] > K and [o(X + y,t)] > K, and 0< t < T, where
P;(X‘t)(g(x + vy, 1)) denotes the projection gf(x + y, t) orthogonal tc (x, t).
In this paper, we want to prove regularity under a more relaxed assumption than
(1.3). Our assumption reads as follows.
(H) There exist8 € [1/2,3/2), a positive constanK, andg(x,t) € L*" =
L*(0, T; L7 (R®)) such that

|Pn X+ Y. )] < gx. bty (1.4)
holds in the region botho (X, t)| > K and|w(X 4+ y,t)] > K,and 0<t < T, with
2 3

< ! for 4 (1.5)
a—l—y_,B > o€ 2'3_1,00. .

The main result of this paper is given in the following theorem.

THEOREM 1.1. Letu, € HY(R®) with divu, = 0. Suppose is a Leray-Hopf weak
solution to(1.1) corresponding taly. If (H) is satisfied, themw is a strong solution
on[O, T].

ReEMARK 1.1. We explain the motivation for establishing.{) as follows. First,
from a mathematical viewpoin®; ,(§(x + y, 1)) is a function which depends on
X, y andt, so it is reasonable to find a condition in termskofy andt also to control
it; that is,g(x, t) should depend on bothandt. In this sense,1(4) is a more natural
(and relaxed) condition tharl ). Secondly, it is well known that iti solves the
Navier-Stokes equations, then so dagfor all » > 0, whereu, (X, t) = AU(AX, A%t).
So the ratio of the dimension of space to time 12 81]. So the condition og(x, t) is
g € L*v with 2/« + 3/y. Finally, there is a balance betweg¢x, t) ands. Wheng
is bigger, the condition og(x, t) is more relaxed. Hence we Igte [1/2, 3/2).

REMARK 1.2. One can find that even fg8 = 1, assumptionH) is weaker than
assumption (A). Whep = 1/2, (1.5) implies thatg(x, t) € L*(R*® x (0, T)).

REMARK 1.3. For recent progress on regularity criteria in terms of velocity and
pressure, se€[6, 8] and references therein.
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Before going to the proof, let us recall the défom of Leray-Hopfweak solutions.

DEFINITION. A measurable vectau is called a Leray-Hopf weak solution to the
Navier-Stokes equation4.@), if u satisfies the following properties:

(i) uis weakly continuous frorf0, co) to L2(R®).
(ii) u verifies (L.1) in the sense of distribution, that is,

/Oo/ <% + (u- V)¢> udxdt+/ Upp (X, 0)dx = /m/ Vu: V¢ dxdt
o Jrs \ Ot R3 0o Jrs

for all ¢ € CF(R® x [0, 00)) with divg = 0. HereA : B = Y7 a;by, A= (a))
andB = (bj;) are 3x 3 matrices and

/ / u-Vedxdt=0
0 R3

for everyg € C(R® x [0, 00)).
(i) The energy inequality holds, that is,

t
||u<-,t)||iz+2/ VUG, o). ds < lugll?., t>0.
0

By a strong solution we mean a weak solutiosuch that
ueL®0,T;HHNL2O,T;H?.

It is well known that strong solutions are regular (say, classical) and unique in the
class of weak solutions.

2. Proof of Theorem1.1

Since the theorem is proved under the frameworkflgt us recall a few obser-
vations regarding the relationship between divergence-freeitiemahe associated
vorticities and strain matrices if2]|

Let w be the vorticityw = curlu. The strain matrixS(x) in terms ofw is given by

dy

1 3 N
S(x) = Sw](X) = > (Vu+ (vu)T) = y P.V. /[R3 M (9, o(X +y)) e

whereM (Y, w) = [Y® (¥ X w) + (¥ X w) ® ¥]/2 andy = y/|y|. Let

n(X) = S(X)§(X) - §(X),
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wheret is the direction of the vorticity defined byl ). Both n andé are defined in
the region{x : |w(X)| > 0}. It was derived in2] that

_3 o dy
nx) = —P.V. /R D(Y, §(X + ), £(0) (X + Y)| R

whereD is given byD (e, e, €3) = (e, - €3)(Det(ey, &, €3)). The Det inD is the
determinant of the matrix whose columns are the three unit column vestoes
ande;. The geometric significance & is that it is a multiple of the volume of the
prism of edges equal t, £(X + ), £(X). In particular, it depends of(x + y) only
throughP,, & (x +y), thus

ID(Y, §(X + ), EX))| < |Pat& (X + y)|. (2.1)

For solutions of the Navier-Stokes equations the dynamical significance of the
expression

(S, D (x, 1)) - @ (X, t) = (X, o, )
is that it presents the stretching term in evolution of the vorticity magnitude:
(e +u-V—A)wl®+|Vol* = o’ (2.2)

Equation .2 allows one to understand how local alignment of the vorticity direction
depletes the nonlinearity.

After this review of important formulas we turn our attention to the proof. As in
the argument in7], one must have aa priori estimate for the strong solution under
the assumptionH). The key lemma reads as follows.

LEMMA 2.1. Letu, € HY(R®) with divu, = 0. Suppose that is a strong solution
on (0, T). If (H) is satisfied, thenforaD <t < T,

t
lollz: + / Vol d < ool exp| AT + BT+ Cllgf2/“*?}
0

x (1+ AT+ BT+ ClgIZ/“?),  (23)

where the constan depends oK, B depends oK and ||ug]|. 2, while C depends
ona, y and |[uo|| 2.

PrOOF. The vorticity field satisfies

9
2 LU Vo= (- V)U+ Ao,

ot
divu = 0, (2_4)
curlu = w,

w(X,0) = wy(X).
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Multiplying the first equation of Z.4) by w, and integrating orR3, after suitable
integration by parts, we obtain

||a)( D% + Ve, t)||L2_/ (S, Ho(x, 1) -w(x,Hydx=1.  (2.5)

R3

2dt

Let K be the positive constant it and splitw(x, t) as

w(xX,t) = x ('w(:i’ U') (X, 1) + (1— X ('w(li’ U')) w(x,1)

= wl(X9 t) + wZ(X9 t)v

where the smooth bump functigrii) € [0, 1] isidentically equaltoonefor& A < 1
and identically equal to zero far> 2 ora < —1.
So we can decomposento

| =/ (S(x, Hw(x, 1)) - o(x, t )dx

—Z/ Z S (X, Dwn(x, 1)) - ox(x, t) dx

R3 Y1

+Z/ (S(X, Daa(x, 1) - wy(x, t) dx
i—1 /R

+ / (SL(X, Dwa(X, 1)) - @p(X, 1) dX
R3

+/ (S(X, Dwa(X, 1) - (X, ) dX = 11 4 I 4 I3+ Iy,
R3

where§ (x) = Sw;](x), fori = 1, 2. We will estimate the above terms one by one:

2 2
Z/ Z (S (X, Dawr(x, 1) - wi(x, 1) dx
i=1 k=
2

=2K IS, Dllzllodle < Cillwll?, (2.6)

i=1 k=1

] =

where C; is a constant depending only dd, and we used blder’s inequality
lw;| < 2K and the Caldem-Zygmund inequality

1S X, Dlla < CallwillLa (2.7)

with 1 < q < oo andi = 1, 2, with C, a constant depending only on
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The terml, can be treated similarly ds, so that
2] < Cillwl|f. (2.8)

Also |3 is not a difficult term, and it can be treated as

sl =

/ (SLX, Dawa(X, 1)) - wa(x, t) dX
e

< Gllotlliellollsllwlz  (HBlder's inequality and3.7) )
< C3||a)1||L4||w||1/4||Vw||3/4||w||Lz (the Gagliardo-Nirenberg inequaljty

8/5

Z||Vw||Lz+c4||w1|| lwl?.  (Young's inequality

4/5

1
ZIIVwIILz + Cslloll % lwllf. (2.9)

In the last inequality, we used the*-bound of|w;|. We note thatCs depends only
onkK.
Actually, as one can seg, is the crucial term. First, note that

_ a)z(X,t) _
gZ(X9t) — |a)2(X,t)| - é(X,t),

just as was done ir2[ pp. 785]. Then

|(&(X9 t)a)Z(X9 t)) : Cl)z(X, t)|
= |wa(X, | S(X, DE(X, 1) - E2(X, 1)

3
= —lwz(X, D)I? V-/ D(Y, £20x + Y. 1), £2(x, 1)) lwa(X + Y, t)I 3
4r R3 Yl

3
= lo, DIPlgx, Ol f(x,t), (by (1.4 and @.1)), (2.10)

where f(x,t) =[5 (lo(x + vy, )|/]y[*#)dy. Therefore, due to%10), I, can be
estimated as

3
4l < 4—/ lo(x, DI?lg(x, D] f(x, ) dx
T JRr3

3 . .
< 4—||w||fa|| fllwllglle,  (Holder's inequality
T

< CsllollZ.llwllsllgll.»  (the Hardy-Littlewood-Sobolev inequality
< Gl IVolZllwlZ2 I Vol gl

(the Gagliardo-Nirenberg inequality f¢t|| . and|w|| .=, repectively
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=

2(3—20—5)/(2—20—8) 2/(2—20—5) e -
< —[IVoll?. + Csllols lallyy (Young's inequality

H-b

2/(2-20-8) 2/(2—20—5) 2
—IIVwIILz + Colloll g, lollte, (2.11)

whereCg depends omx andy, and in the above inequalit?(11) we have used the
following identities:

2/a+1/b+1/y =1, 1I/b=1/p—B/3,

2.12
l/a=(1-6)/24+6(1/2—1/3), 1/p=@1—-8)/2+5(1/2—1/3). (2.12)
Actually, we can solved.12 with
r_p rlopy 1t 1 1/l
p 3 2\2 3)° a 2 2y 4\2 3)° (2.13)
T_LL By 31 L(1_¢ s=3_8 '
b 2\2 3)° "~ 2\y 2\2 3))° a4 2’
wherea andy satisfy (L.5). And from (2.12, one has
B/3<1/b+B/3=1/p=1/2—8/3<1/2,
which impliesg < 3/2.
Substituting 2.13 into (2.17), we obtain
ol < 5 ||Vw||Lz + Cellwl 272 gl o (2.14)
whereCg is a constant depending only enandy .
Putting @.6), (2.9, (2.9 and .14 into (2.5), we have
||w||Lz + IVollf, < 4C1|lw|E: + 2Cs|wl Yol
+ 2Cs[lllt G ol (2.15)

So we can use Gronwall’'s inequality ¢ || > and it follows from @.15 that
oz < lleollF- exp{ / 4C1+2Cs w2 +2Cs | wlI 72727 gt st}

< llonllZ, exp{4C,T + CoT*5 + Cuoll g2 | (2.16)

whereC; depends oK, Cy depends oK and||uo||. 2, while C,, depends or, y and
lugll2. In (2.16, we have used the energy inequality tgrand Hilder’s inequality
with
2 1 2
+—= <1
B+1/2-3/y a pB+1/2-3/y

1
2
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for2/a +3/y <B—1/2and ¥2 < 8 < 3/2.
Finally (2.3 follows from (2.19 and @.16). This completes the proof.

After we have ara priori estimate forw, the proof of Theorem.1 follows from
the standard continuation principle, which can be stated as follows.

It is well known [5] that there is a unique strong solutiGne L>(0, Ty; HY(R3)) N
L2(0, To; H?(R®)) to (1.1), for some 0< T, for any givenu, € H(R3®) with
divu, = 0. Sinceu is a Leray-Hopf weak solution which satisfies the energy in-
equality, we haveccording to the uniqueness result G on [0, Ty). By thea priori
estimate 2.3) and the standard continuation argument, the local strong soluiam
be extended to tim&. So we have proved actually is a strong solution o, T].
This completes the proof of Theorelrl
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