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DIRECTION OF VORTICITY AND A NEW REGULARITY
CRITERION FOR THE NAVIER-STOKES EQUATIONS
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Abstract

In this paper, we prove a new regularity criterion in terms of the direction of vorticity for
the weak solution to 3-D incompressible Navier-Stokes equations. Under the framework
of Constantin and Fefferman, a more relaxed regularity criterion in terms of the direction
of vorticity is established.

1. Introduction

We consider the following Cauchy problem for the incompressible Navier-Stokes
equations inR3 × [0;T]: 



@u

@ t
+ u · ∇u + ∇ p = 1u;

div u = 0;

u.x;0/ = u0.x/;

(1.1)

whereu = (
u1.x; t/;u2.x; t/;u3.x; t/

)
is the velocity field,p.x; t/ is a scalar pressure,

andu0.x/ with div u0 = 0 in the sense of distribution is the initial velocity field.
The study of the incompressible Navier-Stokes equations in three space dimensions

has a long history. In the pioneering works [4] and [3], Leray and Hopf proved the
existence of weak solutionsu.x; t/ ∈ L∞.0;T ; L2.R3// ∩ L2.0;T ; H 1.R3// for any
given u0.x/ ∈ L2.R3/. But the uniqueness and regularity of the Leray-Hopf weak
solutions are still big open problems. In [2], they considered the direction of vorticity

¾.x; t/ = !.x; t/

|!.x; t/| (1.2)
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and proved that the solution of the Navier-Stokes equations (1.1) corresponding to
u0, which is divergence-free, smooth and has compact support, is strong and hence
smooth.C∞/ on the time interval[0;T/ if the following assumption holds.

Assumption (A). There exist constantsK > 0 and².t/ > 0 such that

∣∣P⊥
¾.x;t/ .¾.x + y; t//

∣∣ ≤ |y|
².t/

for ².t/−12 ∈ L1.0;T/ (1.3)

holds if both |!.x; t/| > K and |!.x + y; t/| > K , and 0 ≤ t ≤ T , where
P⊥
¾.x;t/.¾.x + y; t// denotes the projection of¾.x + y; t/ orthogonal to¾.x; t/.
In this paper, we want to prove regularity under a more relaxed assumption than

(1.3). Our assumption reads as follows.

(H) There existþ ∈ [1=2;3=2/, a positive constantK , and g.x; t/ ∈ LÞ; ≡
LÞ.0;T ; L .R3// such that

∣∣P⊥
¾.x;t/.¾.x + y; t//

∣∣ ≤ g.x; t/|y|þ (1.4)

holds in the region both|!.x; t/| > K and|!.x + y; t/| > K , and 0≤ t ≤ T , with

2

Þ
+ 3


≤ þ − 1

2
for Þ ∈

[
4

2þ − 1
;∞

]
: (1.5)

The main result of this paper is given in the following theorem.

THEOREM 1.1. Letu0 ∈ H 1.R3/ with div u0 = 0. Supposeu is a Leray-Hopf weak
solution to(1.1) corresponding tou0. If (H) is satisfied, thenu is a strong solution
on [0;T].

REMARK 1.1. We explain the motivation for establishing (1.4) as follows. First,
from a mathematical viewpoint,P⊥

¾.x;t/.¾.x + y; t// is a function which depends on
x; y andt , so it is reasonable to find a condition in terms ofx; y andt also to control
it; that is,g.x; t/ should depend on bothx andt . In this sense, (1.4) is a more natural
(and relaxed) condition than (1.3). Secondly, it is well known that ifu solves the
Navier-Stokes equations, then so doesu½ for all ½ > 0, whereu½.x; t/ = ½u.½x; ½2t/.
So the ratio of the dimension of space to time is 3=2 [1]. So the condition ong.x; t/ is
g ∈ LÞ; with 2=Þ + 3= . Finally, there is a balance betweeng.x; t/ andþ. Whenþ
is bigger, the condition ong.x; t/ is more relaxed. Hence we letþ ∈ [1=2;3=2/.

REMARK 1.2. One can find that even forþ = 1, assumption (H) is weaker than
assumption (A). Whenþ = 1=2, (1.5) implies thatg.x; t/ ∈ L∞.R3 × .0;T//.

REMARK 1.3. For recent progress on regularity criteria in terms of velocity and
pressure, see [7, 6, 8] and references therein.
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Before going to the proof, let us recall the definition of Leray-Hopf weak solutions.

DEFINITION. A measurable vectoru is called a Leray-Hopf weak solution to the
Navier-Stokes equations (1.1), if u satisfies the following properties:

(i) u is weakly continuous from[0;∞/ to L2.R3/.
(ii) u verifies (1.1) in the sense of distribution, that is,
∫ ∞

0

∫
R3

(
@�

@ t
+ .u · ∇/�

)
u dxdt+

∫
R3

u0�.x;0/dx =
∫ ∞

0

∫
R3

∇u : ∇� dxdt

for all � ∈ C∞
0 .R

3 × [0;∞// with div � = 0. HereA : B = ∑3
i; j ai j bi j , A = .ai j /

andB = .bi j / are 3× 3 matrices and

∫ ∞

0

∫
R3

u · ∇� dxdt = 0

for every� ∈ C∞
0 .R

3 × [0;∞//.
(iii) The energy inequality holds, that is,

‖u.·; t/‖2
L2 + 2

∫ t

0

‖∇u.·; s/‖2
L2 ds ≤ ‖u0‖2

L2; t ≥ 0:

By a strong solution we mean a weak solutionu such that

u ∈ L∞.0;T ; H 1/ ∩ L2.0;T ; H 2/:

It is well known that strong solutions are regular (say, classical) and unique in the
class of weak solutions.

2. Proof of Theorem1.1

Since the theorem is proved under the framework of [2], let us recall a few obser-
vations regarding the relationship between divergence-free velocities, the associated
vorticities and strain matrices in [2].

Let! be the vorticity,w = curlu. The strain matrixS.x/ in terms of! is given by

S.x/ = S[!].x/ ≡ 1

2

(∇u + .∇u/T
) = 3

4³
P:V:

∫
R3

M
(
ŷ; !.x + y/

) dy

|y|3 ;

whereM.ŷ; !/ = [ŷ ⊗ .ŷ × !/+ .ŷ × !/⊗ ŷ]=2 andŷ = y=|y|. Let

�.x/ = S.x/¾.x/ · ¾.x/;
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where¾ is the direction of the vorticity defined by (1.2). Both� and¾ are defined in
the region{x : |!.x/| > 0}. It was derived in [2] that

�.x/ = 3

4³
P:V:

∫
R3

D
(
ŷ; ¾.x + y/; ¾.x/

)|!.x + y/| dy

|y|3 ;
whereD is given by D.e1;e2;e3/ = .e1 · e3/.Det.e1;e2;e3//. The Det inD is the
determinant of the matrix whose columns are the three unit column vectorse1, e2

ande3. The geometric significance ofD is that it is a multiple of the volume of the
prism of edges equal tôy, ¾.x + y/, ¾.x/. In particular, it depends on¾.x + y/ only
throughP⊥

¾.x/¾.x + y/, thus∣∣D.ŷ; ¾.x + y/; ¾.x//
∣∣ ≤ ∣∣P⊥

¾.x/¾.x + y/
∣∣ : (2.1)

For solutions of the Navier-Stokes equations the dynamical significance of the
expression (

S.x; t/!.x; t/
) · !.x; t/ = �.x; t/|!.x; t/|2

is that it presents the stretching term in evolution of the vorticity magnitude:(
@t + u · ∇ −1

)|!|2 + |∇!|2 = �|!|2: (2.2)

Equation (2.2) allows one to understand how local alignment of the vorticity direction
depletes the nonlinearity.

After this review of important formulas we turn our attention to the proof. As in
the argument in [7], one must have ana priori estimate for the strong solution under
the assumption (H). The key lemma reads as follows.

LEMMA 2.1. Letu0 ∈ H 1.R3/ with div u0 = 0. Suppose thatu is a strong solution
on .0;T/. If (H) is satisfied, then for all0 ≤ t ≤ T ,

‖!‖2
L2 +

∫ t

0

‖∇!‖2
L2 d ≤ ‖!0‖2

L2 exp
{

AT + BT3=5 + C‖g‖2Þ=.Þ+2/
LÞ;

}

×
(
1 + AT + BT3=5 + C‖g‖c2Þ=.Þ+2/

LÞ;

)
; (2.3)

where the constantA depends onK , B depends onK and‖u0‖L2, while C depends
onÞ,  and‖u0‖L2.

PROOF. The vorticity field satisfies


@!

@ t
+ .u · ∇/! = .! · ∇/u +1!;

div u = 0;

curlu = !;

!.x;0/ = !0.x/:

(2.4)
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Multiplying the first equation of (2.4) by !, and integrating onR3, after suitable
integration by parts, we obtain

1

2

d

dt
‖!.·; t/‖2

L2 + ‖∇!.·; t/‖2
L2 =

∫
R3

(
S.x; t/!.x; t/

) · !.x; t/dx ≡ I : (2.5)

Let K be the positive constant in (H) and split!.x; t/ as

!.x; t/ = �

( |!.x; t/|
K

)
!.x; t/ +

(
1− �

( |!.x; t/|
K

))
!.x; t/

= w1.x; t/+w2.x; t/;

where the smooth bump function�.½/ ∈ [0;1] is identically equal to one for 0≤ ½ ≤ 1
and identically equal to zero for½ ≥ 2 or½ ≤ −1.

So we can decomposeI into

I =
∫
R3

(
S.x; t/!.x; t/

) · !.x; t /dx

=
2∑

i =1

∫
R3

2∑
k=1

(
Si .x; t/!1.x; t/

) · !k.x; t/dx

+
2∑

i =1

∫
R3

(
Si .x; t/!2.x; t/

) · !1.x; t/dx

+
∫
R3

(
S1.x; t/!2.x; t/

) · !2.x; t/dx

+
∫
R3

(
S2.x; t/!2.x; t/

) · !2.x; t/dx ≡ I1 + I2 + I3 + I4;

whereSi .x/ = S[wi ].x/, for i = 1;2. We will estimate the above terms one by one:

|I1| =
∣∣∣∣∣

2∑
i =1

∫
R3

2∑
k=1

(
Si .x; t/!1.x; t/

) · !k.x; t/dx

∣∣∣∣∣
≤ 2K

2∑
i =1

2∑
k=1

‖Si .x; t/‖L2‖!k‖L2 ≤ C1‖!‖2
L2; (2.6)

where C1 is a constant depending only onK , and we used H¨older’s inequality
|!1| ≤ 2K and the Calder´on-Zygmund inequality

‖Si .x; t/‖Lq ≤ C2‖wi ‖Lq (2.7)

with 1< q < ∞ andi = 1;2, with C2 a constant depending only onq.
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The termI2 can be treated similarly asI1, so that

|I2| ≤ C1‖!‖2
L2: (2.8)

Also I3 is not a difficult term, and it can be treated as

|I3| =
∣∣∣∣
∫
R3

(
S1.x; t/!2.x; t/

) · !2.x; t/dx

∣∣∣∣
≤ C2‖!1‖L4‖!‖L4‖!‖L2 .Hölder’s inequality and (2.7) /

≤ C3‖!1‖L4‖!‖1=4
L2 ‖∇!‖3=4

L2 ‖!‖L2 .the Gagliardo-Nirenberg inequality/

≤ 1

4
‖∇!‖2

L2 + C4‖!1‖8=5
L4 ‖!‖2

L2 .Young’s inequality/

≤ 1

4
‖∇!‖2

L2 + C5‖!‖4=5
L2 ‖!‖2

L2: (2.9)

In the last inequality, we used theL∞-bound of|!1|. We note thatC5 depends only
on K .

Actually, as one can see,I4 is the crucial term. First, note that

¾2.x; t/ = !2.x; t/

|!2.x; t/| = ¾.x; t/;

just as was done in [2, pp. 785]. Then

∣∣(S2.x; t/!2.x; t/
) · !2.x; t/

∣∣
= |!2.x; t/|2|S2.x; t/¾2.x; t/ · ¾2.x; t/|
= 3

4³
|!2.x; t/|2

∣∣∣∣P:V:
∫
R3

D
(
ŷ; ¾2.x + y; t/; ¾2.x; t/

)|!2.x + y; t/| dy

|y|3
∣∣∣∣

≤ 3

4³
|!.x; t/|2|g.x; t/| f .x; t/; .by (1.4) and (2.1)/; (2.10)

where f .x; t/ = ∫
R3

(|!.x + y; t/|=|y|3−þ) dy. Therefore, due to (2.10), I4 can be
estimated as

|I4| ≤ 3

4³

∫
R3

|!.x; t/|2|g.x; t/| f .x; t/dx

≤ 3

4³
‖!‖2

La‖ f ‖Lb‖g‖L .Hölder’s inequality/

≤ C6‖!‖2
La‖!‖L p‖g‖L .the Hardy-Littlewood-Sobolev inequality/

≤ C7‖!‖2.1−�/
L2 ‖∇!‖2�

L2‖!‖1−Ž
L2 ‖∇!‖ŽL2‖g‖L

.the Gagliardo-Nirenberg inequality for‖!‖La and‖!‖La , repectively/
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≤ 1

4
‖∇!‖2

L2 + C8‖!‖2.3−2�−Ž/=.2−2�−Ž/
L2 ‖g‖2=.2−2�−Ž/

L .Young’s inequality/

= 1

4
‖∇!‖2

L2 + C8‖!‖2=.2−2�−Ž/
L2 ‖g‖2=.2−2�−Ž/

L ‖!‖2
L2; (2.11)

whereC8 depends onÞ and , and in the above inequality (2.11) we have used the
following identities:

2=a + 1=b + 1= = 1; 1=b = 1=p − þ=3 ;

1=a = .1 − �/=2 + � .1=2− 1=3/ ; 1=p = .1 − Ž/=2 + Ž .1=2 − 1=3/ :
(2.12)

Actually, we can solve (2.12) with

1

p
= þ

3
+ 1

2

(
1

2
− þ

3

)
;

1

a
= 1

2
− 1

2

1


− 1

4

(
1

2
− þ

3

)
;

1

b
= 1

2

(
1

2
− þ

3

)
; � = 3

2

(
1


+ 1

2

(
1

2
− þ

3

))
; Ž = 3

4
− þ

2
;

(2.13)

whereÞ and satisfy (1.5). And from (2.12), one has

þ=3< 1=b + þ=3 = 1=p = 1=2− Ž=3 ≤ 1=2;

which impliesþ < 3=2.
Substituting (2.13) into (2.11), we obtain

|I4| ≤ 1

4
‖∇!‖2

L2 + C8‖!‖2=.þ+1=2−3= /
L2 ‖g‖2=.þ+1=2−3= /

L ‖!‖2
L2; (2.14)

whereC8 is a constant depending only onÞ and .
Putting (2.6), (2.8), (2.9) and (2.14) into (2.5), we have

d

dt
‖!‖2

L2 + ‖∇!‖2
L2 ≤ 4C1‖!‖2

L2 + 2C5‖!‖4=5
L2 ‖!‖2

L2

+ 2C8‖!‖2=.þ+1=2−3= /
L2 ‖g‖2=.þ+1=2−3= /

L ‖!‖2
L2: (2.15)

So we can use Gronwall’s inequality on‖!‖L2 and it follows from (2.15) that

‖!‖2
L2 ≤ ‖!0‖2

L2 exp

{∫ t

0

4C1+2C5‖!‖4=5
L2 +2C8‖!‖2=.þ+1=2−3=/

L2 ‖g‖2=.þ+1=2−3=/
L ds

}

≤ ‖!0‖2
L2 exp

{
4C1T + C9T3=5 + C10‖g‖2Þ=.Þ+2/

LÞ;

}
; (2.16)

whereC1 depends onK , C9 depends onK and‖u0‖L2, whileC10 depends onÞ,  and
‖u0‖L2. In (2.16), we have used the energy inequality foru, and Hölder’s inequality
with

1

2

2

þ + 1=2− 3=
+ 1

Þ

2

þ + 1=2− 3=
≤ 1;
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for 2=Þ + 3= ≤ þ − 1=2 and 1=2 ≤ þ < 3=2.
Finally (2.3) follows from (2.15) and (2.16). This completes the proof.

After we have ana priori estimate for!, the proof of Theorem1.1 follows from
the standard continuation principle, which can be stated as follows.

It is well known [5] that there is a unique strong solutionũ ∈ L∞.0;T0; H 1.R3//∩
L2.0;T0; H 2.R3// to (1.1), for some 0< T0, for any givenu0 ∈ H 1.R3/ with
div u0 = 0. Sinceu is a Leray-Hopf weak solution which satisfies the energy in-
equality, we haveaccording to the uniqueness result,u ≡ ũ on[0;T0/. By thea priori
estimate (2.3) and the standard continuation argument, the local strong solutionu can
be extended to timeT . So we have provedu actually is a strong solution on[0;T].
This completes the proof of Theorem1.1.
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