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Abstract

We consider a nonlinear second-order elliptic boundary value problemin a bounded domain
Q ¢ RN with mixed boundary conditions. The solution is found via linearisation. We
design a robust and efficient approximation scheme. Error estimates for the linearisation
algorithm are derived ih,(Q2), H1(Q) and L..(Q) spaces under the minimal regularity
assumptions of the exact solution.

1. Introduction

Linearisation methods have been used in the numerical analysis of nonlinear elliptic
boundary value problems (BVPs) for quite a long time. Frequently, essential proper-
ties such as differentiability of the nonlinear operator, boundedness and invertibility
properties of linearised operators are used. Linearisation methods are powerful tools
when analysing the existence and convergence of approximations and many specic
techniques have been developed to solve these problems.

Many algorithms use a Newton-type linearisation. The classical Newton’s method

/(U 1) (Uk — Ug-1) = — F(Ua)
or its simplified version
f'(Uo) (Uk — Uk_1) = — F (Uk_1)
converge for Lipschitz continuouk. A major drawback of both algorithms is that the

initial guess needs to be near the exact solution, however it is well known that for initial
data close enough to the exact solution, Newton’s method converges quadratically.
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Another group of approximations is based on the so-called relaxation schemes, one
of which is the ager-Ka&ur scheme (seeader and Kaur [6, 7] or Kacur [8, 9]). In
general, the proof of the convergence of such an algorithm is not an easy matter. The
main disadvantage of the proposed relaxation scheme is the fact that the nonlinea
function appearing in the equation must be strictly monotonically increasing.

An attractive group of linearisation schemes represents the method of upper anc
lower solutions (also known as barriers). Examples of such algorithms can be found,
forexample, in Amannl]], Denget al. [4], Evans b, page 507] and Pa3$, page 155].

The linearisation of a nonlinear problem relies on the ordering properties of solutions.
One defines recursive sequences starting from a sub- and a super-solution, respet
tively and there exists a solution lying between them. The rates of such monotone
convergence cannot be determined in general. This technique is often used in exis
tence proofs, but it has a big disadvantage especially in the computation of evolution
problems. Namely, one has to start far away from the real solution and the information
from the previous time step cannot be used as the starting point for the approximation
scheme. Otherwise it is not possible to prove the monotonicity of iterations. Nev-

ertheless, these schemes create in some sense the basis of our approach. We will
course prove the convergence of iterations although they do not need to be monotone

The need of a reliable, efficient and robust iteration scheme for the solution of
nonlinear elliptic BVPs, which can start from arbitrary initial data, is evident. We
propose such an algorithm in this paper. We consider a nonlinear second-order
elliptic BVP, where the nonlinearity(u) (u stands for a solution anfl = g, gr)
can appear as a source term in the equation or at the Robin-type boundary conditior
(BC). In both situations we assume that the funciaa monotonically nondecreasing
(B’ > 0) and we distinguish the Lipschitz continuous€(3’ < L) and the degenerate
(0 < B’ < o0) case. We follow some ideas from Slokia [L5, 17] and we extend
these results to the case of unboungétaking into account the possible nonlinearity
atthe boundary. The Lipschitz continuous case has been considelé&] inltiere the
function g could degenerate only in a single point in which it waeegularised by a
suitably chosersy (k stands for the iteration parameter). Here we do not need such a
regularisation and, moreover, we allgto degenerate in the whole interval. 1h7]
this regularisation has been removed, but the problem setting there does not contail
nonlinear BCs and the convection is independent from the solution, which is taken
into account in our paper. The analysis of the mixed finite element discretisation for
a Lipschitz continuous case can be found in Stkéi[16].

In the Lipschitz continuous case, our algorithm is similar to the scheme proposed
by Evans b, page 507] (where there is a proof of convergence of a monotone approx-
imation for the Dirichlet BVP), but the main difference is that we show the order of
convergence of iterations (not necessarily monotone if we do not start from upper and
lower solutions) for a more general setting (a nonlinear BC) without using the ordering
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property of approximations. Hence we can start from arbitrary data and the iteration
scheme will converge to the exact solution. In the degenerate case, we first apply &
local regularisation to the nonlinear functinand then we use a similar linearisation

for the regular instance. The argument for convergence is more delicate since up tc
now there has existed no linearisation scheme for degenerate elliptic BVPs, which
converges and which can start from arbitrary data.

The proposed algorithms.(3) and ¢@.4) are in their spirit nothing more than an
application of the well-known Banach fixed point theorem. We explain the main idea
in the following example.

Given a Lipschitz continuous functiansatisfying O< y < g’ < L, we look for a
solutionx of the equatiorg(x) = 0. Define a functior by h(s) = s — g(s)/L, then

0<h(=1-3C <1—%=q<1.

We try to approach the solution using the sequerce= h(x._;) of successive
approximations. The Banach fixed point theorem implies the existence and uniquenes:
of a solutionx to the equatiorh(x) = X, which immediately yieldg(x) = O.
Moreover, the error bound

qk

X = X| = 77— X1 = Xol
can be established and lim,, xx = X is valid independently of the choice of the
initial guessx,.

This clever idea must be put into the context of PDEs and generalised to an
appropriate form in order to handle the most interesting situations, ngmely or
L = oo, which cover degenerate nonlinear elliptic problems.

We recall that Pong and Yond. 4] also applied the fixed-point argument to a
Lipschitz continuous case for a simpler problem setting, but they were not able to
establish the rate of convergence and also they did not discuss the degenerate cas
Maitre [11] applied an iteration scheme for solving a nonlinear elliptic problem, but
he was not able to handle nonlinearities of the tgpe) = sign(x)|x|" for0 < r < 1.

The rate of convergence in the spate&?) andH*(Q) is shown in Theorem3s.2
and4.3and the main contribution of this paper is Theorém(for strictly monoton-
ically increasing nonlinearities), where convergenceé in(2) N L. (T'y) is shown.
Here, the weak maximum principle proof-technique has been employed, which al-
lows us to obtain the error estimates in the sphagg) N L. (I'y) for a solution
ue HYQ) N Lo(2) N Lo(Ty).

The proposed technique can be also easily applied to a BVP with a nonlocal BC,
see for example Slodka [15]. We have omitted this in our paper in order to focus on
a new type of linearisation scheme and on the error estimates.
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Throughout the pape€ denotes a generic positive constant independent of the
iteration parametek.

2. Problem formulation and assumptions

Consider an open bounded setc RN, N > 2 with a Lipschitz continuous
boundaryl" consisting of two complementary paitg andI'y. We assume that

ITp| > O. (2.1)

We denote byw, z) the usual ,-inner product of any real or vector-valued functions
w, Z0on a setM.
We study the following nonlinear stationary BVP:

V- (= AgitVU — aon) +gu) = f inQ,
u=0dp onIl'p, (2.2)
(—Agit VU — aconld) - v — gr(U) = gn onT'y.

The nonlinear functiong andgg are supposed to be continuous and monotonically

nondecreasing, that is, € g/, g;, a.e. inR. Later, we will also adopt some new

assumptions og andgg depending on whether or not they are Lipschitz continuous.
The tensolAy describing the diffusive properties of the material obeys the inequal-

ity
Colwlf g < (AgtVw, Vw)e < Clwlf,. Yw e HY(Q) (2.3)

for given positive constants, andC. The assumption2(1) implies the fact that the
seminorm|-|, o, represents an equivalent normhit($2) to the usual nornjj-||; .

We consider such a type of convectiag,, which has been caused by an indepen-
dent stationary process without spatially distributed sources. This can be mathemati-
cally described as

|acon] < C a.e. ing,
Acon-v >0 a.e. o'y, (2.4)
V-am=0 a.e. inQ.

Further, we adopt standard assumptions on the source term and bounddrtyggata
andgp:

fela), gnel,(Ty) and (2.5)
3§ € HY(Q) suchthat§ = gp on I'p. (2.6)
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Let us introduce the standard subspslcef H(),
V ={peHYRQ); p =00nTp,},

as the space of all admissible test functions in a variational formulation. Define the
bilinear forma : HY(Q) x HY(Q) — R as

a(u, @) = (AgtVU + aconll, Vo)o, YU, ¢ € HY(Q)
and the linear bounded functional: V — R

<Fv(p>:(fs§0)§2_(gNa§0)FN, V(pEV

The weak formulation of4.2) has the following form: Findi € H(£2) such that
u—geVand

a(u, @) + (9(u), o + (Gr(W), @)r, = (F,9), Ve e V. (2.7)

The well-posedness of this problem (existence and uniqueness) is guaranteed by th
theory of monotone operators (see for example;dsdl2]).

THEOREM 2.1. Let the assumption@.1) and (2.3—«2.6) be satisfied. Then there
exists a unique weak solutiane H(Q2) to the BVP(2.7).

The main goal of this paper is to design a simple and efficient linear approximation
scheme. We distinguish between two cases depending on the Lipschitz continuity
of the nonlinear functiong andgg. For simplicity we assume that both functions
have (or have not) bounded derivatives. Of course, the case when one function is
Lipschitz continuous and the other not is possible, and this can be obtained by suitable
combination of the approximation schemes we will describe.

3. Lipschitz continuous functionsg and gr

We start with a simple case. Let both functiamandgg be Lipschitz continuous
with the Lipschitz constanit, that is,

IB(X) — B(Y)| < LIX =yl VX, y € R,

: 3.1
0<p <L, a.e.inR, 8 =9, gr.

Here, we follow the ideas from Slatka [L7], where a BVP with Dirichlet BCs has
been considered as a temporal problem by time discretisation. We design a recursive
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sequence of linear elliptic BVPs, solutions of which will approach the weak solution
u of (2.7). We start with any functioni, satisfying

Upg € Lz(Q) NL, T'n) - (32)

Further,u, for k = 1, 2, ... is a weak solution to the following linear elliptic BVP:
Findu, € HY() such thau, — § € V and

a(Uk, (P) + L(uks QO)Q + L(UK, QO)FN = <F7 @) + L(uk—ls QO)Q - (g(Uk_l), @)Q
+ L(Uk-1, @)ry — (Gr(Uk-1), @)y (3.3)

holds for anyy € V.
First, we show the well-posedness of the B\A).

LEMMA 3.1. Let the assumptiong.1), (2.3—2.6), (3.1) and (3.2) be satisfied.
Then the sequendey}ie, C HY(Q) is well defined.

PROOF. Let w be any function fronV. Assumption 2.3) implies
ClwlZg = a(w, w) > Colwli,. (3.4)

The relation 2.4) together with the Friedrichs inequality and Green’s theorem give
the estimate

1
C |w|ig > (Aconw, VWw)g = E(acona sz)sz
1 2 1 s
= ——=(V - awn w)g + 5 (acon- v, w)r
2 2
1
= é(acon' v, wz)rN > 0. (35)

Hence the left-hand side 08.3) is aV -elliptic continuous bilinear form.

Takek = 1. The right-hand side of3(3), according to 2.5), (3.1) and @3.2), is a
bounded linear functional ovi. Thus the existence and uniqueness of a weak solution
u; € H(Q) to the BVP B.3) follows from the Lax-Milgramm lemma.

If u._; € HX(R), the right-hand side of3(3) is a bounded linear functional on.
Thus there exists a unique weak solutigne H(2) satisfying @.3).

We now define the following functions:
h(s) =g(s) — Ls, hg(s) =0gr(S) —Ls, seR. (3.6)
Subtracting 2.7) from (3.3), we get the variational formulation for the erngr — u

a(ux — U, @) + L(ug —u, 9)g + L(Ux — U, @),
= (h(u) — h(Uk-1), @)g + (hr(U) — hr(Uk_1), @)1y, (3.7)
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which holds for anyp € V.
Our next goal is to derive the error estimates inkthg<2) space for the linearisation
scheme{.3).

THEOREM 3.2. Let the assumptions of Lemm3al be satisfied. Then there exist
positive constant€ ands$ such that

2 2 2
”uk - UHQQ + ”uk - UHQFN + |uk - u|]_,Q

6 k
<c (1 _ L—+8) [luo — llZ o + llup — ullZ . ]

holdsforallk =1, 2, ....

PROOF. Choosep = ux — u € V in (3.7) and get

a(ug — U, U —U) + L lug — ull3 o + L flug — ullg
= (h(u) — h(uk_1), Ux — Wgq + (hr(U) — hr(Uk_1), Uk — U)r,. (3.8)

The crucial pointis to estimate the terms in the right-hand side containing the functions
h andhg. To do this, we use3(1) and deduce

—L<h(s=d(s—L=<0 a.e. inR
—L <hik(s)=0gxr(s) —L <0 a.e. inR.

Hence the derivatives of both functiohsandhg are bounded by the constdnt that
is, [h'(s)] < L and|hk(s)| < L a.e.inR.
Therefore, using the Cauchy and Young inequalities we deduce

[(h(u) — h(u_1), Uk — Wl < [h) — U)o Uk — Ullg.q
< LJu—uallgg lluk — Ullgg

IA

L 2 L 2
5 [u—Uk-allgq + 5 luk —ullgq -

Analogously we have

L L
|(hr(U) — hr(Uk_1), Uk — W)p, | < 5 lu— Uk—l||§_rN + 5 llux — U”S,rN .

The left-hand side 0f3.8), according to thé/-ellipticity of the bilinear forma (see
(3.4)), can be estimated from below by

2 2 2
L llug — ullgq + L llux — ullgr, + Coluk — Ul .
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The generalised Friedrichs inequality (seBz€k and Neittaanéki [10, page 26])
and the continuous embeddihg(d2) < H!(Q2) imply the existence of a positive
real numbesp such that

C C
§llwllg < 7‘) wio, Slwliy, < 7‘) w2, (3.9)

holds for allw € V. Thus the lower bound of the left-hand side 8fg) is

8 ) Co
(L + 5) lue — ullg ¢ + (L + 5) lue = ullg r, + > Uk — ul3 -
Summarising the foregoing results we arrive at
(L +8) [luk — ullg o + llux — ullf ] + Colu — ul?
<L[lIu- uk—l”(z)ﬂ + llu— UHIISIN] )
which after a simple calculation gives

Co

lug — Ul o + llug — ull3 -, + T U™ ullg
< (l - %M) [Iu—ucalso + u—uecali5r, - (3.10)
We omit the third term on the left for a moment and obtain the recursion formula
lu — ully o + llug — ull5 < (l — LLH) [lu—ucallo+ u—uecaliyr -

This afterk iterations implies
S k
lug —ullgq + llug —ull3 -, < (l — L—H> [lluo — ull5 o + luo — ull} 1 ]-
The rest of the proof comes from the last inequality ahd@).

4. Non Lipschitz continuous functionsg and gr

Throughout this section we assume that the derivatives of both fungiandgg
are unbounded. The most interesting types of nonlinearities are depicted in Eigure
To cover all these cases, we introduce the following cl&gsof all real-valued
functionsp associated with any poitite R and satisfying the next relations
B € C(R),
0<pB'(s) <oco a.e.inRk,
B'(s) B'(s)=00 = s=h,
B <0 a.e.in(b,00),
B’ >0 a.e.in(—o0,b).
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FIGURE 1. Examples of nonlinear functions fro,

Bk(S)
B(S)

ks

FIGURE 2. Local regularisation of

Functionsg and gr can of course belong to different classes, but without loss of
generality we assume thgtgr € 2.

In light of the fact that the functio8 (stands forg or gr) can degenerate, we
regularise it first. Then we define a linearised approximation scheme, which is in
some sense similar to the Lipschitz continuous case. We suppose that there exists
sequence of functiong,}2, and positive real numbets and.# satisfying

0< B, <kZ a.e.inR,
IB(S) — Bu(9) = Ck™  Vk>koeN, (4.1)
B =0, 0r.

Without loss of generality one can assume that 1. Similarly as in 8.6), we define
hc(s) = ak(s) — kZs andhr(S) = grk(S) — kZs, for s € R. In view of (4.1) we
have

—kZ <h(s)=g(s) —kZ <0 a.e.inR,
—kKZ < hg(s) =0 (8) —kZ <0 a.e.inR.

Therefore the relations

Ih (s <kZ and |hg,(s) <kZ (4.2)
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are valid a.e. irR.
We give a simple example of the regularisation to enhance readability.

EXAMPLE 1. Let the functiong be defined ag8(s) = s|s|*%, where the real
parameter satisfies the condition & o« < 1. Clearly8 € 2. We choose? = 1.
The regularisatiors, of 8 can be given as (see for example Figgye

min{g(s), ks} s> 0,

4.3)
maxX{s(s),ks} s<0O0.

Bk(S) = {

Clearly 0< B, < k and one can easily check that

IB(S) — B(S)] < C(a)k /=,

Now, we introduce a linearised scheme, the solution of which should approach
the weak solution of 4.7). First, we replace the nonlinearity = g, gr by its
regularisatiorgy, and then we apply a similar scheme to the Lipschitz cas®. (The
approximation scheme reads as: Finde H!(2) such thaty, — § € V and

a(Ug, 9) + KLU, p)o + KL (Uk, 9)r,
= (F, ¢) + KZ (U1, ©)a — (G(Uk-1), ®)g
+ KZ (U1, @)ry, — (Orik(Uk-1), @)1y (4.4)

holds for anyp € V.

The existence and uniqueness of a weak solution to the linear elliptic BMPg
guaranteed by the next lemma. The proof proceeds in the same way as in [3einma
therefore we omit it.

LEMMA 4.1.Letg,gr € Zo. Assume2.1), (2.3—2.6) and (3.2). Then the
sequencéule, C HY(Q) is well defined.

We subtractZ?.7) from (4.4) and get the variational formulation for the error of the
linearisation scheme

a(Ug — U, 9) + KLUk — U, 9)o + KL (U — U, 9)r,
= (g(u) — gk(W), @) + (h(u) — he(U-1), P)o
+ (Qr(U) — Grk (W), @)1, + (hrk(U) — hrk(Uk-1), @)1y, (4.5)
which holds for anyp € V.

The following lemma plays an important role in the derivation of the error estimates
for the approximationsiy.
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LEMMA 4.2. Leta, bandw be positive real numbers satisfyibgt w. Assume that
{Wlie, is a sequence of nonnegative real numbers obeying the following recursion
formula

K+b

Then there exists a positive constéht= C(yo, », a, b) such thaty, < Ck-mnb.w}
k=12 ....

b
ykfakfl‘“ (1——>Yk1, k:1,2,

PROOF. Suppose we have a recursion formula of the type< aq + byYk_1,
k=1,2,.... One can prove by induction that

yk<ak+ZaJ Hb+yol_[b (4.6)

i=j+1

holds for allk € N. The details are left to the reader.

In our case we hava, = ak = andb, = 1 — b/(k + b). Now, we estimate all
terms on the right-hand side of.¢). We start with an obvious inequality for real
numbers L x < €, for all x € R, which immediately give§]", (1 + x;) < eXX,
forall x; € R, x; > —1. Therefore

k

b 1 kil
yon(l—m><yoexp< bZl—|—b><y0eXp< b/ x~|—b)

i=1
< yoexp(b[In(1+b) —In(k + b)])
= Yol +b)P°k+1+b)™<Ck™® 4.7

Similarly we estimate also the next term

L 110 7s)

|J+l
<CZ 1+wexp( bZ |+b>
i=j+1

SCZ j1+
j=1

k-1 k—1

1 [(j+1+b\" .
=C Ck+1+b™" 1+ bt
jz_;j1+w(k+1+b> <Ck+1+b) JZ_;(JJF +b)

—In(j +1+b))

k
<Ck+1+ b)‘b/ (X + 1+ b)>1 dx < Ck~minw:b), (4.8)
0

Summarising the relationg ©)—(4.8) we conclude the proof.
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Now, let us turn our attention to the convergence proof of the approximatjons

THEOREM4.3. Letg, gr € Zo. Moreover, we assum@.l), (2.3)-(2.6), (3.2) and
(4.1). Then there exist positive constatsinds$ such that

|uk o u|ig < Cklfmin{Za),S/f}

luk — ulld o + llue — Ul < Cko ™M=,

is valid for all k € N.
PROOF. Settingy = ux — u € V in (4.5 we have

a(ug — u, U — u) + KZUg — U, Ug — U)g + KZ(ug — U, Uy — Ur,,
= (g(U) — ge(u), Uy — Wg + (he(U) — h(Ug-1), U — U)o
+ (r(U) — Grk(U), Uk — W)y
+ (hrk(U) — hr(Uk_1), Ux — Wr,. (4.9)
The term on the right-hand side containing the functiozan be estimated using the

Cauchy inequality, 4.1), Young's inequality, Sobolev’'s embedding theorem and at
last the Friedrichs inequality. Successively we get for gryR

[(9(U) — ge(U), Uk — Wel < [I9(U) — (W lgq Uk — Ulloo
< Ck™lux — ullgq
<C,k*+nlu—ull}g
<Ck*+nlu—ulig
<Ck* +nluc—uli,.

Analogously we deduce
[(Gr(U) — Dri(W), U — Wl < Ck + 1 [lu — ullg 1,
<C,k2 +nlu—ul?,.

Applying the Cauchy inequality4(2) and Young’s inequality we obtain

[(h(u) = hie(U—1), U — Wl < [Thi(U) — (U)o luk — Ul
< KZ U — U_1llgq Uk — Ullg.q
ke , k¢ ,
< > lU—Ukallgq + = luk — ullgq

and in the same way we get

k& k&
|(hrk(U) — hr(Uk-1), Uk — U)py | < - Iu—uellgr, + - lug —ullgr, -
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According to the ellipticity of the bilinear forna, the left-hand side of4.9) can
be estimated from below by.Z [u — ull, + K-Z [lux — ull§ -, + Colux — Ul .
Collecting the foregoing results together with9), we arrive at

KL + 6 C
5 [lu— ulldg + lluc—ullg . ]+ (70 — n) luc—ulg

ke
= Gk 4+ == [lu = Ueallg g + U = ieallg ]

Now, we choose = Cy/4 and after a simple calculation we get

+ __Co lug — ulf
2(kZ + §) 1o

8.
W) [lu—ucal?g + llu—uwcal, ]  (4.10)

luk — ullg g + lluk — ullg -,
<Ck1 %4 (1 -
Omit the third term on the left for a moment and get the following recursion formula:

2 2
U — ullgq + luk — ullg

8/

ckiw g (1o OZ
= +( K+o/ 2

2 2
) [Ilu—uallg g + lu—ualigr, -

Lemmad4.2yields
lue — Ul ¢ + llug — U2, < Ck-min@e/<)

and the rest of the proof follows from the last estimate ahii(j.

Theorem4.3 proves the convergence af to the exact solutioru in the space
Lo(2) N L, (Ty). If min{2w, 8/} > 1, then also the convergence in the norm of
the Sobolev spackl!(R2) is shown. This, of course, depends on the nonlinearity of
0, gr and also on the relatiorB(9). The crucial point in the proof was the fact that
the diffusion term has added a bit to the source term—see the rel&ti@n et us
note that ifg’, g > y > 0, then the proof of Theoresh 3 can be modified so that the
relation @.2) is replaced by

Ih(s) <kZ —y and |hg(s)| <kZ -y, (4.11)
which is valid a.e. irR. Analogously one can prove

luic = ullg.q + Uk — ullg, < Ck- ™02/

|u — u|iQ < CkYmin2o.(r+0)/ 2} (4.12)
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ExamMPLE 2. Consider a real parameter satisfying 0 < o« < 1. Define the
following function

s|s|*~t  for se[-1, 1],

S) =
e {a for se R\ [—1,1].
Clearly 8’ > «, that is, we can put = «. Choose? = (1 — «)/2 and define

min{B(s), k.¥s} s> 0,
Bk(s) =
max{8(s), k¥s} s<0.
Thus 0< g, < k.Z and a simple calculation gives far> 1/.¥
1B(S) — B(8)] < Cla) K/ =C k™.

Therefore

>1

T l-«

. y+46 . y . 20 20 20
min 3 2w, —— >m|n{2 ,—}:mln , =
{‘“ z }— 7 {l—a 1o

for « > 1/3. According to the relatiord(12), we obtain
k|im luc —ulp =0 for 1>« >1/3

The condition thaip” > y > 0, wherepg stands forg or gg, is natural in some
applications, see, for example, Barrett and KnabBgrHlere, an equation of the type
U+ [ul?) — Au= f with0 < p < 1is considered. This, after time discretisation,
leads to an elliptic equation of the forom+- [v]} — Av = F.

Our next step is to prove convergence in the sgacé).

THEOREM 4.4. Let the assumptions of Theorefr8 be satisfied. In addition we
supposal € L (2) NL,(I'y) and0 < y < B < oo for B = g, gr. Then there
exists a positive constaf such that

— 1 ) g
max{lux — Ul » Uk — Ull__ )} < C k= minler/2)

holds for allk € N.

PrROOF. Fix the iteration parametdrand define the real constamds B and M 4
in the following way:

A=K g — ge(u) + he(u) — heUcD 1l g, »

B = (k2) ™| gr(U) — grk(W) + k() — haxU |, .~ and
Mag = max{ A, B}.
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Denote by~ andT' the sets

Q7 ={xeQ; u(X) —u(X)+ Mg <0} and
Iy ={x € n; U(X) —u(x) + Mag < 0}.

Let us suppose that at least one of these sets has a positive measure @hd
(N — 1)-dimensional measures are denoted by the same symbol), that is,

|7+ [Tyl > 0.

We start again with the relatiol (/) and setp = (ux — U+ Map)~ € V, wheref -
stands for the usual cut-off function defined by(s) = min{ f (s), 0}. We can write

a(ux — U, (Ux — U+ Map)") + kL (U — U, (Ux — U+ Mag) e
+KZ (U — U, (Ux — U+ Mag) r,
= (h(u) — h(Uk-1), (Ux — U+ Mag) e
+ (hr(U) — hr(Uk-1), (Ux — U+ Mag) )ry.

This can be rewritten as
0= (AdgitV (U — ), V(U — U+ Mag)7),

+ (Boon(Uk — W), V(Ux — U+ Mag) ),
+ k% (Uk —u— g(u) — gk(w) + hy(u) — hy (Ug_1)

kg 1(uk_u+MAB)_)Q
LK (Uk Cu— gr(W) — grk(W) +kf3;,k(u) - hR.k(uk—l), (Ue—U+ MAB))
I'n

= M+ My + M3 + My. (4.13)

TheV-ellipticity of the matrix Aq (see R.3)) implies the non-negativity of the term
M., that is,

0 < (AsrV (U — U+ Mag) ", V(U — U+ Map) ),
= (AgirV (U — U+ Mag), V(U — U+ Map) ),

= (AgtV(Ug — U), V(U — U+ Map) ")
=M

Q

iy

The convection ternM, is also nonnegative. To show this, we apply Green’s theorem,
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(2.4 and B.5). We successively obtain

M2z = (Bcon(Ux — U), V(U — U+ Mag) "),
= (@con(Uk — U+ Mag), V(U — U+ Mag) ),

— Mag (8con V(U — U+ Mag) ") (£Masg)

= (@con(Uk — U+ Mag) ", V(U — U+ Mag) ),

>0

+ Mag (V * Bcon, (U — U+ MAB)_)
——
Q

=0

[16]

— Mag (aon* v, (U — U+ Map) ). (Green's thm.)
> —Mag (8con - ¥, (Ux — U+ Mag) 7). ((3.9,(2.9)
= —Mag (acon‘ v, (Ug —u+ MAB)) ((2.9)

0
> I'n

> 0.

Using the obvious inequality

y— W — h(Uey)

<U—U+A<u—u+M 0,
K7 =< Uk + A< Uk + Mag <

U —

which is valid a.e. i2—, we have

_ h) —h(u-)

7 a(uk_U+MAB)> > 0.

Q

Mgzk,%(uk—u

Analogously, applying the inequality (valid a.e.liy)

hgr(Uu) — hr(u,_
U —u— R(W R(kl)fuk—u+B§uk—u+MAB<O,

k¥

we get forM,

h —h _
My=kZug—u— R() (U 1), (U — U+ Mag)™ > 0.
k¥ Iy
Collecting all the estimates fvl4, ..., M4 we arrive at

M1+M2+M3+ M4>O.



[17] A robust linearisation scheme for a nonlinear elliptic BVP 465

This contradicts the relatiod (13) and the assumptioi2—| + [Ty | > O fails to hold.
In other words, we have just proved

U — U > —Maug a.e.in ,
, (4.14)
U —U> —Mag a.e.inly.

The next step is to prove

U — U < Mg a.e.in L,
. (4.15)
U — U < Mag a.e.inTy.

Therefore, we introduce the se&@s andT'y, as
Q" ={x € Q; u(X) —ux) —maxA, B} >0} and
[V ={x€Ty; u(X) —u(x) — Mag > 0} .

We now putp = (Ux — U — Mpg)™ = max{ux — U — Mug, 0} € V into (3.7) and
follow the same argument as before. So, we obtéih5).
In light of (4.14) and @.15 we have

max{lux — ull_q » Uk — Ull__ry } < Mag. (4.16)

The assumption & y < g’ for 8 = g, gr implies the relation4.11), which is valid
a.e. inR. Thus we successively get

A= k)™ lgu) — gk(u) + hy(u) — hk(uk—l)”Loc(Q)
< k) (g — Gl + I1heW) = h(UD) llq))
< Ck e + (1 — L) lu — uk—l”Lw(Q)

k&
A
ckro g (1- Z ju—ue
= +( k—l—y/i”) lu— Ukl
e v/Z
<Ck*'“+ (1 - m) maX{”Uk—l —Ull @ U1 — U|||_x(rN)}

and
B = (k?) ™" |gr(W) — gri(U) + hr () — (Ui | L)

< k)™t (|} gr(W) — Grik(W|_ ) + [NrKW) = hri(Uc)| LMN))

—1-w y
< Ck 1+ (1 — @) U — Ukl ry)
v/Z

<Ck'+ (1 - m) lu—uall iy

Z
<cktoq (1- Y/
- +( k+yZ?

> max{||uk,1 - u”Lm(Q) s ||Uk,1 - u|||_x(rN)} .
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The last two estimates and.( 6 imply the following recursion formula fok =
1,2,...:

maX{”Uk — Ul @ Uk — u”Lw(FN)}

SCkﬂﬂt+<1— v/-Z

———— | maXj ||Uk-1 — U , lUg—1 — U .
k—l—'}//g) {” k—1 ||LM(Q) ” k-1 |||_m(rN)}

The rest of the proof can be obtained by a simple application of Letmga

5. Numerical experiments

In this section we present two numerical examples to demonstrate the efficiency anc
robustness of the proposed linearisation scher@&} énd @.4). For the numerical
solution of a linear elliptic equation we have used the mixed non-conforming finite
element formulation. This is equivalent to the mixed-hybrid method (see Arnold and
Brezzi [2]). We explain very briefly the main idea of this approximation.

Let us consider a regular triangulatia#, (h denotes the mesh diameter) of the
domaing2. On each elemen¥ ¢ .7, we define three linear basis functions associated
with edges of.7, that is, a basis function has the value 1 at the midpoint of one
edge and 0 at the midpoints of the different edges of one triangle. Further we define
a bubble function on7, which is a polynomial function of third order vanishing
on the boundary.7 and its integral average value oi is 1. In this way we have
enriched the standard linear non-conforming space by bubbles, and we solve the linea
elliptic problem in this space replacing the velocity figjdy its projection on the
Raviart-Thomas spadeT,. For more details see Arnold and BrezZ}.

For the analysis of the mixed finite element discretisation for the Lipschitz contin-
uous case (Dirichlet problem) we refer the reader to Skal{16].

5.1. Lipschitz continuous case Let © be the unit square iR?, the boundary of
which is split into two part§’p andTl'y, see Figure.

We consider the same nonlinear function in the domain aridygithat is,g = g,
which is defined as

arctans  for s <1,
g(s) =
/4 elsewhere

This is clearly continuous. For the derivative we have

1/1+¢s%) fors<1,
0 elsewherge

MQ={
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I'p

FD 1—WD
Qcon

Iy
FIGURE 3. Domain$2 with convectionacen

thus 0< g < 1a.e.inR.
The convection terma,,, = (0, —1) clearly fulfills the assumption2(4). We
consider the following nonlinear elliptic BVP: Finde H(£2) such that

V. (=VUu—aoeWw+gu="~f inQ,
u=gp onIp,
(=VU = acu) - v — g(u) = On on I'y,

where the data function§ gp andgy are defined in such a way that the exact solution
of this BVP is

ux, y) = x3 — y2 + x + sin(z x) sin(zry).

We have used the linearisation sche@&)with L = 1 for computations.

Let us introduce a random functiesan whose range is uniformly distributed over
(-1, 1). We present two computations. In the first case, we chogeslatively close
(up to 50% error) to the exact solution, that is,

Up(X) = u(x)(1+ 0.5ranx)).
In the second event we begin witl, which is far away from the solutiom, that is,
Uo(X) = 100 rar(x).

Let us note that the random functioan has been evaluated once per a given triangle
or an edge.

We have used a fixed uniform mesh consisting of 5 000 triangles, which corresponds
to AXx = Ay = 0.02, and we have computed 25 iterations. Then we have evaluated
various errors ofl, and plotted them versus iteratioks= 1, ...,25. In order to
get a better feeling for the rate of convergence, we have depagadthmsof errors
instead of errors on thg-axes—see Figuré. Here, the left column represents the
case for a good starting poing, while the right column corresponds to a very badly
choseruy.
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iteration iteration
10 15 20 25 L 5 10 15 20 25
-2 0
-25 -1
-3 -2
-35 -3

Up was close tai

Up was far fromu

FIGURE 4. Logarithms ofL,(2)-errors foruy versus iterations

5.2. Non Lipschitz continuous case TakeQ = [0, 1]>. Consider the nonlinear
functiong given by

Js for s> 0,
g(s) =
0 elsewhere
which is clearly non Lipschitz continuous. We want to find a solution to the following
nonlinear Dirichlet problem:

V- (Vo +guw=Ff inQ
u=gp onT.

The data functiond andgp are defined in such a way that the exact solution of this
BVP is

ux, y) = x3 — y2 + x + sin(z x) sin(ry).

We have used the linearisation schemel)(with . = 1 for computations, where
the approximatioryy is given by @.3). We start fromuo, which is far away from the
solutionu, that is,

Uo(X) = 100 rar(x).

We have again used the same uniform mesh consisting of 5 000 triangles corresponding
to AX = Ay = 0.02, and we have computed 25 iterations. The results are depicted in
Figureb.

5.3. Conclusion Figures4 and5 show the behaviour of the,(2)-error of the
iteration process. One can also computekh€)- andL .. (R2)-errors. The graphs

will have the same character. The rapidly decreasing part at the beginning is followed
by a more or less constant section. The reason for this is that the initiate dominant
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iteration iteration
0 5 10 15 20 25 2 5 10 15 20 25
-1 1
-2 0
-3 -1
-4 -2
absolute error relative error

FIGURE 5. Logarithms ofL,(2)-errors foruy versus iterations

linearisation error becomes subjacent to the discretisation error as the number of
iterations increases.

We can really observe that the linearisation scher@e &nd @.4) are robust and
that the approximations converge towards the exact solutions independently of where
the iteration process has started. The robustness of the scheme allows the use of larg
time steps in the computation of evolution problems. The convergence at each time
point of a suitable time partitioning is independent of the time step size. This is a big
difference from other frequently used algorithms.

Moreover, both numerical schemes are efficient. In particular, we needed 7-8
iterations to get the best possible error for the given discretisation, althgughs
really badly chosen. In the instance of a good starting peint is enough to do 3-4
iterations to achieve the discretisation error.
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