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SHARP INTEGRAL INEQUALITIES BASED ON
GENERAL EULER TWO-POINT FORMULAE

J. PEEARICY, I. PERIC? and A. VUKELIC?
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Abstract
We consider a family of two-point quadrature formulae, using some Euler-type identities.

A number of inequalities, for functions whose derivatives are either functions of bounded
variation, Lipschitzian functions dR-integrable functions, are proved.

1. Introduction

Inthe recent papeb] the following two identities, named the extended Euler formulae,
have been proved. For> 1 and every < [0, 1]

1
f(x) = / f(t) dt + To(x) + RY(X) (1.1)
and 01
f(x) = / f(t) dt + To_1(¥) + R2(%), (1.2)
0
whereTy(x) = 0 and
Tuoo = 0 2 frecng) g, (1.3)
k=1 :

for 1 <m < n, while

1
RY(x) =_1/ Bi(x —t)df™ (1),
n! Jo
1
R2(X) = _$/ [Bi(x —t) — By(x)] df " P(t).
- Jo
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Here, asin the rest of the paper, we Wyf(gleg(t) de(t) to denote the Riemann-Stieltjes
integral with respect to a functian: [0, 1] — R of bounded variation, anﬁ]1 g(t) dt
for the Riemann integral. The identitiek {) and (L.2) extend the well-known formula
for the expansion of a function in Bernoulli polynomial$[ page 17]. They hold for
every functionf : [0, 1] — R such thatf ™% is a continuous function of bounded
variation on[0, 1]. The functionsB(t) are the Bernoulli polynomial8, = By (0) are
the Bernoulli numbers, anB;(t), k > 0, are periodic functions of period 1, related
to the Bernoulli polynomials as

Bi(t)=Bt), O<t<1 and Bi(t+1) =Bt), teR.

The Bernoulli polynomialsB,(t), k > 0, are uniquely determined by the following
identities:

B.(t) = kB_1(1), k> 1,
Bo(t) =1, By(t+1) — B(t) =kt“?, k=>0.

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example 1] or [2]. We have thaB;(t) = 1 andB;(t) is a discontinuous function
with a jump of—1 at each integer. It follows th&,(1) = By(0) = B, for k > 2, so

that B} (t) are continuous functions fér> 2. We get

B/ (t) = kB ,(t), k=1, (1.4)

for everyt € R whenk > 3, and for every € R\ Zwhenk = 1, 2. In this paper we
study, for each real numbere [0, 1/2], the general two-point quadrature formula

1
/ f(t)dt:%[f(x)Jrf(l—x)]+E(f;,x), (1.5)
0

with E(f; x) being the remainder. This family of two-point quadrature formulae was
considered by Guessab and Schmeissetdhdnd they established sharp estimates
for the remainder under various regularity conditions. The aim of this paper is to
establish a general two-point formula.§) using identities 1.1)—(1.2) and to give
various error estimates for the quadrature rules based on such generalisations. |
Section2 we use the extended Euler formulae to obtain two new integral identities.
We call them the general Euler two-point formulae. In SecBpwe prove a number

of inequalities which give error estimates for the general Euler two-point formulae
for functions whose derivatives are from thg-spaces, thus we extend the results
from [14] and we generalise the results from papétsq, 7, 16] and [L7]. These
inequalities are generally sharp (in the case 1 the best possible). Special attention

is devoted to the case where we have some boundary conditions and in some cases v
compare our estimates with Fink’s estimatesi([L3]).
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2. General Euler two-point formulae

Fork > 1 and fixedx € [0, 1/2] define the function&; (t) andF}(t) as
Glt)=B(x—t)+B(1—x—1), teR
andFX(t) = GX(t) — By(x),t € R, where
Bu(X) = Bu(X) + B«(1—x), x€[0,1/2], k> 1.

In particular, we geB;(x) = 0, B,(x) = 2x2 — 2x + 1/3 and Bs(x) = 0. Also,
for k > 2 we haveB,(x) = G}(0), that is, FX(t) = G}(t) — GX(0), k > 2, and
FX(t) = Gi(1),t € R. Obviously,G§(t) andF)(t) are periodic functions of period 1
and continuous fok > 2.

Let f : [0,1] — R be such thatf ™ exists on[0, 1] for somen > 1. We
introduce the following notation for eache [0, 1/2]:

D) =[f(Xx) + f(1—x)]/2.
Further, we defindy(x) = 0 and, for 1< m < n, x € [0, 1/2],
Tn(X) = [T(X) + Tm(1 = %)1/2,

whereT,,(x) is given by (L.3). It is easy to see that

- 1B
T =35 % [f& D) — &2 0)]. (2.1)

k=1

In the next theorem we establish two formulae which play a key role in this paper. We
call them the general Euler two-point formulae.

THEOREM2.1. Let f : [0, 1] — R be such thatf ™V is a continuous function of
bounded variation of0, 1], for somen > 1. Then for eaclx € [0, 1/2]

1
/ ft)dt = D(x) — Tax) + RA() (22)
0
and

1
/ ft)dt = D(x) — Toa(x) + RA(D). (23)
0

where

51 _i/‘l X (n—1) 52 _i/l X (n—1)
R”(f)_Z(n!) ; Gh(t)df (), R”(f)_Z(n!) ; Fx@)df ).
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PROOF. Putx = x andx = 1 — x in formula (L.1) to get two new formulae. Then
multiply these new formulae by/2 and add. The result is formul@.@). Formula
(2.3) is obtained from1.2) by the same procedure.

REMARK 1. If in Theorem2.1 we choosex = 0,1/2,1/3, 1/4 we get the Euler
trapezoid §], the Euler midpoint§], the Euler two-point Newton-Cote4 7] and the
Euler two-point Maclaurin formulae respectively.

By direct calculations for eack € [0, 1/2], we get

—2t, 0<t<x
FX)=Glt)=1-2t+1, x<t<l-—x; (2.4)

—2t+2, 1—-x<t<l,
2t2 4+ 2x% — 2x +1/3, 0<t<x;

Gi(t) = § 2t — 2t + 2x%> + 1/3, X<t<1l-—x; (2.5)
2t2 — 4t +2x2 —2x+7/3, 1-x <t <1,
2t2, 0<t<x;

FXt) =122 -2t +2x, Xx<t<1l—x; (2.6)

2t2 — 4t + 2, l1-x<t<l1
and
—2t% + (—6x% 4+ 6x — D, 0O<t<x;
—23 4 324 (—BX2P — Dt +3x%, x<t<1l-—x;
—2t3 + 6t2 4 (—6x% + 6x — Nt

+6x°% — 6X + 3, l-x<t<1l

F3(t) = G3(t) = (2.7)

We now will prove some properties of the functioB$(t) and FX(t) defined above.
The Bernoulli polynomials are symmetric with respect f@ 1(see 1]), that is,

B«(1—X) = (—=D*By(x), k=>1. (2.8)

Also, we haveBy (1) = Bx(0) = By, k > 2, B;(1) = —B;(0) = 1/2 andB,;_; = 0,
j > 2. Therefore we geBy;_1(x) = 0, j > 1 andBy;(x) = 2B,;(x), x € [0, 1/2].
Now, we haveFZXjfl(t) = GgH(t), j>1,and

F (1) = Gjj(t) — By () = GJj(1) — 2By (), x€[0,1/2], j>1  (2.9)

Further, the points 0 and 1 are the zerogpft) = Gi(t) — G;(0), k > 2, that is,
FX0) = FX(1) = 0,k > 1. As we shall see below, 0 and 1 are the only zeros of
F)(t) for j > 2 andx € [0, 1/2 — 1/24/3) U (1/2/3,1/2]. Next, settingt = 1/2
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in (2.8) we getB,(1/2) = (—1)*By(1/2), k > 1, which implies thaB,;_1(1/2) = 0,
j = 1. Using the above formulae, we g&f; ,(1/2) = G5, ;(1/2) =0, j > 1.
We shall see that 0,/2 and 1 are the only zeros szxifl(t) = G5, (1), forj > 2
andx € [0, 1/2 — 1/2/3) U (1/2v/3,1/2]. Also, note that fox € [0, 1/2], j > 1,
G3;(1/2) = 2Byj(1/2 - x) and

LEMMA 2.2.For k > 2 we haveG}(1 —t) = (-1)*G}(t), 0 <t < 1 and
FX1—t) = (-D*F*1),0<t < 1.

PROOF. As the functionsB;(t) are periodic with period 1 and continuous kor 2,
similar to [6, 8, 16] and [L7] we get these two identities.

Note that the identities established in Lem&iaare valid fork = 1, too, except at
the pointsx and 1— x of discontinuity ofF}(t) = G} (t).

LEMMA 2.3. For k > 2 andx € [0, 1/2 — 1/2v/3) U (1/2/3, 1/2] the function
G3_,(t) has no zeros in the intervdD, 1/2). For 0 < t < 1/2 the sign of this
function is determined by

(-D)*'G4 ,(1) >0, xe[0,1/2—1/2v/3) and
(—D*G 1) > 0, x € (1/2/3,1/2].

PrOOF. Fork = 2, G}(t) is given by @.7) and itis easy to see that forOt < 1/2,
Gi(t) < 0, x € [0,1/2 — 1/2v/3) and G%(t) > 0, x € (1/2/3,1/2]. Thus our
assertion is true fok = 2. Now, using a simple induction similar to that i&, B, 16]
and [L7] we prove thatG}, ,(t) cannot have a zero inside the inter¢@l 1/2). To

determine the sign oG}, ,(t), note thatG}, ,(X) = Bx_1(1 — 2x). We have [,
23.1.14],(-D*By1(t) > 0,0 < t < 1/2, which implies forx € [0, 1/2 — 1/2+/3)

(=D'Gh () = (=D 'Bx1(1 = 2x) = (=1)*Bx1(2x) > 0
and forx € (1/2v/3, 1/2]
(—D* Gy, (%) = (—D*Bac1(1—2¢) > 0,
which completes the proof.

COROLLARY 2.4. Fork > 2 andx € [0, 1/2 — 1/24/3) the functionsg—1)*F (t)
and(—1)*G}, (t) are strictly increasing on the intervaé0, 1/2) and strictly decreasing
on the interval(1/2, 1). Also, forx € (1/2J§, 1/2] the functiong—1)**Fx (t) and
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(—1)*1G) (1) are strictly increasing on the intervaD, 1/2), and strictly decreasing
on the interval(1/2, 1). Further, fork > 2, we have

max |F (1) = 2|Bx(1/2 — x) — Bx(X)|

tel0,1]

and
trr?oav](lka(t)l = 2max{|Bx(X)], |Bx(1/2 = X)|}.

PROOF. Using (1.4) we get[(—D*FX ()] = [(=D*G% ()] = 2k(—=1)*1G%_, (1)
and(-D*'G%_,(t) > 0for0 <t < 1/2 andx € [0, 1/2—1/2/3), by Lemma2.3
Thus (—1)*FJ (t) and (—1)XG%(t) are strictly increasing on the intervéD, 1/2).
Also, by Lemma2.2, we haveF,, (1—-t) = F, (1),0 <t < 1andG} (1—t) = G} (1),

0 <t < 1, which implies thai{—1)*F (t) and( 1)*G%, (t) are strictly decreasing
on the interval(1/2,1). The proof of the second statement is similar. Further,
FXx(0) = F (1) = 0, which implies thatF}, (t)| achieves its maximum at= 1/2,
that is, mao,y |FA (D] = |F3(1/2)] = 2/Ba(1/2 — X) — Bac(x)|. Also

max |G, ()| = max{|G3(0)|, IG5 (1/2)|} = 2max{|Ba(X)], Bx(1/2 - x)I},

te[0,1]

which completes the proof.

COROLLARY 2.5. For k > 2, andx € [0, 1/2 — 1/2+/3) U (1/2V/3, 1/2] we have

1
2
/ IFy (D] dt = / |G (D] dt = E|sz(1/2 = X) = Bx(X)[.
0

Also, we have

1
f FA )] dt = [Ba0)| = 2/Bx(0|  and
0
1
/ G (1)) dt < 2/Ba(x)] = 41Ba(X).
0

PrROOF. Using Lemmag.2-2.3we get

1/2

1/2 1
| G;“(t)dt\:z\ SGAO);

/ |G}, (D)]dt =2

1
= EIGék(l/Z) - G0 = E|BZK(1/2 —X) — Ba(X),

which proves the first assertion. By Corolldtyt and becausé,, (0) = F,. (1) = 0,
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F,. (t) does not change its sign on the inter¢@|1). Therefore using4.9) we get

1
f Fﬁ(t)dt’ =
0

G (D] — Ba(®)

1
f [G3 (1) — Ba(X)] dt’

1
/ FA®]dt =
0

= [Bx(X)I,

=’ 2k +1

which proves the second assertion. Finally, we uU&6)(again and the triangle
inequality to obtain the third formula.

3. Inequalities related to the general Euler two-point formulae

In this section we use formulae established in Theo?ehto prove a number of
inequalities usingd-, norms for 1< p < oo. These inequalities are generally sharp
(in the casep = 1 the best possible). Special attention is devoted to the case where
we have some boundary conditions and in some cases we compare our constants wit
the Fink constants {f, 13)).

THEOREM 3.1. Assumg(p, Q) is a pair of conjugate exponent$, < p,q < oc.
Let|f™|P: [0, 1] — R be anR-integrable function for some > 1. Then for every
x € [0, 1/2], we have

1
/ f(®)dt— DX) + Toa()| < K, p,x)- | f™], and (3.1)
0

1
/ F(H dt— DOO 4+ To00| < K*(n, p, ) - [, (3.2)
0

where

1 q
K = s /|F(t>|th] ,

l q
X(t)(d
200 / |G, ()] dti| .

The constant (n, p, X) and K*(n, p, x) are sharp forl < p < oo and the best
possible forp = 1.

K*(n, p.x) =

PrOOF. Applying the Hlder inequality we have

1 1 1 1/q
e (n) X q (n)
/0 Fr@f (t)dt’ < 200 [/O |Fy (O] dt} ™1

== K(n7 ps X)” f(n)”p'

1
2(n!)
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Using the above inequality, fron2(3) we get estimate3(1). In the same manner,
from (2.2) we get estimate3(2). Now, we consider the optimality df (n, p, x). We
shall find a functionf such that

1 1 1/q 1 1/p
/an(t)f(")dt’:</ |an(t)|th> (/ |f<">(t)|pdt> .
0 0 0

Forl< p < oo take f to be such that

f™ () = sgnFX(t)|FX(t)|Y P, (3.3

where forp = oo we put f ™ (t) = sgrFX(t). For constanK*(n, p, x) the proof of
sharpness is analogous. Foe= 1 we shall prove that

1 1
/ an(t)fm)(t)dt’ gtm[%|F,f(t)|/ [ f™ ()] dt (3.4)
< 0

0

is the best possible inequality. Suppose {Rg(t)| attains its maximum & < (0, 1).
First, we assume thdX(t;) > 0. Fore small enough definé " (t) by

0, t <1
L0 = {(t—t)/e, t€lto, o +el;
1, t>1t+e

Then, fore small enough,

1
/ FX) f™(t) dt‘ =

0

to+e l l to+e
/ FX(t) = dt‘ - —/ FX(t) dt.
to € € to

Now, from inequality 8.4) we have

1 to+e to+e l
—/ FX)dt < an(to)/ —dt = F)(to).
£ tO tO &
Since
l to+e
lim —/ FX0) dt = FX(to),
to

e—>0 ¢

the statement follows. IF)(t;) < 0, then we take

1, t <t
fOV) = -t —to—e)/e, teltto+el;
0, t>th+e

and the rest of the proof is the same as above. Proof of the best possibility of the
second inequality is similar.
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REMARK 2. Basically we have three types of estimates:

1
/ F(t)dt = DO + Ta®)
0

1 1 1/9 1 1/p
- X q (2k) P
< 20211 (/0 |G (D] dt) (/0 | £99)] dt) :

1
/ F(t)dt = DOO + Ta®)
0

1 1 1/q 1 - 1/p
X q f( +1) p
< 22kT D! (/0 |G (D dt) (/o | ()] dt)

1
/ f(t) dt — D(X) + Tak(X)
0

1 1 1/q 1 sesn 1/p
EX q £ @k42) (4P '
< sy ([ Feaorar) ([ opa)

In the following theorem we are interested in the sharpness of the above estimates
in the presence of boundary conditions.

and

THEOREM3.2. Assume thatp, q) is a pair of conjugate exponents < p, q < o
andk € N. Let f : [0, 1] — R be a function such that we have boundary conditions
f@D0) = f@D@) fori =1,...,k. Then for everyx < [0,1/2] and | f @|P
R-integrable, we have

1 1 1/q 1 1/p
_ X q (2% 0
< 530 (/0 1G4 )] dt) (/0 129 dt) . (35)

For | f @+b|P R-integrable we have

1 1 1/q 1 - 1/p
S — G% (0|4 dt f @+ () |Pdt
< s ([1G5aorar) (([ireora)

(3.6)

1
/ f(t)dt—D(x)
0

1
/f(t) dt—D(x)
0

and for| f ®+2t|P R-integrable we have

l 1 1/q 1 s 1/p
EX q £ @k+2) (1) (P '
< s (/0' O] dt) (/0| o) dt)

(3.7)

1
/ f(t)dt—D(x)
0

Inequality (3.5) is sharp forp = 2 and inequalities(3.6) and (3.7) are sharp for
1 < p < oo and best possible fop = 1.
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PrROOF. Inequality @.5) is sharp since a functiom for which we have equality in
(3.2 in the casep = 2, n = 2k is defined byf @ (t) = G (t), so we can choosé
such that

~ 1 «
f (2 1)(’[) = _Zk——l—l GZk+1(t),
1
f(2k73) t — _ GX t
© (%+m%+m%+$zmo

and generally
. Gl (D) .
F@-D(t) = _ Ak—2+1 , =1,...,k
O="XFDk+2. - @k—2+D

which givesf @) = f@Y(1) = 0,i = 1,...,k. In relation to the sharpness
or the best possibility of inequalityd(6), notice first that approximatioﬁ)l ft)dt=
D(x) — Tx(X) is exact of order R+ 1. Take any functionf which is optimal for
inequality @.1) inthecasen =2k + 1,1 < p < oo. Set

2%
gt = f) + Z at' = f(t) +ant™ + an ot* P+ -+ at? + at.

i=1
We haveg®—D(t) = f@D(t) 4 (2k)!agt + (2k — 1)!ay._1 SO

0= g% "0 = f*P0) + (2k — Dlan_1,
0=g%* ") = f&* D) + (2k)!ax + (2k — 1)!ax 1,

which givesay, ax_;. Usingg®~ and conditiongg®-(0) = 0 = g2 (1) we
analogously obtaimy_,, ax_3 and so on. So the functiamis also optimal for 8.1)
and satisfies the boundary conditiagid (1) = g@-2(0),i = 1, ..., k. Inequality
(3.7) can be treated in the same way.

In the following we calculate the optimal constants in the cgsesl, p = co and
p=2.

COROLLARY 3.3. Let f : [0,1] — R be given. Iff is L-Lipschitzian on[0, 1],
then for eactx € [0, 1/2]

4%2 4 (1 — 2x)?
L rd-207 (3.8)

1
f()dt—D
/0 ® ) 7

PrROOF. Using @.4) for eachx € [0, 1/2] and applying 8.1) with n = 1 and
p = oo we get the above inequality.
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REMARK 3. The inequality 8.8) has been proved by Guessab and Schmeisser on
the interval[a, b] in [14] (see also 10]). They also proved that this inequality is
sharp for each admissibbke Equality is attained exactly in the case of equality in
Theorem3.1where we putf’(t) = sgnF(t).

COROLLARY 3.4. Let f : [0, 1] — R be given. Iff’is L-Lipschitzian on[0, 1],
then for eachx € [0, 1/4]

1
/ f(t)dt— D(x)
0

_} 2 _ } } _ 3/2
5[ Z(X x—|—6)~|—6(1 4x) }L (3.9)

and for eachx € [1/4, 1/2]

1
f f(t)dt — D(x)
0

1/, 1
< = — — ) L. 3.10
=5 (x X + 6) (3.10)

PrROOF Using @.6) for eachx e [0, 1/4] and applying 8.1) with n = 2 and
p = oo we get the above inequalities.

REMARK 4. The inequalities 3.9) and @3.10 have been proved by Guessab and
Schmeisser on the intervid, b] in [14]. They also proved that these inequalities are
sharp for each admissible

COROLLARY 3.5. Let f : [0, 1] — R be given. Iff"is L-Lipschitzian on[0, 1],
then for eactx € [0, 1/2 — 1/2V/3]

() ’ 2,32
Do+ 2 1) - 0] = (1 120721,
X) + ——[1 (D = 1(0)] 8\/_( )

for eachx € [1/2 — 1/2V/3,1/2V/3]
( )

/ f()dt— D(X) + —

4/ 1)3/2 1 va
<|=(-X+x-=) +——=@1-12»%?|L
|:3( 6 18\/§( )

and for eachx € [1/2V/3, 1/2]

—— -t (0)]‘

3/2
“[f(l) f(0)1’<—(x+x—:—é> L.

/ F()dt— Do) +
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PrROOF. Using @.5) for eachx € [0, 1/2 — 1/2v/3] we get

1 1/2
/ |G3(t)| dt = 2/ |G (t)| dt
0 0

1/2 1/2—v1-12x2/2/3
= 2|:—/ G;(t)dt—l—Z/ G;(t)dt:|
0

0

4

1/2—/1-12x2/2/3
/ GX(t) dt

0

1 1/2-VI-12x2/2/3 4 1 JV1-12x2
=4 -ZGit) =—3G|l5—-———FF7 )
3 0 37°\2 2V/3

for eachx € [1/2 — 1/2V/3, 1/2V/3]

1 1/2—+/1-12x2/2/3
/ IGé(t)ldt=4/ GX(t) dt
0

N —X2+x+1/6
4 1 1 J1-12x2
e Joepx— L) e (EoYA1x
3 6 2 2V3
and for eachx € [1/2+/3, 1/2] we get

/‘4 / —x24+x—1/6

0

4
G(t) dt = £ (\/—x2 Fx— 1/6) .

Therefore, applying3.2) with n = 2 andp = oo, we get the above inequalities.

1
/ IG3(t)| dt =—4
0

REMARK 5. In Theorem3.2 it was proved that3.5) is sharp just forp = 2.
We mention here that comparing the sharp constant from Guessab and Schmeisse
in [14] in the casep = oo and our constant, we conclude that inequaliy5) is
not generally sharp. Namely, our constant for boundary conditiotl = f’(0),
n =2 andx = 0is 1/(18V/3), while they have 132 (note that the sharpness 6f)
under conditionsf’(1) = f’(0) implies the sharpness of the same inequality under
conditionsf’(1) = f/(0) = 0).

COROLLARY 3.6. Let f : [0, 1] — R be given. Iff” is L-Lipschitzian on[0, 1],
then for eactx € [0, 1/2 — 1/2V/3]

! B, (X) ’ (x3 X2 1)
f)dt— D)+ —=[f'D) - f'O]l<|{——-—+—])L,
/0 t) (X) > [F'(D 0] T,
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for eachx e [1/2 —1/23, 1/4]
( )

/ f)dt— D(X) + —

x2 x2 1 1 1\?
< | = _ = 324+ 3x — = L,
_|:6 g8 "1 6( + 2)}

for eachx € [1/4, 1/2V/3]

—— -t (0)]‘

()

f f(t)ydt— D(x) + —=[f'() — f (0)]’

x3 X2 1
X XL g el
—[ 6 "8 192" 96 )]

and for eachx € [1/2V/3, 1/2]

() X 1
/f(t)dt— —f(O)]’ (——Jr§ E2)L

PrROOF. Using @.7) for eachx € [0, 1/2 — 1/2v/3] we get
1/2)

1 1/2 1/2
/ |FX(t)|dt = 2/ |FX(t)|dt = —2/ FX(t)dt = — (——Gx(t)
0 0 0

e () _ g ] e (2
—5[4(5)— 4(X)}—§ 4(5)1

for eachx € [1/2— 1/2v/3, 1/4]
1 1/2 A/ —3x243x—1/2
f IFX(®)]dt = —2/ Fg(t)dt+4/ FJ(t) dt
0 0 0

= % [Gfl (1/2) — 2G} (\/—3x2 +3x — 1/2) + I§4(X)]

1
= [F; (1/2) — 2F (\/—3x2 +3x — 1/2)] :
for eachx € [1/4, 1/2V/3]

1 1/2 1-/1-12x2/2
/ [F¥®)| dt= —2/ Fg(t)dt+4/ FX(t) dt
0 0 0

— — 2 -
-2 |:G§ (%) ~26; (l— 1212’() + B4(x>}

=)
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and for eaclx € [1/2+/3, 1/2] we get

1 1/2 1 ~ 1
/ IFX(t)|dt = 2/ R dt= -3 [G; (1/2) — B4(x)] =SR2,
0 0
Therefore, applying3.1) with n = 3 andp = oo, we get the above inequalities.

REMARK 6. Let f : [0, 1] — R be such thatf ™% is anL-Lipschitzian function
on[0, 1] for somen > 3. Then for eaclx € [0, 1/2— 1/2/3) U (1/2V/3, 1/2], from
Corollary2.5we get

2
K(Zk — 1, oo, X) = m |sz(1/2_ X) - BZk(X)l’

1 2
K * (2K, 00, X) = @01 [Bx(X)| and K(2K, oo, X) = @01 [ Bk (X)].
If in the first inequality in Corollan3.6we putk = 2 we get the same inequalities as
in Corollary 3.6 whenx is from the interval§0, 1/2 — 1/2+/3) and(1/2+/3, 1/2].

REMARK 7. If in Corollaries3.3-3.6 and Remarlé we choosex = 0, 1/2, 1/3 we
get inequalities related to the trapezoid (s&elp, 6]), the midpoint (see4, 11, 8])
and the two-point Newton-Cotes formulae (s&é]], respectively. Fox = 1/4 in
Corollaries3.3-3.6 we get inequalities related to the two-point Maclaurin formulae
(see [LO)).

COROLLARY 3.7. Let f : [0,1] — R be a given function. Iff is a continuous
function of bounded variation dj, 1], then forx € [0, 1/2]

1+ |4x — 1

1
/ ft)ydt— D(x)| < TVol(f). (3.11)
0

PrROOF. From the explicit expression&.¢) we have
trr[l(%|F1X(t)| = max{2x, —2x + 1} = max{A, B},
€[y,

whereA = 2x, B = —2x + 1. Also, maxA, B} = (A+ B+ |A— B|)/2, so using
this formula and applying3(1) with n = 1 andp = 1 we get the above inequality.

REMARK 8. The inequality 8.11) has been proved by Dragomir ifi]|

COROLLARY 3.8. Let f : [0, 1] — R be a given function. Iff’ is a continuous
function of bounded variation dj, 1], then for eactx € [0, 1/4]
4X2 — 4X + 1+ |[4x2 + 4x — 1|

< o V(T (3.12)

1
/ f(t)dt — D(x)
0
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and for eachx € [1/4, 1/2]

1 X2
/ f(t)ydt— Dx)| < Evol(f’). (3.13)
0

PrOOF From the explicit expression&.@) and for eactx € [0, 1/4] we have

rr?oai]qF ()| = max{2x?, —2x + 1/2}

and for eachx € [1/4, 1/2], max.q; | FX(t)] = 2x?. So using these two formulae
and applying 8.1) with n = 2 andp = 1 we get inequalities3(12 and 3.13.

COROLLARY 3.9. Let f : [0,1] — R be given. Iff’ is a continuous function of
bounded variation of0, 1], then for eactx € [0, 1/2]

2(X)
2

/me—Dw+ B pq) - f@ﬂ G—‘+1QV”>

PrROOF Using 2.5) for eachx € [0, 1/2] we get

[FET?(%(IGE(UI = maxX{|G2(0)], |G2(X)], |G2(1/2)[}.
Therefore, applying3.2) with n = 2 andp = 1, we get the above inequality.

REMARK 9. We mention here that comparing the best possible constant from
Guessab and Schmeisser i in the casep = 1 and our constant, we conclude
that inequality 8.5) is not generally best possible. Namely, our constant for boundary
conditionsf’(1) = f'(0), n = 2 andx = 0 is 1/12, while they have 116.

COROLLARY 3.10.Let f : [0, 1] — R be given. Iff” is a continuous function of
bounded variation o0, 1], then for eactx < [0, 1/4]

()

/ f(t)ydt— Dx) + —=[f'(Q) — ' (0)]‘ < —(1 12x%)¥2Vv (")

e
and for eachx € [1/4, 1/2]

3/2
(%fa> um]<—( x+x—%> VA,

/famr—m>+

PrROOF. Using @.7) for eachx € [0, 1/2 — 1/2v/3] we get
(1 JI= 12x2>

max|F3(t)| = |F
te[0,1]

2 23

’
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()

for eachx € [1/2 — 1/2V/3, 1/4]

F }_«/1—12)(2
3| 5 72«/1—%

’

FX(t)] =
[g%lg(t)l max{

for eachx € [1/4, 1/2V/3]

1 J1-12¢ \/71
tng(?i](“: (t)|—max{ Fs (E_Z—\/ﬁ) , F3( —X2+X—6)|}

and for eachx € [1/2/3, 1/2] we get

max|F3 (1) = ’Fg (,/—x2+x - 1/6)’ .

€[0,1]

Therefore, applying3.1) with n = 3 andp = 1, we get the above inequalities.

REMARK 10. Let f : [0, 1] — R be such thatf ™ is a continuous function of
bounded variation of0, 1] for somen > 3. Then for eack € [O, 1/2 — 1/2J§) U
(1/2v/3,1/2], from Corollary2.4we get

K2k —1,1,x) =

1
2(2k 1! te[o 1

K >k(2k, 1, X) = (Zk)‘ | sz(l/z BZK(X)l and

1
K(2k-1,1,x) = ! max{|Bax(X)1, | Ba(1/2 — x)[}.
Ifin the first inequality in Corolland.10we putk = 2 we get the same inequalities as
in Corollary3.10whenx is from the intervalg0, 1/2 — 1/2¢/3) and(1/2v/3, 1/2].

ReEMARK 11. If in Corollaries3.7-3.10and Remark.O we choosex = 0, 1/2, 1/3
we get inequalities related to the trapezoid (&2, 6]), the midpoint (see4, 11, 8])
and the two-point Newton-Cotes formulae (sé€]], respectively. Fox = 1/4 in
Corollaries3.7-3.10we get inequalities related to the two-point Maclaurin formulae

(see P)).

Now, we calculate the optimal constant for=

COROLLARY 3.11.Let|f™2 : [0, 1] — R be aR-integrable function for some
n > 1. Then for eackx € [0, 1/2], we have

1
/ f(t)dt — D(X) + Tp_1(X)
0

1[2(-1? 2 e )
<3 [W[an—i- BZn(l—Zx)]—l-( B B, (X )] (R (P
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and

1 [2(—1)“‘1

12
= _ (n)
=< > 2n)] [Ban + Ban(1 2X)]] [ PS

1
/ f(t)dt — D(X) 4 Ta(x)
0

PrROOF. Using integration by parts and also usirig [emma 1] we have

1 1
x2 _ (_1\n-1 nn-1---2 i/ X X
/o Gt = D D+ @ - D [Zn 0 GZ”(t)dGl(t)]

= —l”’l(n—!)2 -2 lGX t)dt + GJ,(x) + G5,(1 — x
=D 2n)! ; 2n(D) At + G, (X) 4 G ( )

1_12(n!)?

ryp (B + Bn(1 = 2001

=D

Now,
1 1
/ anz(t)dtzf [Gﬁ(t)— Ean(x)]2 dt
0 0
1
=/ [Gﬁz(t)—ZGﬁ(t)én(x)jL éﬁ(x)]dt
0

1
=/ GX*(t) dt + B2(x)

0
12(nh?

=D G

[Bon + Ban(1 — 2X)] + 4BZ(X).

REMARK 12. For n = 2 we have the boundary conditiorf$(1) = f’(0). For
x = 0 our constant from Theoref2is 1/(12,/3). Guessab and Schmeisser 1]
also have 1(12./3) which confirms the sharpness of our inequality in this case.

Finally, we give the values of the optimal constantrioe 1 and arbitraryp from
Theorem3. L

REMARK 13. Note thatK*(1, p, x) = K(1, p, x), for 1 < p < oo, sinceG}(t) =
FX(t). Also, for 1 < p < oo we can easily calculatk (1, p, x). We get

(2x)9+1 4 (1 — 2x)a+1
q+1

1 1/q
K(l,p,x)=§|: :| , l<p<oo. (3.14)
REMARK 14. Equality 3.14) has been proved by Dragomir on the interfizglb] in
[10).

REMARK 15. If in Remark13we choosex = 0, 1/2, 1/3, 1/4 we get inequalities
related to the trapezoid (se@), the midpoint (seeq]), the two-point Newton-Cotes
(see [L7]) and the two-point Maclaurin formulae (seH]]), respectively.
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In the following theorem we use& (2) and a technical result from the recent paper
[16] to obtain a Giiss-type inequality related to the general Euler two-point formula

(see [L6)).

THEOREM 3.12. Suppose thatf : [0, 1] — R is such thatf®™ exists and is
integrable on[0, 1], for somen > 1. Assume thatn, < f™(t) < M,,0 <t < 1, for
some constants), and M,,. Then forx € [0, 1/2]

1
/ F() dt— DOO + To00| < Ca(My — mp), (3.15)
0

whereC, = (1/4(n}) [ |GX(t)| dt.

REMARK 16. If in Theorem3.12we choosex = 0, 1/2, 1/3 we get inequalities
related to the trapezoid, the midpoint and the two-point Newton-Cotes formulae (see
[16]). Forx = 1/4 we get inequalities related to the two-point Maclaurin formulae.

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

THEOREM 3.13.If f : [0,1] — R is such thatf @ is a continuous function on
[0, 1], then for somd > 2 there exists a poing € [0, 1] such that

B (X)

Ro(f) = 20T f@ () for x € [0,1/2 —1/2v/3) (3.16)
and
R3(f) = [(;kli)‘; f@ ) for x e (1/2v3,1/2]. (3.17)

PROOF. We can rewriteR3( f) for x € [0, 1/2 — 1/24/3) as

R3.(f) = (=1

2[(2k)']
where

1
:/ (=D F(s) f ™ (s)ds.
0

From Corollary2.4it follows that(—1)*Fj(s) > 0, 0< s < 1 and the claim follows
from the mean value theorem for integrals and CorolfaBy The proof on the interval
(1/2v/3,1/2] is similar.
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REMARK 17. Fork = 2 formulae 8.16 and @.17) reduce to

B4(X)
24

B4(X)

R(T) = B
i) e

f@m) and R(f)=— @),

respectively, which are formulae proved fore= 0 in [6], for x = 1/2 in [8] and for
x =1/3in[17].

COROLLARY 3.14.Let f € C*[0,1] and 2 € R be such thatD < A < 2r
and | f @) < A* fort e [0,1] andk > k, for somek, > 2. Then forx e
[0,1/2 - 1/2/3) U (1/2V/3, 1/2] we have

! _ 1o BZJ(X) 2j-1) 2j-1)
/O f(t)dt_D(x)—EZ(z—j)![f I7(1) — f@0)]. (3.18)

=1

ProoF. From TheorenB.13whenk > k, we have that

|§2 (f)| < |BZK(X)|A2|( < |BZk|)L2k ~ 1 (Zk)' % ( A )2k
2k — = ,

(2k)! =20 T2 T 21

S0 (3.19 follows.
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