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Abstract

The main result of this paper is that the oscillation and nonoscillation properties of a
nonlinear impulsive delay differential equation are equivalent respectively to the oscillation
and nonoscillation of a corresponding nonlinear delay differential equation without impulse
effects. An explicit necessary and sufficient condition for the oscillation of a nonlinear
impulsive delay differential equation is obtained.

1. Introduction

The theory of impulsive differential equations is emerging as an important area of
investigation, since it is far richer than the corresponding theory of differential equa-
tions without impulse effects. Moreover, such equations may be used to model several
real-world phenomena in areas such as physics, biology and engineering. In the last
twenty years, the theory of impulsive ordinary differential equations and delay dif-
ferential equations has been studied by many authors. We refer, in particular, to the
monographs [7, 8, 10, 11, 12]. In recent years, the theory of impulsive delay dif-
ferential equations has attracted the attention of many mathematicians and numerous
papers have been published on this class of equations (see [3, 2, 4, 5, 6, 9, 13, 15] and
references therein).

Let� = {1; 2; 3; : : : } and {tk}∞
k=1 be a monotone increasing unbounded sequence

of positive numbers. Consider the nonlinear delay differential equation

y ′.t/+
m∑

i=1

f i.t; y.gi.t/// = 0; t �= tk; a.e. (almost everywhere); t ≥ 0; (1.1)
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with the impulsive conditions

y.t +
k /− y.tk/ = bky.tk/; k ∈� ; (1.2)

under the following hypotheses:

(A1) f i ∈ .[0;∞/×R;R/, i = 1; 2; : : : ;m, are Lebesgue measurable and essentially
bounded in each finite interval [0; b] in t for each fixed u and are continuous in u
for each fixed t . Moreover, uf i.t; u/ > 0 for all u �= 0 and t > 0, and f i.t; u/ are
nondecreasing in u, i = 1; 2; : : : ;m.
(A2) gi.t/∈.[0;∞/; [0;∞// are Lebesgue measurable and gi.t/≤t , lim

t→∞
gi.t/=∞,

i = 1; 2; : : : ;m.
(A3) bk ∈ .−1;∞/ are constants, k ∈ � .

For every ¦ ≥ 0, we define throughout this paper

r¦ = min
1≤i≤m

inf
t≥¦

{gi.t/}; (1.3)

and let 8¦ denote the set of functions � : [r¦ ; ¦ ] → R which are real valued and
Lebesgue measurable.

DEFINITION 1. For given ¦ ≥ 0 and � ∈ 8¦ , a function y.t/ ∈ .[r¦ ;∞/;R/ is said
to be a solution of (1.1) with (1.2) on [r¦ ;∞/ satisfying the initial value condition

y.t/ = �.t/; t ∈ [r¦ ; ¦ ]; (1.4)

if the following conditions are satisfied:

(i) y.t/ is defined on [r¦ ;∞/ and satisfies (1.4) on [r¦ ; ¦ ];
(ii) y.t/ is absolutely continuous on each interval .¦; tK / and .tK ; tK+1 /; .tK+1 ;

tK+2 /; : : : , where tK = min{tk : tk > ¦; k ∈ � };
(iii) for each tk ≥ tK , y.t +

k /; y.t −
k / exist and y.t −

k / = y.tk/;
(iv) y.t/ satisfies (1.1) a.e. in .¦;∞/\{tk} and satisfies the impulsive condition

(1.2).

DEFINITION 2. A solution of (1.1) with (1.2) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise, it is called nonoscillatory.

Under appropriate conditions, global existence and uniqueness theorems for solu-
tions of the initial value problem (1.1) with (1.2) on [¦;∞/ have been established
in [13].

The purpose of this paper is to study the oscillatory and nonoscillatory behaviour
of solutions of the first-order nonlinear impulsive delay differential equation (1.1)
with (1.2). An explicit necessary and sufficient condition for the oscillation of all
solutions of (1.1) with (1.2) is obtained. Our results will be nonlinear in nature as we
stress the role played by the nonlinear terms in the oscillation of (1.1) with (1.2) and the
known oscillation criteria cannot be applied to the form of (1.1) with or without (1.2).
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2. Main results

Consider the following auxiliary equation for t ≥ ¦ ≥ 0:

x ′.t/+
m∑

i=1

∏
¦<tk<t

.1 + bk/
−1f i

(
t;

∏
¦<tk<gi .t/

.1 + bk/x.gi.t//

)
= 0 a.e. (∗)

Here and in what follows we assume that a product equals unity if the number of
factors is equal to zero.

By a solution x.t/ of (∗) on [r¦ ;∞/, ¦ ≥ 0, we mean an absolutely continuous
function x.t/ on [¦;∞/which satisfies (∗) on [¦;∞/ a.e. and has the initial condition
x.t/ = �.t/ on [r¦ ; ¦ ] where r¦ is defined by (1.3) and � ∈ 8¦ .

Under appropriate hypotheses the theory of existence and uniqueness of the initial
value problem (∗) with (1.4) can be obtained by the method of steps (see [10, page 5]).

A solution of (∗) is said to be oscillatory if it has arbitrarily large zeros. Otherwise,
the solution is called nonoscillatory.

In this section, we first establish the following lemma which is a new result.

LEMMA 2.1. Assume that (A1)–(A3) hold. Let ¦ ≥ 0 and � ∈ 8¦ . Then (1.1)–(1.2)
has a solution y.t/ on [r¦ ;∞/ if and only if (∗) has a solution x.t/ on [r¦ ;∞/.

PROOF. Suppose that y.t/ is a solution of (1.1) with (1.2) on [r¦ ;∞/. Set

x.t/ =
∏
¦<tk<t

.1 + bk/
−1y.t/; t ≥ ¦ and x.t/ = y.t/; r ¦ ≤ t ≤ ¦: (2.1)

Thus x.t/ = y.t/ = �.t/, t ∈ [r ¦ ; ¦ ]. By taking into account the fact that y.t/
is absolutely continuous on each interval .¦; tK / and .tK ; tK+1 /; .tK+1 ; tK+2 /; : : : and
(2.1) we have that for each tk ≥ tK ,

x.t +
k / =

∏
¦<tj ≤tk

.1 + bj /
−1y.t +

k / =
∏

¦<tj <tk

.1 + bj /
−1y.tk/ = x.tk/

and

x.t −
k / =

∏
¦<tj ≤tk

.1 + bj /
−1y.t −

k / =
∏

¦<tj <tk

.1 + bj /
−1y.tk/ = x.tk/:

Hence x.t/ is continuous on [¦;∞/. Since y.t/ is absolutely continuous on each
interval .¦; tK / and .tK ; tK+1 /; : : : , it is easy to prove that x.t/ is also absolutely
continuous on [¦;∞/. Moreover, from (1.1) and (2.1) we have that (∗) holds for
t ≥ ¦ . Conversely, suppose that x.t/ is a solution of (∗) on [r¦ ;∞/. Let

y.t/ =
∏
¦<tk<t

.1 + bk/x.t/; t > ¦; y.t/ = x.t/; r ¦ ≤ t ≤ ¦: (2.2)
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Then from (∗) and (2.2) we have that for t > ¦

∏
¦<tk<t

.1 + bk/
−1y ′.t/+

m∑
i=1

∏
¦<tk<t

.1 + bk/
−1f .t; y.g i.t/// = 0 a.e.;

that is,

y ′.t/+
m∑

i=1

f i.t; y.gi.t/// = 0 a.e.;

which implies that y.t/ satisfies (1.1). On the other hand, from (2.2), for each tk ≥ tK ,

y.t +
k / = lim

t→t+
k

∏
¦<tj <t

.1 + bj /x.t/ =
∏

¦<tj ≤tk

.1 + bj /x.tk/

and y.tk/ = ∏
¦<tj <tk

.1 + bj /x.tk/. So, for each tk ≥ tK , y.t +
k / = .1 + bk/y.tk/. Thus

y.t/ satisfies the impulsive condition (1.2). The proof of Lemma 2.1 is complete.

From Lemma 2.1, we can obtain the following comparison theorem.

THEOREM 2.2. Assume that (A1)–(A3) hold. Then all solutions of (1.1) with (1.2)
are oscillatory if and only if all solutions of (∗) are oscillatory.

In the following theorem, we give a sufficient condition for (1.1) with (1.2) to have
an eventually positive solution.

THEOREM 2.3. Assume that (A1)–(A3) hold and for any constant þ > 0 such that

∫ ∞

0

m∑
i=1

∏
0<tk<t

.1 + bk/
−1f i

(
t; þ

∏
0<tk<gi .t/

.1 + bk/

)
dt < ∞; (2.3)

then (1.1) with (1.2) has an eventually positive solution.

PROOF. From Lemma 2.1, we need to prove that (∗) has an eventually positive
solution. Let ¦ ≥ 0, then by (2.3) we can choose T > 0 such that

0 <
∫ ∞

T

m∑
i=1

∏
¦<tk<t

.1 + bk/
−1f i

(
t; þ̄

∏
¦<tk<gi .t/

.1 + bk/

)
dt < þ̄; (2.4)

where þ̄ = þ
∏

0<tk≤¦ .1 + bk/. Let T0 = min1≤i≤m inft≥T {gi.t/} and X denote the
locally convex space of all continuous functions x ∈ .[T0;∞/;R/ with the topology
of uniform convergence on a compact subinterval of [T0;∞/. Let M = {x ∈ X :
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þ̄ ≤ x.t/ ≤ 2þ̄; t ≥ T0}. Observe that M is a closed convex subset of X. Define the
operator F by

.F x/.t/ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2þ̄ −
∫ t

T

m∑
i=1

∏
¦<tk<s

f i

(
s;
∏

¦<tk<gi .s/
.1 + bk/x.gi.s//

)
.1 + bk/

ds;

t ≥ T ;

2þ̄; T0 ≤ t < T :

(2.5)

We now prove that

(i) for any x ∈ M , .F x/.t/ is continuous on [T 0;∞/;
(ii) F maps M continuously into a compact subset of M .

For any t0 ∈ .T ;∞/ or t0 ∈ [T0; T /, we have limt→t0.F x/.t/ = .F x/.t 0/ and
limt→T +.F x/.t/ = lim t→T −.F x/.t/ = 2þ̄, which imply that F is a continuous function
on [T0;∞/. This proves (i).

If for any x ∈ M , in view of (2.4) and (2.5), we obtain þ̄ ≤ .F x/.t/ ≤ 2 þ̄, t ≥ T0.
Thus .F x/.t/ ∈ M . Also, .F x/.t/, x ∈ M , are uniformly bounded and since for any
x ∈ M and t 2 > t1 ≥ T0

|.F x/.t2/− .F x/.t1/| ≤
∫ t2

t1

m∑
i=1

∏
¦<tk<s

f i

(
s;
∏

¦<tk<gi .s/
.1 + bk/x.gi.s//

)
.1 + bk/

ds

≤ þ̄.t2 − t1/;

it follows from (2.5) that {F x} are equicontinuous on any compact subintervals
of [T0;∞/. Therefore F maps M continuously into a compact subset of M . This
proves (ii).

Consequently, by the Schauder-Tychonov fixed point theorem, F has a fixed point x
in M . Obviously, this fixed point x = x.t/ is a positive solution of (∗) on [T0;∞/.
By Lemma 2.1, y.t/ = ∏

T0<tk<t .1 + bk/x.t/ is a positive solution of (1.1) with (1.2)
on [T0;∞/. The proof of Theorem 2.3 is complete.

REMARK. Similarly, we can prove that if for any constant þ > 0

∫ ∞

0

m∑
i=1

∏
0<tk<t

.1 + bk/
−1f i

(
t;−þ

∏
0<tk<gi .t/

.1 + bk/

)
ds > −∞;

then (1.1) with (1.2) has an eventually negative solution.

DEFINITION 3. A solution y.t/ of (1.1) with (1.2) on [Ty ;∞/ is said to be a proper
solution if for all sufficiently large t , supt≥T |y.t/| > 0 for any T ≥ Ty > ¦ , that is,
for any sufficiently large T ≥ Ty > ¦ , |y.t/| �≡ 0 on [T ;∞/.
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LEMMA 2.4. Assume that (A1)–(A3) hold. Then (1.1) with (1.2) has a proper
solution if and only if (∗) also has a proper solution.

PROOF. Let y.t/ be a proper solution of (1.1) with (1.2) on [Ty ;∞/. From
Lemma 2.1, x.t/ = ∏

Ty<tk<t.1 + bk/
−1y.t/ is a solution of (∗) on [Ty ;∞/. Suppose

that (∗) does not have a proper solution. From Definition 3 there exists a sufficiently
large Tx ≥ Ty such that x.t/ ≡ 0 on [Tx ;∞/. Thus y.t/ = ∏

Tx<tk<t.1 + bk/x.t/ ≡ 0
on [Tx ;∞/, which contradicts the fact that y.t/ is a proper solution. Similarly, we can
prove that if (∗) has a proper solution, then (1.1) with (1.2) also has a proper solution.
The proof of Lemma 2.4 is now complete.

REMARK. In what follows, we will only consider proper solutions of (1.1) with
(1.2) or (∗).

We introduce the following locally sublinear condition near u = 0.

(A4) There exist functions pi.t/ ∈ .[0;∞/; [0;∞//, i = 1; 2; : : : ;m, which are
Lebesgue measurable and essentially bounded in each finite interval, and constants
Ž > 0, 0 < Þ < 1 such that for all sufficiently large t and 0 < |u| < Ž,

inf
Ž>|u|>0

f i.t; u/

u|u| Þ−1
≥ p i.t/:

THEOREM 2.5. Assume that (A1)–(A4) hold and

∫ ∞

0

m∑
i=1

∏
0<tk<t

.1 + bk/
−1

∏
0<tk<gi .t/

.1 + bk/
Þp i.t/dt = ∞: (2.6)

If for any constant c > 0,∫ ∞

0

m∑
i=1

∏
0<tk<t

.1 + bk/
−1f i

(
t; c

∏
0<tk<gi .t/

.1 + bk/

)
dt = ∞ (2.7)

and ∫ ∞

0

m∑
i=1

∏
0<tk<t

.1 + bk/
−1f i

(
t;−c

∏
0<tk<gi .t/

.1 + bk/

)
dt = −∞; (2.8)

then all proper solutions of (1.1) with (1.2) are oscillatory.

PROOF. From Theorem 2.2 and the remark, we only need to prove that all proper
solutions of (∗) are oscillatory. Let x.t/ be a nonoscillatory solution of (∗). Without
loss of generality we may suppose that x.t/ is eventually positive. Thus there exists
T > 0 such that x.t/ > 0, x.g i.t// > 0, i = 1; 2; : : : ;m, for all t ≥ T . So
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limt→∞ x.t/ = L ≥ 0. Suppose that L > 0. Then there exists T 1 ≥ T such that for
all t ≥ T1, x.gi.t// > L=2, i = 1; 2; : : : ;m. Hence it follows from ( ∗) that

x ′.t/+
m∑

i=1

∏
¦<tk<t

.1 + bk/f i

(
t;

L

2

∏
¦<tk<t

.1 + bk/

)
≤ 0 a.e.

Integrating the above inequality from T1 to t , then letting t → ∞ we have

L − x.T 1/+
∫ ∞

T1

m∑
i=1

∏
¦<tk<t

.1 + bk/
−1f

(
t;

L

2

∏
¦<tk<gi .t/

.1 + bk/

)
dt ≤ 0;

that is,

L − x.T 1/+ B
∫ ∞

T1

m∑
i=1

∏
0<tk<t

.1 + bk/
−1f i

(
t; L 1

∏
0<tk<gi .t/

.1 + bk/

)
dt ≤ 0; (2.9)

where B = ∏
0<tk≤¦ .1 + bk/ and L 1 = .L=2/

∏
0<tk≤¦ .1 + bk/

−1. Equation (2.9)
contradicts (2.7). Hence L = 0. Therefore it follows from (∗) and (A4) that there
exists T2 ≥ T1 such that for t ≥ T2, 0 < x.gi.t// ≤ Ž, i = 1; 2; : : : ;m, and

x ′.t/
x Þ.t/

+
m∑

i=1

∏
¦<tk<t

.1 + bk/
−1

∏
¦<tk<gi .t/

.1 + bk/
Þp i.t/ ≤ 0 a.e. t ≥ T2:

Integrating the above inequality from T2 to t and letting t → ∞ we find

−.1 − Þ/x.T2/
−Þ+1 +

∫ ∞

T2

m∑
i=1

∏
¦<tk<t

.1 + bk/
−1

∏
¦<tk<gi .t/

.1 + bk/
Þp i.t/dt ≤ 0:

Clearly, the above inequality contradicts (2.6). The proof of Theorem 2.5 is thus
complete.

By combining Theorems 2.3 and 2.5 one easily obtains the following result.

THEOREM 2.6. Assume that (A1)–(A4) hold. Then all proper solutions of (1.1) with
(1.2) are oscillatory if and only if (2.6)–(2.8) are satisfied.

Let

f i.t; u/ =
{

p i.t/u|u| Þ−1; u �= 0 and 0 < Þ < 1;

0; u = 0;
(2.10)

where p i.t/ ∈ .[0;∞/; [0;∞//, i = 1; 2; : : : ;m, are Lebesgue measurable and
essentially bounded in each finite interval.

From Theorem 2.6, we obtain the following result.

COROLLARY 2.7. Assume that (A1)–(A3) and (2.10) hold. Then all proper solutions
of (1.1) with (1.2) are oscillatory if and only if (2.6) is satisfied.
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3. Applications

In this section we consider the following equation:

N ′.t/ = r.t/N.t/

(
1 − N.g.t//

K

) ∣∣∣∣1 − N.g.t//

K

∣∣∣∣
Þ−1

; t �= tk a:e: t ≥ 0; (3.1)

N.t +
k / = N.tk/

(
N.tk/

K

)bk

; k ∈ � ; bk ∈ .−1;∞/; (3.2)

where

(A5) r.t/ ∈ .[0;∞/; .0;∞// is Lebesgue measurable and essentially bounded in
each finite interval, K and Þ are positive constants with 0 < Þ < 1.
(A6) g.t/ ∈ .[0;∞/; [0;∞// is Lebesgue measurable and g.t/ < t , lim

t→∞
g.t/ = ∞.

When bk = 0, k ∈ � in (3.2), (3.1) with (3.2) reduces to a delay differential
equation without impulse effects:

N ′.t/ = r.t/N.t/

(
1 − N.g.t//

K

) ∣∣∣∣1 − N.g.t//

K

∣∣∣∣
Þ−1

; t ≥ 0; (?)

which has been of some interest in mathematical ecology for the simulation of pop-
ulation dynamics, where N is the population number and K is the capacity of the
environment. This has been studied in [1], [7] and [14].

DEFINITION 4. A proper solution N.t/ of (3.1) with (3.2) is said to be oscillatory
about K if N.t/−K is neither eventually positive nor eventually negative. Otherwise,
it is called nonoscillatory about K .

THEOREM 3.1. Assume that (A3), (A5) and (A6) hold. Then all positive solutions
of (3.1) with (3.2) are oscillatory about K if and only if∫ ∞

0

∏
0<tk<t

.1 + bk/
−1

∏
0<tk<g.t/

.1 + bk/
Þr.t/ dt = ∞: (3.3)

PROOF. Let N.t/ = Ke y.t/ . From (3.1) and (3.2) we obtain

y ′.t/+ r.t/
(
ey.g.t// − 1

) ∣∣ey.g.t// − 1
∣∣Þ−1 = 0; t �= tk a.e. t ≥ 0; (3.4)

y.t +
k /− y.tk/ = bky.tk/; k ∈ � : (3.5)

Clearly, the solution of (3.1) with (3.2) is oscillatory about K if and only if the
solution of (3.4) with (3.5) is oscillatory. Since there is a constant Ž > 0 such that for
all sufficiently large t and 0 < |u| < Ž

inf
0<|u|<Ž

r.t/ .eu − 1/ |eu − 1|Þ−1

u|u| Þ−1
≥ r.t/;
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it follows from Theorem 2.6 that we can conclude that all proper solutions of (3.4)
with (3.5) are oscillatory if and only if (3.3) holds. The proof of Theorem 3.1 is
complete.

Applying Theorem 2.6 to the nonimpulsive equation (?), one can obtain the fol-
lowing result.

COROLLARY 3.2. Assume that (A5) and (A6) hold. Then all positive solutions of (?)
are oscillatory about K if and only if

∫∞
0 r.t/ dt = ∞.

REMARK. Corollary 3.2 extends [7, Theorem 2.8.6], but uses different techniques.

EXAMPLE 1. Consider (3.1) with (3.2). Let tk = k, bk = −k=.k + 1/, k ∈ � ,
g.t/ = t − 1, r.t/ = .t + 1/−þ , 1 < þ < 2, 0 < Þ < 1. Thus we have∫ t

0

∏
0<tk<s

.1 + bk/
−1

∏
0<tk<s−1

.1 + bk/
Þ

.s + 1/þ
ds ≥

∫ [t]

0

∏
0<tk<s−1

.k + 1/1−Þ

.s + 1/þ
ds;

where [t] denotes the greatest integer function. Hence

∫ [t]

0

∏
0<tk<s−1

.k + 1/1−Þ

.s + 1/þ
ds ≥

[t]−1∑
k=1

∫ k

k−1

[.k + 1/!]1−Þ

.s + 1/þ
ds

≥
[t]−1∑
k=1

[.k + 1/!]1−Þ

.k + 1/þ
→ ∞ as t → ∞:

Therefore, by Theorem 3.1, all proper solutions of (3.1) with (3.2) are oscillatory
about K .

However, when bk = 0, k ∈ � , (3.1) with (3.2) reduces to the following delay
differential equation without impulse effects:

N ′.t/ = 1

.t + 1/þ
N.t/

(
1 − N.t − 1/

K

) ∣∣∣∣1 − N.t − 1/

K

∣∣∣∣
Þ−1

; t ≥ 0: (3.6)

Since
∫∞

0 .t + 1/−þ dt < ∞, it readily follows from Corollary 3.2 that (3.6) has at
least one nonoscillatory solution about K . This fact demonstrates that the oscillation
of impulsive delay differential equations can be caused by impulse effects.
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