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Abstract

We consider the stability of high Reynolds number flow past a heated, curved wall. The
influence of both buoyancy and curvature, with the appropriate sense, can render a flow
unstable to longitudinal vortices. However, conversely each mechanism can make a flow
more stable; as with a stable stratification or a convex curvature. This is partially due to
their influence on the basic flow and also due to additional terms in the stability equations.
In fact the presence of buoyancy in combination with an appropriate local wall gradient
can actually increase the wall shear and these effects can lead to supervelocities and the
promotion of a wall jet. This leads to the interesting discovery that the flow can be unstable
for both concave and convex curvatures. Furthermore, it is possible to observe sustained
vortex growth in stably stratified boundary layers over convexly curved walls. The evolution
of the modes is considered in both the linear and nonlinear régimes.

1. Introduction

The well-known G̈ortler instability [7] is an important mode within curved boundary
layers; the resultant longitudinal counter-rotating vortices have been observed, for
example, over the concave surfaces of aeroplane wings [17] and are believed to play
an important r̂ole in the transition of boundary-layer flow to turbulence [11].

Görtler’s original work on the subject, combining theory with experimental results,
was published in 1940 but it was not until much more recently that the theoretical
problem was solved in a consistent manner by Hall [8]. This gave the linear solution to
the G̈ortler equations, including previously erroneously neglected non-parallel terms.
In this calculation the spanwise wavelength of the Görtler vortices was taken to be
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significantly smaller than the boundary-layer thickness, resulting in the modes being
concentrated in an internal viscous layer which thickens as they grow. It was found
that, for a wall of constant radius of curvature, the boundary layer ultimately becomes
more stable as the fluid moves downstream.

Following on from this, Hall gave the linear theory for vortices withO.1/wavenum-
bers [9]. The perturbation equations were shown to be parabolic in the downstream
coordinate and thus can be solved using an Euler marching scheme after an initial
disturbance form is imposed at the downstream locationx = x̄. Neutral curves were
generated in theax − Gx plane, whereax is the local wavenumber of the vortices
(hereax = ax1=3, a being the actual vortex wavenumber) and Gx is the local G̈ortler
number (here Gx = G�.x/x5=3): these quantities reflect the fact that the layer spreads
as it evolves downstream. The Görtler number, G, is a non-dimensional entity which
is the ratio of centrifugal to viscous forces and the function�.x/ contains all the
x-dependence of the curvature. The Görtler number is positive for concave curvatures
and negative for convex curvatures. These neutral curves were found to be non-unique
in the sense that the growth rate of an imposed disturbance depends upon both how
it is introduced into the flow and the location of the introduction; hence the necessity
for the inclusion of the non-parallel terms. However, the right-hand branch of the
neutral curveis unique (for a particular set of physical parameters) and an asymptotic
solution may be calculated for it. It was discovered that a vortex of fixed wavelength is
locally unstable for a finite distance along the boundary layer with a wall of constant
curvature. Hence as the fluid moves downstream, any vortex flow will eventually
decay to zero; at least in the absence of nonlinear effects. But if the curvature of the
wall increases at a sufficient rate then stability is never reached and the flow remains
unstable for an infinite distance downstream, although in reality nonlinear terms come
into play to substantially modify the flow.

The nonlinear solution to the full G̈ortler equations (rather than in the limit of a large
vortex wavenumber, as given by, for example, Hall and Lakin [13]) is attainable only by
numerical means [10], but of course provides much better agreement with experimental
results. This is demonstrated by Lee and Liu [16] who compare their results with
the experimental findings of Swearingen and Blackwelder [24]; good qualitative
agreement is obtained. The addition of nonlinear mode interaction enables distortion of
the flow which is not possible with the linear theory. Thus the characteristic mushroom-
shaped streamwise velocity profiles are predicted (see for example Benmalek and
Saric [1]), which develop as the counter-rotating vortices pull fluid away from the wall
region.

Denier and Hall [5] extended the linear theory of Denier, Hall and Seddougui [6]
by examining the nonlinear development of the most unstable Görtler mode in the
boundary layer. It was found that this mode resides within a viscous layer near the
wall; but perhaps the most relevant finding here is that eventually a singularity is
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encountered as the solution is marched downstream and the numerical method breaks
down. This is caused by reverse flow within the boundary layer, which violates the
parabolic nature of the governing equations.

The G̈ortler instability is centrifugally driven. A similar thermally-driven instability
also exists within the boundary layer [26]. As in the case of work on the G̈ortler in-
stability, parallel-flow theories were the norm until Hall and Morris [14] emphasised
that non-parallel effects are important and must be considered. The compressible
Navier-Stokes equations were simplified by way of the Boussinesq approximation,
which essentially removes all dependence on density variation except where it is cou-
pled to the gravitational acceleration in the buoyancy force. This results in governing
equations which are virtually the same as those for an incompressible fluid but with the
addition of an energy equation and an extra term, GrT , in they-momentum equation.
The non-dimensional number Gr is known as the Grashof number and is the ratio
of buoyancy to viscous forces, whilstT is the dimensionless temperature. Solutions
of these equations were found numerically atO.1/ values of the Grashof number;
and the triggering of instabilities by wall roughness, non-uniform wall heating and
free-stream disturbances was investigated. This parameter régime is poignant to at-
mospheric problems, Scorer [21]. The case of Gr� 1 was studied and the most
unstable mode found, which occurs at a high wavenumber. At low wavenumbers the
vortex instability is shown to take on the characteristics of a Tollmien-Schlichting
wave (this phenomenon is not restricted purely to Grashof modes).

Centrifugal and thermal effects may act constructively or destructively within the
boundary layer to affect the susceptibility of the flow to counter-rotating, longitudinal
vortex instabilities which often still bear the name of Görtler but perhaps more accu-
rately should be called G̈ortler-Grashof vortices. The competing aspects of buoyancy
and curvature have been studied by Stott and Denier [23], again using the Boussinesq
approximation. In the linear régime, taking Gr� 1 and assuming S is negligible
(where S represents the level of buoyancy coupling), it was shown that the effects
of curvature are first felt when the Görtler number is of an order comparable to the
Grashof number. For a positive or concave curvature a negative temperature gradi-
ent (that is, unstable stratification) will increase the growth rates of already unstable
modes. If the curvature is convex, the flow is unstable with growth rates decreasing
as the G̈ortler number becomes more negative (that is, as the curvature gets more and
more convex). Therefore eventually the stabilising influence of the convex curvature
will overcome the destabilising effect of buoyancy. No unstable vortex modes could
be found for stably-stratified flows. If S is considered non-negligible and buoyancy
coupling is introduced, the effects of curvature are felt in the basic flow when the local
slope of the body (and hence the local Görtler number) is of order one. In this case,
the curvature is introduced through the buoyancy or curvature induced acceleration in
the basic flow rather than through the perturbation equations. For a given amount of
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buoyancy coupling, it was discovered that a sufficiently large convex curvature would
stabilise any mode. In the nonlinear régime the combined limit of large Gr and G
was taken. It was found that the effect of buoyancy is to enhance the nonlinear vortex
motion and allow the vortices to exist in parameter ranges where the centrifugal effects
alone are not sufficient to support them. The boundary layer may also be acceler-
ated by the nonlinear vortex state, increasing the maximum value of the streamwise
velocity.

This paper aims to extend the findings of Stott and Denier [23] into régimes where
the vortex wavenumber is ofO.1/. Initially the linear problem will be considered and
the effects of introducing buoyancy coupling discussed. This will be continued in the
fully nonlinear ŕegime, using the methods of Denier and Hall [5].

2. Formulation

We consider the boundary layer which arises in the flow over a slowly curving,
heated wall with a radius of curvature given by 1=� and a temperatureT0. In the free
stream away from the wall, the fluid has a velocity ofU∞ in the streamwise direction
and a temperature ofT∞. This system is governed by the continuity, Navier-Stokes
and energy equations and the Boussinesq approximation [22] is made, eliminating full
compressibility but retaining thermal effects. The usual non-dimensionalisations are
made, resulting in four dimensionless parameters. The first of these is the Reynolds
number, given by Re= U∞L=¹. HereL is a typical length scale and¹ is the kinematic
viscosity of the fluid. We consider problems which are characterised by large Reynolds
numbers. The Grashof and Görtler numbers also appear after non-dimensionalisation
and are given by the expressions

Gr = gÞL31T

¹2
Re−3=2 and G= 2L� Re1=2

respectively, whereg is the acceleration due to gravity andÞ is the coefficient of
thermal expansion. The quantity1T = T0 − T∞ is the temperature difference
between the wall and the free stream at infinity. Thus a positive Grashof number
indicates heating from below (an unstable stratification) whilst a negative Grashof
number indicates cooling from below (a stable stratification). The final dimensionless
quantity is the Prandtl number, defined as Pr= ²mcp¹=k. Here²m is the mean
density of the fluid,cp is the specific heat capacity at constant pressure andk is the
thermal conductivity. The Prandtl number will be regarded as an order one constant
throughout; in fact in the main it will be taken to be unity since its variation is found
to have minimal effect here.

After rescaling on the boundary-layer thickness (equal to Re−1=2) in both the nor-
mal, y, and spanwise,z, directions, the flow is split into the basic component (denoted
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by barred variables) and a perturbation (denoted by variables with tildes). Thus

.u; v; w; T/ = .ū;Re−1=2 v̄; 0; T̄/+ .ũ;Re−1=2 ṽ;Re−1=2 w̃; T̃/;

p = p̄0.x/+ Re−1=2 p̄1.x/+ S p̄.x; y/+ Re−1 p̃:

In these expressions: basic flow quantities (unless otherwise stated) are functions
of x and y; and those with tildes, that is, perturbations, are functions ofx, y andz.
The flows in the streamwisex, normal y and spanwisez directions areu, v andw
respectively. Note that the pressure is expanded in a slightly different manner to the
other variables; this is following the method introduced by Hall [12]. The quantity S
which appears here is known as the buoyancy parameter and is equivalent to Gr=Re.
It enables one to adjust the amount of buoyancy present within the system.

2.1. The basic flow The basic flow satisfies the set of equations

ūx + v̄y = 0; (2.1a)

ūūx + v̄ūy = ueuex − S p̄x + 1

2
S G .x/ p̄y + ūyy; (2.1b)

p̄y = T̄; (2.1c)

ūT̄x + v̄T̄y = 1

Pr
T̄yy; (2.1d)

whereueuex = − p̄0x, using the Bernoulli equation. Physicallyue.x/ represents the
value that the streamwise velocity takes asy → ∞, that is, the velocity parallel to
and removed from the plate.

Equation (2.1b) contains two buoyancy-induced acceleration terms, the second of
which is only present when the boundary layer is curved. Here the function .x/
is equivalent to the gradient of the wall, whereas�.x/ is the wall’s curvature. In
addition to these two terms, Equations2.1 differ from the equivalent equations for
the incompressible case by the fact that (2.1c) introduces a buoyancy-induced normal
pressure gradient.

To solve basic-flow equations (2.1), similarity solutions of the Falkner-Skan type
[3] will be used. A similarity variable is introduced as� = yx−1=3 and the flow
variables take the form̄u = x1=3 f ′.�/, v̄ = x−1=3[� f ′.�/ − 2 f .�/]=3, p̄ = x2=3q.�/
and T̄ = x1=3g.�/. These satisfy the coupled set of nonlinear ordinary differential
equations

f ′′′ − 1

3
. f ′/2 + 2

3
f f ′′ + 1

3
= 2

3
Sq − 1

3
S�q′ − 1

2
S Gloc q′; (2.2a)

q′ = g; (2.2b)

1

Pr
g′′ + 2

3
f g′ − 1

3
f ′g = 0; (2.2c)
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where a prime denotes a derivative with respect to�. These equations must be solved
subject to the boundary conditions

f; f ′ = 0 and g = 1 on � = 0;

f ′ → 1 and g;q → 0 as � → ∞:

If S is set to zero, (2.2a) reduces to the Hiemenz equation [3], rather than the Blasius
equation [2] as the external velocity,ue, has been chosen to vary asx1=3 (see Itoh [15]
for a discussion of the more general Falkner-Skan similarity solution). Finally, the
term, G .x/, which is representative at the wall’s gradient must be taken as Gloc x−2=3

to permit the similarity solution to exist, where Gloc is an order one constant known
as the local G̈ortler number since it describes only the local gradient rather than the
overall curvature. To avoid confusion later when the term “local Görtler number” will
have a different meaning, Gloc will be referred to by symbol only from now on.

Equations (2.2) are then solved numerically using a Runge-Kutta routine coupled
with a Secant shooting method. As described by Stott and Denier [23], it is possible
to accelerate or decelerate the streamwise component of the velocity from the solution
obtained when the buoyancy parameter is zero by varying the value of Gloc, which
we recall is representative of the wall’s gradient. Here we consider a stably stratified
layer, such that S< 0 and typical solutions are shown in Figure1.
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FIGURE 1. The similarity solution for the basic-flow streamwise velocity,ū = X1=3 f ′; calculated for
Gloc = −8;−6;−4;−2;0 (dashed line) and 1=2 with S= −1=2 (corresponding to a stable temperature
stratification). Here decreasing the value of Gloc causes the streamwise velocity to eventually overshoot
the free-stream value.

It should be noted that, as stated by Stott and Denier, for increasingly negative
values of Gloc a new inflection point emerges from� = 0 and ultimately the similarity
solution will break down as the boundary layer becomes detached from the wall. We
note that as the flow is accelerated in the neighbourhood of the wall, that is, as Gloc

decreases, we encounter supervelocities. This flow necessarily contains an inflection
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point and hence we realise that the flow will be prone to inviscid travelling waves (as
it will for G loc > 0).

2.2. The disturbance equations We now discuss the equations governing the
perturbations. After making some simple re-arrangements, Hall [9], the equations
which govern the disturbance are found to be

L ũ − ūxũ − ūyṽ = Q1; (2.3a)

L

(
@2

@y2
+ @2

@z2

)
ṽ − v̄yṽyy + ūxyṽy + ūyyṽx + ūxyyṽ + v̄xũyy + 2ūxũxy

+ 2ūxyũx +
(

−.v̄x + G� ū/
@2

@z2
+ ūxxy

)
ũ + Gr T̃zz

= −Q1xy + Q2zz − Q3yz and (2.3b)

L− T̃ − T̄xũ − T̄yṽ = Q4; (2.3c)

where the two partial differential operators are given by

L ≡ @2

@y2
+ @2

@z2
− ū

@

@x
− v̄

@

@y
and

L− ≡ 1

Pr

(
@2

@y2
+ @2

@z2

)
− ū

@

@x
− v̄

@

@y
;

here a subscript denotes a derivative with respect to that variable. The four nonlinear
terms on the right-hand sides of (2.3) are

Q1 = ũũx + ṽũy + w̃ũz; Q2 = ũṽx + ṽṽy + w̃ṽz + .1=2/G� ũ2;

Q3 = ũw̃x + ṽw̃y + w̃w̃z; Q4 = ũT̃x + ṽT̃y + w̃T̃z:

When studying the linear problem, these terms will simply be set to zero. At this stage
we have retained virtually the full equations, however the rescaling of the normal
and spanwise coordinates has led to the demotion of the streamwise diffusion and
streamwise pressure gradient. This implies that the equations are parabolic inx and
are thus amenable to solution by a marching technique.

Equations (2.3) (a modified form of the nonlinear G̈ortler equations due to the
presence of the buoyancy term) must be solved subject to the condition that all
disturbances are required to die away at the edge of the boundary layer, that is,ũ,
ṽ, T̃ , ṽy → as y → ∞ (the condition on the derivative of̃v comes from continuity
combined with the fact that̃w → as y → ∞). In addition, the no-slip and no-
flux conditions must be applied at the wall as well as ensuring that the temperature
perturbation is zero here. We use this isothermal condition, since we are taking the
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wall to be maintained at a prescribed temperature. However, in our experience the
use of an adiabatic condition does not have much effect on the dominant physical
mechanisms, although it does modify the numerical values of the critical quantities.
Thus we havẽu, ṽ, T̃ , ṽy are all zero aty = 0. We now discuss the numerical methods
employed to solve the disturbance equations (2.3).

3. Numerical methods

The disturbance equations (2.3) will be solved using a second-order Crank-Nicolson
scheme in the downstream direction coupled with a centred five-point fourth-order
finite difference method in the normal direction. This method is suitable for both the
linear and the nonlinear problems, with small modifications required for the latter, and
will follow that used by, for example: Hall [9], Denier and Hall [5] and Cole, Otto
and Watson [4]. Appropriate checks were made to ensure the fidelity of the numerical
solutions, for instance on grid sensitivity. In addition we looked at the effect of the
grid resolution on the breakdown of the nonlinear code and this was found to have a
minor effect. In essence the results we shall detail are not dependent on the accuracy
of the schemes being used.

3.1. The linear problem To obtain the linear disturbance equations, the four
nonlinear termsQ1, Q2, Q3 andQ4 are set to zero in (2.3). Effectively we consider
the perturbation to be proportional to an infinitesimally small quantity and hence we
can legitimately neglect these nonlinear terms. Using experimental knowledge the
perturbation quantities are taken to be periodic in the spanwise coordinate since we
are looking for vortex instabilities and so we write

ũ.x; y; z/ 7→ u.X; �/eiaz; ṽ.x; y; z/ 7→ v.X; �/eiaz; T̃.x; y; z/ 7→ T.X; �/eiaz:

Here the transformation.x; y/ 7→ .X; �/ has also been made, whereX = x and
� = yx−1=3 as before. The use of the similarity variable not only simplifies use of
the basic-flow results but also allows for the downstream spreading that the boundary
layer experiences.

The system of equations (2.3), once transformed, must be solved subject to the
containing boundary conditionsu = v = T = v� = 0 on� = 0 andu; v; T; v� → 0
as� → ∞. In order to obtain a numerical solution, the normal domain must be
truncated at a finite value and this occurs at� = 40. This value has been demonstrated
to be sufficiently large so the vortices are unaffected by the presence of the false
boundary.

As mentioned previously the system (2.3) is parabolic in the downstream coordi-
nate,X, and so a forward marching scheme may be used to solve the system. An
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initial condition is required and this is chosen to be

u = �6e−�2

; v = T = 0; (3.1)

as used by Hall [9]. The choice of this form of disturbance and its point of inception,
together with other choices (for instance the point at which the nonlinear calculations
are started) has a bearing on the numerical results attained herein. However, this does
not alter the central findings of this paper relating to the physical mechanisms which
support these instabilities. The dominant effects of the initial form of the disturbance
are concentrated in the initial stages, which are seen in the transients and these in turn
influence the left-hand branch of the neutral curve. In contrast the right-hand branch
of the neutral curve is largely unaffected by these choices and it is this which gives the
most information concerning the fate of a particular situation. The evolution of this
disturbance must be tracked downstream and this is achieved by measuring an energy
at each step inX, using the formula

E
.n/.X/ =

∫ ∞

0

[
u.n/.X; �/2 + T .n/.X; �/2

]
d�: (3.2)

The superscript.n/ is used in readiness for the nonlinear problem but it is superfluous
here. From this energy a spatial growth rate is then derived, namely

¦ .n/.X/ = 1

E .n/

dE .n/

dX
+ 1

3X
; (3.3)

the particular form of this expression comes from the fact that the integration in (3.2)
is performed using the similarity variable�. Unsurprisingly, it is this growth rate
which will be monitored to determine the growth of the disturbance, at least in the
linear problem. If it is negative, the disturbance is decaying and conversely if it
is positive, the disturbance is growing. Intermediate points where the growth rate
is necessarily zero are known as neutral points and are used to plot neutral curves
in the local G̈ortler number–local wavenumber plane. These two quantities allow
for the spreading of the mixing layer as it progresses downstream and are defined
by GX = G�.X/X5=3 and aX = aX1=3. The curvature function,�.X/, is chosen
to be equal to.X=X̄/1=3: the functional form of the curvature is chosen to promote
sustained downstream growth. HereX̄ is the value of the streamwise coordinate
where the marching procedure is started and hence corresponds to the imposition
of the disturbance. In the calculation included herein it is universally taken to be
X̄ = 20; the effect of the variation of this quantity is described in Hall [9] for
the Blasius boundary later. Before proceeding we add the caveat that the form of
the disturbance (3.1) has an effect on the upcoming results. In order to replicate
and predict the fate of disturbances within a given experiment one would need to
initiate calculations with appropriate starting conditions. Alternatively one can effect
a receptivity calculation, Watsonet al. [25].
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3.2. The nonlinear problem We now describe the solution of the nonlinear problem,
the underlying mechanics of which are similar to the linear problem. The presence of
the nonlinear termsQ1, Q2, Q3 and Q4 will generate the higher harmonics and it is
necessary for us to extend the expansion of the flow quantities to include these. Hence
we now consider

ũ.x; y; z/ =
∞∑

s=−∞
u.s/.X; �/eisaz; ṽ.x; y; z/ =

∞∑
s=−∞

v.s/.X; �/eisaz;

w̃.x; y; z/ =
∞∑

s=−∞
s6=0

w.s/.X; �/eisaz; T̃.x; y; z/ =
∞∑

s=−∞
T .s/.X; �/eisaz;

wherea is the vortex wavenumber, so the period of the vortex is 2³=a. We note that
the linear analysis corresponds to consideration of the quantities with superscripts of
plus one in isolation. Obviously the limits of the sums must be replaced by finite
values for computational reasons and therefore they will be truncated at plus and
minusN. ProvidedN is sufficiently large this will introduce a negligible error since
the modes will get smaller and smaller as|s| increases – hereN = 8 is found to be
adequate. Extensive studies have been performed to ensure this is true. Thes = 0
mode is dubbed the ‘basic-flow correction’ since, unlike the other modes but similar
to the basic flow, it is not periodic inz. There is now.0/ term in the sum since, as
stated by Hall [10], it is well known that the nonlinear interactions do not generate a
mean flow in the spanwise direction.

The spanwise velocity,w.s/, appears in the nonlinear terms and so a further equation
in addition to (2.3) is required. This is the continuity equation, given by

u.s/X − �

3X
u.s/� + 1

X1=3
v.s/� + iasw.s/ = 0: (3.4)

The boundary conditions are of course the same as the linear conditions, that is,
u.s/ = v.s/ = w.s/ = T .s/ = v.s/� = 0 on � = 0 andu.s/, v.s/, w.s/, T .s/, v.s/� → as
� → ∞ .s 6= 0/. As mentioned above, the cases = 0 corresponds to the basic-flow
correction and since there is no spanwise velocity correction, the number of equations
to solve may be reduced from four to three. The three chosen are naturally (2.3a),
(2.3c) and (3.4). The boundary conditions for this mode are also slightly different; the
conditions on the streamwise velocity and the temperature remain the same, but those
on the normal velocity are required to match that of the basic flow. Thus it is simply
enforced that there is no normal flux through the plate, that is,v.0/.0/ = 0.

The method of solution of the governing equations also remains the same as in the
linear case, that is, a centred five-point finite difference scheme is used in the normal
direction and a Crank-Nicolson marching scheme in the downstream direction. The
linear solution is used as an initial condition for the nonlinear problem; that is, the
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linear problem is evolved fromX = 20 to X = 40, at which point the nonlinear terms
are activated and the nonlinear problem is solved. The linear solution has just a single
mode whilst the nonlinear has 2N + 1, therefore the linear solution is used to seed
just two of the nonlinear modes, thes = ±1 modes, in the manner

.u.1/; v.1/; w.1/; T .1// = 1u√
E .1/

.ulinear; v linear; wlinear; T linear/

.u.−1/
n̄ ; v

.−1/
n̄ ; w

.−1/
n̄ ; T .−1/

n̄ / = 1u√
E .1/

.ulinear; v linear; wlinear; T linear/∗;

.u.s/; v.s/; w.s/; T .s// = .0; 0; 0; 0/; .s 6= ±1/;

where a star denotes a complex conjugate andE
.1/ is the mode energy as defined

by (3.2). The parameter1u controls the strength of the nonlinearity in the initial
stages of growth. The effects of changing this value have been discussed by Cole,
Otto and Watson [4] – it was found that increasing1u has the effect of reducing the
growth rates of the vortices, at least for the fundamental, although it does accelerate
the breakdown of the calculation. The amplitude of the linear modes for 20< X < 40
are rescaled accordingly to match with the nonlinear calculations. This is essentially
just a rescaling so that the reference amplitude for the calculations is taken atX = 40
using a mode for which some of the transients associated with an artificial starting
condition have been allowed to abate (at least somewhat). In the nonlinear problem
each mode will have an energy associated with it and so (3.2) will be used for each
−N 6 s 6 N. In the main the energy of the modes will be used in the description
of the system rather than growth rates or neutral curves. This is due to the fact that
these latter quantities are less poignant within a nonlinear context, especially when
discussing higher harmonics.

The method chosen to initiate the nonlinear problem produces an even distribution
across the Fourier modes, that is,u.−s/ = .u.s//∗, and so on for the other flow variables.
This fact may be exploited to reduce computational effort since it is known thatu.s/,
v.s/ andT .s/ are real whilstw.s/ is purely imaginary – hence only half of the Fourier
modes need to actually be calculated. At each streamwise location it is necessary
to iterate to a solution of the nonlinear system; this is accomplished using Newton’s
method [4].

4. Linear results

We begin by solving the linear system, using the method described in Section3.1.
The two cases of a zero and a non-zero buoyancy parameter will be considered
separately. The former case is relatively well understood, or at least when either
curvature or buoyancy is present – the boundary layer experiencing the combined
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FIGURE 2. Neutral curve for a stably-stratified basic flow over a wall with curvature G= 0:5 and a zero
buoyancy parameter. Even with this fairly large degree of concave curvature, the curve is already folded.

effects of curvature and buoyancy has not been studied in depth (with the exception
of the inviscid theory of Stott and Denier [23]) but the effects are easily surmised
from knowledge of both the individual problems [9, 11, 14] and the equivalent mixing
layer problem [19, 18, 20]. The buoyancy-coupled boundary layer has received little
attention in the literature and thus will be the main focus of attention here.

In the remainder of this paper we shall be referring to “stably” and “unstably” strat-
ified basic-flow temperature profiles. Recall that the non-dimensional temperatures
at the wall and in the free stream are unity and zero respectively. We add the remark
that the non-dimensional temperature of zero is merely a scaled value and does not
represent an extreme of temperature. The stratification of the flow is then controlled
via the Grashof number, which is a function of1T = T0 − T∞, the dimensional
temperature difference between the wall and the free stream. Thus a positive Grashof
number represents heating from the wall, an unstable stratification, whilst a negative
Grashof number represents cooling from the wall – a stable temperature stratification.
We shall use just two values of the Grashof number, plus and minus one, to represent
a stable and an unstable stratification respectively.

4.1. No buoyancy coupling (S= 0) As already stated, when buoyancy coupling is
removed the basic-flow equations (2.2) are solved by Hiemenz flow.

For a G̈ortler number of 0.5 and a stably stratified layer, growth is sustained for
a range of wavenumbers as shown by the neutral curve (Figure2), although the
curve already shows signs that the boundary layer is subject to the same transient
growth as described by Watson, Otto and Jackson [25] for the equivalent mixing-
layer problem. As with that situation, it can be shown that the modified Taylor-
Goldstein equation which governs the inviscid stability of the boundary layer has
purely imaginary eigenvalues, representing oscillatory motion in the downstream
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coordinate.
In the G = 0:2 case, growth is sustained, leading to a neutral curve similar to

that shown in Figure2 but with a more pronounced folding (not shown due to the
similarity to Figure2). However, in the G= 0:05 case there is no growth at all
and the disturbance decays throughout the downstream section shown. Once again,
this situation mirrors that of the curved, heated mixing layer. It has been shown
[25], via the consideration of the inviscid stability boundaries, that all mixing layers
with a stable stratification and a concave centreline curvature will experience a period
of transient growth before a certain downstream position is reached, at which point
growth will become sustained. This occurs only when the centreline curvature is a
function of the downstream coordinate,X. Exactly the same phenomenon occurs in
the boundary layer. The inviscid stability boundaries for the boundary layer may not
be expressed in such a succinct form as they could for the mixing layer; however,
one may nevertheless ascertain that the critical Görtler number (the amount of wall
curvature required to destabilise the system given a temperature stratification)∼ X−1=3

for a stable stratification. This is, of course, completely dependent upon the choice of
curvature function,�.X/.
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FIGURE 3. Typical growth rates for unstably-stratified basic flows. The vortex wavenumber was 0:05 and
S = 0. We show curves for G̈ortler numbers of 0:2;0:05;−0:05;−0:075;−0:1 and−0:2.

In Figure3 growth rate curves are presented for a range of Görtler numbers within
an unstably-stratified basic flow (achieved by setting the Grashof number to plus one).
When the G̈ortler number becomes negative, the growth rate initially increases but
reaches a maximum and then proceeds to become negative, indicating decay. This is
exactly the same behaviour as seen in the mixing layer [25] when the basic flow was
unstably stratified; analysis of the inviscid stability boundaries in that case showed that,
at negative values of the G̈ortler number, the disturbance would initially grow but at
some point downstream it would experience decay (or transient growth) and the period
of growth would never be regained. At positive values of the Görtler number, growth
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would be sustained at all points downstream. For an unstably-stratified boundary layer,
it is found that the critical G̈ortler number∼ −X−1=3; which is a direct consequence
of the choice of the curvature. This in turn is chosen to permit a similarity reduction of
the equations. If the curvature exceeds this value then we would expect the instabilities
to have greater growth and vice versa for a lesser curvature. This would be associated
with a smaller or larger critical G̈ortler number respectively.

4.2. Buoyancy coupling (S6= 0) The case of a non-zero buoyancy parameter
will now be considered, allowing strong buoyancy coupling within the basic flow
equations. Stott and Denier [23] examined the consequences of this upon the inviscid
stability of the boundary layer and it was found that growth rates could be increased
or decreased depending upon the local gradient of the wall. In this section it will be
seen whether this result extends out of the inviscid régime or not.
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(a) Gloc = 1; S= −0:4;−0:3,−0:2,−0:1 and 0.
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(b) Gloc = −3; S= −0:3;−0:2;−0:1 and 0.

FIGURE 4. Growth rate curves for a variety of values of the buoyancy parameter. The basic-flow
temperature profile was stably stratified, the Görtler number was 0:5 and the vortex wavenumber was
0:05. In the second figure, since the basic flow is relatively decelerated in the streamwise direction,
increasing the buoyancy parameter increases the growth rate, refer to Figure1.

In Figure4 (a) growth rate curves are plotted for a Görtler number of 0:5 and a
stably-stratified basic flow. The vortex wavenumber was, as usual, 0:05 and Gloc was
unity. The buoyancy parameter, S, is increased from a negative value to zero (note
that the sign of S is equal to the sign of the Grashof number) – as it increases, the
growth rate decreases. This is as found by Stott and Denier [23] when studying the
inviscid limit; the accelerated boundary-layer basic flow was found to yield much
smaller growth rates than the decelerated boundary layer.

It would be expected, therefore, that if Gloc is chosen such that the flow near the
wall is decelerated rather than accelerated, increasing the buoyancy parameter would
have the opposite effect – the growth rate would be increased. This can be seen in



[15] The stability of a curved, heated boundary layer 521

Figure 4 (b), which again shows growth rates for various values of the buoyancy
parameter but this time Gloc = −3. The greater the degree of deceleration, the larger
the growth rate of the disturbance.

In Figure5 the consequences of varying Gloc are shown, with the buoyancy para-
meter fixed at−1=2. The effect of decelerating the streamwise flow near the wall is
clearly seen once again, as the growth rate is largest when Gloc is positive.
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FIGURE 5. Growth rate curves for the stably-stratified boundary layer with the buoyancy parameter fixed
at −1=2 but Gloc varying between−8 and 1=2 (specifically Gloc = −8;−6;−4;−2; 0; 1=2) and the
Görtler number was 0:5.

Figure5 (a) also shows that transient growth appears when−8 & Gloc, indicating
that the stability boundaries are changed by the inclusion of buoyancy coupling at
least for these initial conditions. This is hardly surprising since the inviscid stability
boundaries are dependent upon the basic flow, which is clearly modified by allowing
buoyancy coupling.

Neutral curves and their right-hand branches are of course also affected by the
inclusion of buoyancy coupling, as changes in the basic flow will naturally alter the
stability characteristics of the flow. Figure6 shows a number of neutral curves for a
stably-stratified basic flow, each calculated with a different value of Gloc as shown in
the legend.

As Gloc is decreased, the right-hand branch moves further to the right. However, the
kink also grows corresponding to our earlier observation that transient growth occurs
when Gloc is decreased. In fact, by the time Gloc has been decreased to−8, the kink is
so large that it extends across the whole range of local wavenumbers used to produce
this figure, effectively splitting the neutral curve into two parts.

The relative positions of the right-hand branches shown in Figure6 is somewhat
surprising given the results of Figure5 (a), which indicated that the more negative the
value of Gloc, the smaller the growth rate will be. If a similar figure is plotted but the
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FIGURE 6. Neutral curves calculated for a variety of values of Gloc and a stably-stratified basic flow. The
Görtler number was 0:5.

vortex wavenumber is increased to 0:6, it is clear that the situation is reversed; see
Figure5 (b). This time, the acceleration in the boundary-layer basic flow increases
rather than decreases the growth rate onceX is sufficiently large. This scenario is rather
easier to justify physically, in that there is more energy available to the disturbance in
the boundary layer if the basic flow is accelerated beyond the free-stream value. Why
this situation should be reversed if the vortex wavenumber is reduced is unclear – it
appears that in this régime, the extra energy is directed into spatial oscillations rather
than sustained downstream growth. This is linked to the stability boundaries, which
are changed according to the value of Gloc. Some of the variation can be attributed to
a horizontal shifting of the neutral curve.

The basic-flow temperature profile is now changed so that it is unstably stratified;
the corresponding growth rates are shown by Figures7 (a) and7 (b). The former
of these two figures shows the growth rates for various values of Gloc, at a vortex
wavenumber of 0:05 and a G̈ortler number of 0:5. In this case, in contrast to the
stably-stratified basic flow, increasing the value of Gloc decreases the growth rate.
Figure7 (b) shows the growth rates when the wavenumber is unity; increasing Gloc

now increases the growth rate. Figure8 shows a number of neutral curves, each
calculated for a different value of Gloc, as shown in the legend. Also included is the
neutral curve calculated when no buoyancy coupling is present. In contrast, the greater
the value of Gloc, the more prone to longitudinal vortex instabilities the system is and
the further to the right the right-hand branch lies.

We now proceed to discuss the analytical derivation of the location of the right-hand
branch.
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FIGURE 7. Growth rate curves for integer values of Gloc varying between−3 and 5. The buoyancy
parameter was unity and the Görtler number 0:5 with an unstably-stratified basic-flow temperature
profile. The dotted line in (a) shows the growth rate for the same parameters but with S= 0.
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FIGURE 8. Neutral curves for a variety of values of Gloc, with an unstable temperature stratification. The
right-hand branches of the curves occur moving from left to right as: Gloc = −3;0; 1 and 5.

4.3. The right-hand branch asymptote The results in the previous section indicate
that the right-hand branch is dependent upon the values of the buoyancy parameter
and Gloc. Using an analysis identical to that detailed in Watson, Otto and Jackson
[25] (with scalings appropriate to the Hiemenz boundary layer rather than the mixing
layer) one may derive an expression for the right-hand branch asymptote in the limit
of a large vortex wavenumber. We note in this high wavenumber limit the vortices
become concentrated within a narrow layer. We expand both the perturbation and
basic flow quantities within this layer, and we find that conditions for the existence of
the instabilities are

1 − G0 ū0ū1 + PrT̄1 = 0 and − G0.ū0ū2 + ū2
1/+ PrT̄2 = 0; (4.1)
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FIGURE 9. The variation of the gradient of the right-hand branch asymptote with the parameter Gloc with
S = −1=2. The upper branch is depicted in (a), whilst (b) shows the lower branch (note the logarithmic
scale on the vertical axis).

where the quantities̄T1, ū0, ū1 andū2 are terms in the expansions of the basic flow
as defined by Watson, Otto and Jackson [25]. These define both the value of G0 (for
neutrality) and the normal location of the modes. The leading term in the asymptote is

GX = .1 + PrT̄1/

ū0ū1
a4

X + · · · : (4.2)

Subsequent terms in the expression for the asymptote are naturally smaller than this
one and will be neglected here.

Using (4.1) we are able to calculate the approximate gradient of the right-hand
branch asymptote (4.2) for a given basic flow (that is, the gradient when the asymptote
is plotted in the log-log plane). This is shown in Figure9 (a) for the buoyancy-coupled
boundary layer with varying values of Gloc (the buoyancy parameter was fixed at−1=2).
Clearly the larger the value of Gloc, the further to the right the asymptote lies – the
steeper its gradient is – indicating greater instability. This agrees entirely with the
numerical results of Section4.2.

However, a rather surprising result also comes to light with this analysis – when the
buoyancy parameter is non-zero, two different solutions exist of the above compati-
bility conditions and thus it appears that two different right-hand branch asymptotes
exist. One of these always has a positive gradient, the other a negative gradient and
this latter case is shown in Figure9 (b) for various values of Gloc. The differing signs
mean that each asymptote is only appropriate for one sign of the curvature.

We note, as mentioned above, the compatibility relations (4.1) also yield informa-
tion concerning the location of the vortices within the high wavenumber limit. We
note that for S< 0 and Gloc < 0 the jet weakens and appears to tend out into the
freestream. It is relatively straightforward to show that the vortex associated with
the lower branch (that is, negative Görtler number or convex curvatures) will reside
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FIGURE 10. Neutral curves for the stably-stratified boundary layer, with Görtler numbers of−0:5
(representing a convex wall curvature – solid curve) and 0:5 (representing a concave wall curvature –
dashed curve). In both cases, the basic-flow velocity profile was accelerated beyond the free-stream value
in the streamwise direction since S= −0:5 and Gloc = −8. The dotted lines represent the right-hand
branch asymptotes, calculated analytically.

above the jet and the upper branch mode will reside below it. This, coupled with
the multiplicative factor of̄u1 (the local shear at the vortex location), implies that the
Görtler number associated with neutrality for the convex modes will become very
large and hence these modes will only be expected to be observed for highly curved
situations. However, we note that as Gloc decreases and the jet strengthens we would
expect the modes to be observed in moderately curved situations.

Consequently as Gloc becomes increasingly negative, the gradient of this lower
branch tends to minus infinity very rapidly thus rendering it obsolete, just as it is in
the mixing layer, the Blasius and Hiemenz boundary layers. Yet it is certainly a very
important factor when the basic flow is accelerated in the streamwise direction. This
can be seen in Figure10, which shows neutral curves for a stably-stratified boundary
layer with both a convex curvature characterised by a Görtler number of−0:5 (dotted
line) and a concave curvature characterised by a Görtler number of 0:5 (continuous
line). Note that the absolute value of the local Görtler number is plotted so that both
curves can be shown in the same figure; thus both right-hand branches appear to have
positive gradients.

In the standard Hiemenz boundary layer the former situation (stable stratification,
convex curvature) would be completely stable to longitudinal vortex instabilities.
However this is not the case in the buoyancy-coupled boundary layer with S= −1=2,
Gloc = −8 as can be seen from this neutral curve. The asymptotes, calculated
analytically, are shown as a dotted line in each case and it is clear that each neutral
curve tends to a separate asymptote. In the case where the wall has a concave curvature
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with a Görtler number of 0:5, it becomes difficult to extend the numerical results much
further along the right-hand branch, hence the apparent lack of correlation with the
asymptote. As one moves further along the right-hand branch, the step size in the
downstream coordinate must be made smaller and smaller to avoid the occurrence of a
numerical instability. It becomes infeasible to reduce this parameter much further with
the computational means and time available to us. However, enough of the right-hand
branch has been calculated to clearly show that it does not tend to the same asymptote
as the right-hand branch of the neutral curve corresponding to G= −0:5.

4.4. A note on the inviscid stability boundaries in the case of non-zero buoyancy
coupling (S 6= 0) The inviscid stability boundaries have been mentioned frequently
in previous sections, as they predict the transient growth which has been observed.
They may be expressed succinctly in the mixing-layer problem; in the boundary-layer
problem (with S= 0) they are not so neatly written but they are calculable and their
influence is clearly seen. However, upon the introduction of buoyancy coupling, the
inviscid stability boundaries no longer exist in the same form. It is observed by Stott
and Denier [23] that the modified Taylor-Goldstein disturbance equation takes the
form

v0yy − 1

þ0ū

[
a2

(
þ0ū + sgn.Gr/T̄y

þ0ū

)
+ þ0ūyy

]
v0 = 0;

when S6= 0 (first derived by Hall and Morris [14]), wherev0 is the re-scaled (on the
Grashof number) normal disturbance velocity. This equation lacks the curvature term
a2 G0� ūūyv0=þ

2
0ū2 which appears in the corresponding disturbance equation when

buoyancy coupling is not present [23]. The difference arises because the curvature
term is anO.1/ entity when buoyancy coupling is present and is thus negligible when
compared to the other terms. The effects of the underlying wall curvature are not
evident explicitly in the inviscid problem, but are implicit within the basic flow. With
no curvature term present in the modified Taylor-Goldstein equation, the analysis of
Otto, Stott and Denier [18] cannot be performed and thus stability boundaries may not
be derived in the conventional way. It is possible that a consideration of the smaller
terms will yield the stability boundaries but this calculation is rather involved and is
beyond the scope of this paper.

Indeed, the search for the stability boundaries is complicated further by the fact
that sustained growth of the disturbance has been observed at values of the Görtler
number which are less than zero (representing a convex wall curvature), even when
the basic flow has a stable temperature stratification. However, transient growth is
also seen in some cases (in particular when the vortex wavenumber is small – see for
example Figure5 (a)) and so one can surmise that instability does not persist for all
values of G�.X/ and hence stability boundaries do exist in some form, however they
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are unlikely to be accessible by simple analytical means. We now proceed to discuss
the nonlinear evolution of these modes, since after sustained streamwise growth it is
expected that nonlinearity will play a rôle.

5. Nonlinear results

The full nonlinear problem will now be solved, using the method outlined in
Section3.2. As described there, the method is very similar to that used to solve the
linear problem in the previous section. However, there are now an infinite number of
nonlinear modes which should be considered (albeit that this is truncated to a finite
number, as also described in Section3.2, for computational purposes). As mentioned
previously, traditionally, the growth of these nonlinear modes is shown not by growth
rate and neutral curves but by plotting the energy of each mode as it progresses
downstream.

5.1. No buoyancy coupling (S= 0) We begin by returning to the problem with no
buoyancy coupling present. As before, in all cases the Prandtl number will be taken
as unity. The equivalent incompressible problem has been previously studied by Hall
[10], Lee and Liu [16], Denier and Hall [5] and Benmalek and Saric [1] (amongst
others). These all use the Blasius basic flow which does not vary withX far from the
wall, unlike the Hiemenz basic flow which shall be used here; thus the results are not
only a precursor to those which follow for the buoyancy-coupled boundary layer but
are also new in their own right.

The energy of the first nine nonlinear modes in the stably-stratified boundary layer,
calculated for a concave wall curvature characterised by a Görtler number of 0:5, are
shown in Figure11 (a). The vortex wavenumber was 0:05,1u = 0:05 and the step
size used in the downstream coordinate was 0:2. Figure11(b) shows an enlarged view
of the mode energies close to the breakdown of the code; the basic-flow correction
does not outgrow the fundamental mode as is usually expected [4, 5]. In fact, the
second mode soon becomes larger than the basic-flow correction itself and it is this
mode which becomes almost as large as the fundamental mode.

As experienced in similar situations [4, 5], the numerical code is subject to failure
at a certain point downstream. With these parameters, this occurs at approximately
X = 140. It is found that, unlike the mixing layer, the boundary layer is not overly
affected by the value of1X, the step size in the downstream coordinate. Although
the breakdown point does vary, the range is limited. The fact that the breakdown point
moves further downstream as the step size is increased is probably caused by the code
“stepping over” the true breakdown value, also noted by Denier and Hall [5]. It is only
the breakdown point which is affected to any appreciable degree by the value of1X;
the energies of the modes undergo only minute changes and thus a step size of 0:2 will
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FIGURE 11. Energy of the first nine nonlinear modes in the stably-stratified boundary layer, calculated for
G = 0:5 and S= 0. The vortex wavenumber was 0:05 and the step size in the downstream coordinate
was 0:2. In (b) we show a enlargement of Figure11 (a), showing how the second mode (s = ±2)
outgrows the basic-flow correction and almost becomes as large as the fundamental mode prior to code
breakdown.
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be implemented from now on. Although this does allow the code to bypass the true
breakdown point slightly, it greatly reduces the time needed to compute the solution.

In Figure12 contour plots of the streamwise component of the vorticity and the
total temperature (this is the dimensionless temperature, so although it appears that the
wall is hotter than the fluid far away from it this is not the case in real terms) are shown
once the vortices have developed for the above configuration (stable stratification,
G = 0:5).

Two pairs of vortices are present. In this case the lower pair or the wall vortices are
the strongest; the upper pair are weaker and become quite distorted in the latter stages
of growth before breakdown. The action of the counter-rotating vortex pairs acts to
pull fluid up away from the wall, as seen by the pillars formed in the temperature
profile. Within this column of fluid a negative velocity may be observed; this region
of reverse flow undoubtably is the root of code breakdown as it was in the Blasius
boundary layer as studied by Denier and Hall [5]. The horizontal axis of the contour
plots covers one vortex wavelength (equivalent to 2³=a); the fluid pulled away from
the wall remains very concentrated in a region in the middle of this wavelength and
the scale used makes it seem very thin. In fact zooming in on the pillar shows that
it has the characteristic mushroom shape, as seen previously in the incompressible
boundary layer [10, 16, 1].

The energies of the nonlinear modes for the same configuration but with a larger
vortex wavenumber (a = 0:6) are shown in Figure13. The first notable difference
between these energies and those shown in Figure11is that the basic-flow correction is
now no longer outgrown by the second mode and indeed it eventually becomes larger
than the fundamental mode. Breakdown is also delayed slightly by increasing the
vortex wavenumber; however, with the notable exception of the basic-flow correction,
the energies of the modes are decreased (particularly those of the smaller modes).

In Figure14 contour plots of the total streamwise vorticity and temperature are
given for the larger vortex wavenumber.

It is clear that now the upper vortex pair is the strongest; the lower pair are very
close to the wall indeed and are much weaker. As the disturbance grows downstream,
the upper vortices sink towards the wall and their centres move closer together. As
before, the effect of the vortices is to pull fluid away from the wall up towards the free
stream, but this time the fluid spreads out right across the region shown (again one
vortex wavelength) rather than being concentrated in the centre. In the head of the
column there is a jet of almost stationary, super-heated fluid. Once again this trend
towards flow reversal is the root of code breakdown.

Growth is severely curtailed if the G̈ortler number is reduced to 0:2 whilst the basic-
flow temperature profile remains stably-stratified; there is a long period of decay, as
shown by Figure15, followed eventually by growth.

The transition from decay to growth is quite rapid although it is found to be smooth
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FIGURE 12. The total streamwise vorticity and temperature in the stably-stratified boundary layer,
calculated for G= 0:5 with a = 0:05 and S= 0, shown a reasonable distance downstream. The wall
vortices are the most dominant at this value of the vortex wavenumber.
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FIGURE 14. The total streamwise vorticity and temperature in the stably-stratified boundary layer,
calculated for G= 0:5 with a = 0:6 and S= 0. In this case the upper vortex pair are stronger than the
wall vortices.
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FIGURE 15. Energy of the first nine nonlinear modes in the stably-stratified boundary layer, calculated for
G = 0:2. The vortex wavenumber was 0:6 and S= 0. Code breakdown is not achieved beforeX = 500.
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FIGURE 16. Energy of the first nine nonlinear modes in the unstably-stratified boundary layer, calculated
for G = 0:5. The vortex wavenumber was 0:6 and S= 0. The larger wavenumber means that now
the basic-flow correction remains larger than the second mode throughout and indeed outgrows the
fundamental mode shortly before code breakdown.
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FIGURE 17. The total streamwise vorticity and temperature in the unstably-stratified boundary layer,
calculated for G= 0:5 with a = 0:6 and S= 0.
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by examining the apparent cusps of Figure15 in greater detail. Once again the
transition is predicted by the inviscid stability boundaries; the curvature is concave but
the temperature profile is stably-stratified, hence there must be a period of transient
growth (or decay) followed by sustained growth. The system was integrated to
X = 500 but no breakdown point was encountered in this period as growth is so slow.

We now consider an unstably-stratified basic-flow profile, with a wall curvature
characterised by a G̈ortler number of 0:5. Energies of the first nine nonlinear modes for
a vortex wavenumber of 0:6 are shown in Figure16. Comparison to the corresponding
stably-stratified case shown in Figure13shows that the added instability of the unstable
stratification causes the energies to increase more rapidly and the code to break down
sooner. This can also be seen in the contour plots of the streamwise vorticity and total
temperature (Figure17) which, although similar to their stably-stratified counterparts
(Figure14), show that the vortices not only pull fluid away from the wall more quickly
but also extend further towards the free stream. Figures18 (a) and18 (b) show the
effects of reducing the G̈ortler number to 0:2 and 0:05 respectively, maintaining the
unstable stratification of the basic flow. The vortex wavenumber is once again 0:6.
In both cases the code carries on for quite a while downstream after the basic-flow
correction has outgrown the fundamental mode, before breaking down. However,
after this occurrence, growth slows down considerably and the energies increase only
gradually before breakdown is reached. In the latter case, when the Görtler number
is 0:05, the code carries on for so long that the upwellings of fluid begin to merge
with each other. Therefore in Figure19(which shows contour plots of the streamwise
vorticity and total temperature) four wavelengths are shown rather than just one to
illustrate this point.
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(a) G= 0:2 (b) G= 0:05

FIGURE 18. Energy of the first nine nonlinear modes in the unstably-stratified boundary layer, calculated
for G = 0:2 and G= 0:05. The vortex wavenumber was 0:6 and S= 0.

However, the temperature plot shows how the upwellings of fluid created by the
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FIGURE 19. Contour plots of the streamwise vorticity and temperature associated with a Görtler number
of 0:05 and a vortex wavenumber of 0:6, just before code breakdown (X ≈ 320) in the boundary layer.
The basic-flow temperature profile was unstably stratified with S= 0.
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(a) Gloc = 1=2 (b) Gloc = −8

FIGURE 20. Energy of the first nine nonlinear modes in the buoyancy-coupled boundary layer. The
basic-flow temperature profile was stably stratified, the vortex wavenumber was 0:6, the G̈ortler number
0:5 and S= −1=2. For (a) the streamwise velocity component of the basic flow is decelerated near the
wall and conversely, it is accelerated for (b). In (b) the code was run toX = 300 but no breakdown point
was encountered in this period.

vortex pairs merge together, generating a band of fluid removed from the wall which
is slower and warmer than the free stream. Since we are considering an unstable
temperature stratification, “warmer” and “cooler” apply equally to both the non-
dimensional and the dimensional temperatures. If the flow was stably stratified, a
non-dimensional temperature larger than the free stream would in fact mean that the
dimensional temperature is smaller than the free stream (which would of course be
warmer rather than cooler than the wall). Within this band there are still regions of
extremely slow-moving, extra-hot fluid but these are gradually assimilated into the
band itself as the system evolves downstream. Finally, below the band are concentrated
jets of fluid which are accelerated to velocities beyond the free-stream value and which
are much cooler than the surrounding fluid.
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5.2. Buoyancy coupling (S6= 0) As previously, we shall now consider how the
introduction of buoyancy coupling in the basic flow equations alters the nonlinear
solution. First of all the stably-stratified boundary layer will be considered. By
setting a non-zero buoyancy parameter (in this case−1=2) and a positive value of Gloc

(1=2 here) the flow is decelerated in the streamwise direction near the wall, as depicted
by Figure1. Figure20 (a) shows the energies of the first nine nonlinear modes in
this case for a vortex wavenumber of 0:6 and a G̈ortler number of 0:5. Just before
code breakdown the basic-flow correction outgrows the fundamental mode, just as
was found when no buoyancy coupling was present.

In comparison, Figure20 (b) shows the energies of the same system but with
Gloc = −8, therefore the streamwise velocity is accelerated beyond the free-stream
value near the wall, creating a jet in the basic flow. In this case the code was run to
X = 300 without encountering a breakdown point; however, the basic-flow correction
outgrows the fundamental mode much further upstream and after this point the mode
energies increase only slightly.

As mentioned previously, these energy plots do not enable easy comparison between
the stability of different cases, therefore in Figure21growth rates of the fundamental
mode in each situation are shown. Also included is the growth rate of the fundamental
mode when no buoyancy coupling is present, shown as a dashed-dotted line.
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FIGURE 21. Growth rates of the fundamental mode for a stably-stratified basic flow and varying values of
S and Gloc. The vortex wavenumber was 0:6 and G= 0:5.

This shows that the highest maximum growth rate occurs when buoyancy coupling
is turned on and the basic flow is accelerated in the streamwise direction. The
decelerated boundary layer and the boundary layer with no buoyancy coupling have
similar maximum growth rates. However, it is the decelerated boundary layer which
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FIGURE 22. The total streamwise vorticity and temperature in the buoyancy-coupled, stably-stratified
boundary layer (S= −1=2, Gloc = 1=2) at X = 120, just prior to code breakdown. The vortex
wavenumber was 0:6, the G̈ortler number 0:5.
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FIGURE 23. Contour plots of the streamwise vorticity and temperature, associated with a Görtler number
of 0:5 and a vortex wavenumber of 0:6, at the downstream locationX = 120 in the buoyancy-coupled
boundary layer (S= −1=2, Gloc = −8). The basic-flow temperature profile was stably stratified.
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FIGURE 24. Contour plots of the streamwise vorticity and temperature, associated with a Görtler number
of 0:5 and a vortex wavenumber of 0:6, at the downstream locationX = 300 in the buoyancy-coupled
boundary layer (S= −1=2, Gloc = −8). The basic-flow temperature profile was stably stratified.
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(a) Gloc = −3 (b) Gloc = 5

FIGURE 25. Energy of the first nine nonlinear modes in the buoyancy-coupled boundary layer. The basic-
flow temperature profile was unstably stratified, the vortex wavenumber was 0:6, the G̈ortler number 0:5
and S= 1. For (a) the streamwise velocity component of the basic flow is decelerated near the wall and
conversely it is accelerated in (b). In (b) the code was run toX = 300 and no breakdown point was
encountered in this period.

peaks first out of all three cases.
At this stage, parallels may be drawn with the linear solution given in Section4.2.

There it was found that, at small wavenumbers, accelerating the basic flow near
the wall had the effect of decreasing the growth rate whilst decelerating it had the
opposite effect. If the vortex wavenumber was increased so that the régime of the
right-hand branch is entered, then the reverse becomes true – accelerating the flow in
the streamwise direction increases the growth rate. As a relatively large wavenumber
is being used here, it is the latter case which is applicable. Note, however, that the
switching point from the linear to the nonlinear code is a very important factor (the
linear solution is used as an initial condition for the nonlinear problem). The linear
growth rates of Figure5 show that in the initial stages the relative positions of the
solutions for each value of Gloc change twice before settling down to the situation
described above. Therefore if the nonlinear code had been initiated during the small
interval where accelerating the basic flow decreases the growth rate, our results would
have been quite different.

In Figure22 contour plots of the total streamwise vorticity and temperature are
shown for the buoyancy-coupled, stably-stratified boundary layer with S= −1=2
and Gloc = 1=2. The values are shown for the downstream positionX = 120, just
prior to code breakdown. These should be compared with Figures23which show the
same quantities for the accelerated case (Gloc = −8), again atX = 120. Both cases
correspond to a vortex wavenumber of 0:6. A major difference between the two sets
of figures is the extent of the vortices. In the former (decelerated) case, the vortices
are large and extend a long way from the wall. In the latter (accelerated) case, the
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FIGURE 26. Growth rates of the fundamental modes of the unstably-stratified boundary layer, with S= 1,
Gloc = −3; S= 1, Gloc = 5 and S= Gloc = 0. The vortex wavenumber was 0:6, the G̈ortler number 0:5.

vortices are much more compact and are positioned closer to the wall. It is not only
the vortices which are affected however; in Figure23 (a) the jet of accelerated fluid
can clearly be seen. This appears to inhibit the movement of the fluid away from the
wall, since only a small upwelling is visible byX = 120 but when Gloc = 1=2 and
the basic flow is decelerated the mushroom shape is already apparent and the code is
close to breakdown. As the disturbance develops (Figure24) the faster-moving fluid
from the jet remains in two localised pools either side of the column of fluid pulled
up by the vortices. Normally the fluid in the head of this column would be much
slower than the surrounding flow (in the same way that it is much hotter, as shown in
Figure17 (b)); however, the basic-flow jet seems to dilute this effect and the velocity
disturbance spreads out to either side, joining with the disturbance in the adjacent
wavelength period (Figure24 (b)).

Similar effects are found when the basic flow is unstably stratified. Energy plots are
shown in Figures25 (a) and25 (b) for a decelerated (Gloc = −3) and an accelerated
(Gloc = 5) basic flow respectively. In each case the Görtler number was 0:5 and the
vortex wavenumber 0:6.

When the basic flow is decelerated, the code breaks down soon after the basic-
flow correction outgrows the fundamental mode. When it is accelerated beyond the
freestream value, the code can be run toX = 300 without encountering breakdown
and for much of this time the basic-flow correction has a larger energy than the
fundamental mode.

Once again, to enable comparison between the two cases, growth rates of the
fundamental modes are plotted in Figure26 along with the growth rate when no
buoyancy coupling is present. This time, with the unstable stratification, the most
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FIGURE 27. Energy of the first nine nonlinear modes in the stably-stratified boundary layer. The Görtler
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FIGURE 28. The total streamwise vorticity and the temperature for a stably-stratified boundary layer. The
Görtler number was−0:5, S= −1=2, Gloc = −16 and the vortex wavenumber was 0:6. These values are
for the downstream locationX = 300.
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FIGURE 29. The total streamwise velocity and the temperature for a stably-stratified boundary layer. The
Görtler number was−0:5, S= −1=2, Gloc = −16 and the vortex wavenumber was 0:6. These values are
for the downstream locationX = 300.
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unstable situation occurs when the basic flow velocity is decelerated in the streamwise
direction. This again ties in with the inviscid results of Stott and Denier [23] and
also the linear results of Section4. These linear results showed that a larger vortex
wavenumber is required in the unstably-stratified case than in the stably-stratified case
to reverse the situation.

Finally, we return to the situation first discussed in Section4.3, that is, the destabili-
sation of the stably-stratified boundary layer over a wall with convex curvature. It was
discovered that this otherwise stable situation could be destabilised with the addition
of buoyancy coupling in the basic-flow equations, such that the streamwise velocity
component is accelerated beyond the free stream value. In Figure27, the energy of the
first nine nonlinear modes is shown for such a boundary layer. In this case the Görtler
number was−0:5, S = −1=2 and Gloc = −16. The vortex wavenumber was again
0:6. This plot is very similar to the other energy plots which have been discussed
in this section; that is, after a certain distance downstream the energy of basic-flow
correction becomes larger than that of the fundamental mode. In this case, as with the
other cases we have considered where a jet has been present in the basic flow velocity,
code breakdown is not achieved in the downstream section examined. In Figures28
contour plots of the total streamwise vorticity and total temperature respectively are
given for the downstream locationX = 300.

The first of this set of figures, showing the vorticity, is immediately obviously
different to all other vorticity plots presented in this section as the vortices have been
shifted in the spanwise direction by half a wavelength. Thus the pair shown in the
contour plots act to pull fluid down towards the wall rather than away from it. A
second notable difference is that fluid only moves from the area at the top edge of the
boundary layer. This means that the slower moving, warmer fluid nearest the wall is
unmoved from its original position. Usually it would be this fluid that is drawn up
into the head of the mushroom-shaped upwellings (see for example Figure14), but in
this case it is fluid from the very top of the boundary layer which ends up in the heads;
that is, the super-fast fluid which originally formed the jet in the basic flow.

Therefore, as shown by Figure29, the vortices act to construct circular regions
in the flow which contain fluid moving much faster than the free stream. Unlike
previous cases where the curvature was concave, there is little difference between the
temperature of these jets and the surrounding fluid.

6. Conclusions

In Section4 the linear problem was solved. We began by considering the Hiemenz
boundary layer, disabling buoyancy coupling in the basic flow. This problem is already
reasonably well understood and only a few results were presented. These nonetheless
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demonstrated that the combined Grashof-Görtler situation is more complicated than
either singular problem, due to the presence of transient growth. This is manifested
within the boundary layer in the same way as it has been found to reside within the
mixing layer [25]; it is seen in the form of oscillatory growth rates and folded neutral
curves. Analysis of the inviscid stability boundaries showed that the critical Görtler
number is proportional toX−1=3 for a stably-stratified basic flow and−X−1=3 for an
unstably-stratified basic flow. Thus the degree of curvature required for instability
changes with the downstream coordinate and periods of transient growth may be
followed by sustained growth (equally periods of sustained growth may be followed
by decay).

Transient growth persists with the addition of buoyancy coupling, the degree of
which is controlled via the buoyancy parameter, S. By varying the value of Gloc (which
describes the local gradient of the wall), it is possible to accelerate or decelerate the
streamwise velocity component of the basic flow near the wall. In agreement with the
findings of Stott and Denier [23] for the inviscid problem, it was found that accelerating
the flow in this manner at small vortex wavenumbers (of the order 10−1) decreased
the growth rate whilst decelerating it had the opposite effect. However, further to this
it was found that at large wavenumbers (the right-hand branch régime) the situation
was reversed; accelerating the basic flow near the wall increases the growth rate whilst
decelerating it decreases the growth rate as the extra energy is removed from the
boundary layer. It appears that in the small wavenumber limit this extra energy is
put into transient rather than sustained downstream growth. The reason for this is not
entirely clear, compounded by the fact that the inviscid stability boundaries are not
immediately obvious for the buoyancy-coupled boundary layer, and perhaps further
work is called for on the matter.

An analytical expression was given for the asymptote to the right-hand branch in the
local wavenumber–local G̈ortler number plane in Section4.3. It was found that there
are in fact two right-hand branch asymptotes which apply to the buoyancy-coupled
boundary layer, one with a positive gradient and one with a negative gradient. This
latter branch applies to neutral curves calculated for convex curvatures and exists even
when the basic-flow temperature profile has a stable temperature stratification; an
otherwise completely stable situation. The gradient of this asymptote tends swiftly to
minus infinity as Gloc becomes increasingly negative, thus it is only in flows which
have an accelerated basic flow in the streamwise direction that the effects will be seen.
Therefore in addition to curvature and stratification we now have a third factor which
may render the boundary layer unstable to longitudinal vortex motions.

Section5 dealt with the solution to the corresponding nonlinear problem. The
system was solved using essentially the same method as for the linear problem;
a finite-difference scheme in the normal direction coupled with a Crank-Nicolson
marching scheme in the downstream direction.
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Initially the Hiemenz basic flow was considered, as given by the solution of the
equations (2.2) with the buoyancy parameter, S, set to zero. Investigations showed
that at small values of the vortex wavenumber the basic-flow correction was outgrown
rapidly by the second mode – however, the energy of this did not supersede that of
the fundamental mode before code breakdown was reached. If the wavenumber is
then increased by an order of magnitude a more familiar situation is found. That
is, the basic-flow correction remains larger than the second mode throughout and
indeed outgrows the fundamental mode shortly before breakdown. The cause of this
breakdown is surmised to be the result of reverse flow thus violating the parabolic
governing equations. Another feature of the solution at the larger wavenumber is that
the vortices and the resultant upwellings of fluid are spread across the space of an
entire wavelength, whereas at the smaller wavenumber they are concentrated toward
the centre of the wavelength.

As would of course be expected, it was found that the most unstable scenario is
an unstable temperature stratification with a concave wall curvature. The greater the
degree of either mechanism, the more unstable the system becomes.

Next the buoyancy-coupled basic flow was considered. As with both the inviscid
[23] and the linear solutions, it was found that decelerating or accelerating the basic
flow had a large effect on the growth of the disturbance. However, the effect also
depends upon the magnitude of the vortex wavenumber.

The presence of the jet over a concavely curving wall has a diluting effect upon the
fluid in the head of the mushroom-shaped upwelling. With no jet present, the fluid
is this region is much slower than the surrounding fluid – in fact it ultimately stops
flowing in the downstream direction at all. This, as stated many times previously, is
the cause of code breakdown. However, with the jet in the basic flow the fluid is not
allowed to slow so drastically and thus code breakdown was not observed over the
downstream stretch considered here.

Finally, in the course of the linear studies it was discovered that this jet may, by
itself, destabilise an otherwise stable situation. This is found also to be true of the
nonlinear solution. It is found that the vortices are shifted by half a wavelength in the
spanwise direction and that they move fluid only from the outer edge of the boundary
layer rather than taking it from the wall region. Thus the heads of the fluid upwellings
are filled with accelerated rather than virtually stationary fluid and they do not differ
greatly in temperature from the surrounding environment. It would be interesting to
see if the same mechanism could be used in the mixing layer to destabilise the system;
and indeed whether such results may be reproduced in the laboratory. We also note
that the presence of the jet implies the propensity of the situation to be unstable to
inviscid travelling waves. In addition the presence of the vortices will may lead to
additional secondary instabilities (Cole, Otto and Watson [4]).
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[11] P. Hall, “Görtler vortices in growing boundary layers: the leading edge receptivity problem, linear

growth and the nonlinear breakdown stage”,Mathematika37 (74) (1990) 151–189.
[12] P. Hall, “Streamwise vortices in heated boundary layers”,J. Fluid Mech.252(1993) 301–324.
[13] P. Hall and W. D. Lakin, “The fully nonlinear development of Görtler vortices in growing boundary
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