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Abstract

A simple and efficient method for the analysis of the elastic-plastic bending of shallow shells
is presented. The method is based upon the concept of contour lines of equal deflection
on the surface of the shell, and uses Illyushin’s theory of plastic deformation. As an
illustration of the method, a technically interesting example of a shallow elliptic elastic
dome is examined. Results are obtained for increasing loads and varying aspect ratios, and
are illustrated graphically. The application of the method to other shell geometries is quite
straightforward.

1. Introduction

The widespread use of shallow shell structures in engineering and building design
has naturally given rise to a need for reliance upon a method of analysis of shallow
shells which can adequately account for arbitrary geometric plan form. Analytic
techniques have serious limitations because of the difficulties involved in solving
nonlinear differential equations. Therefore, despite the simplified nature of shallow
shell theory, relatively few solutions are known [1, 2, 3, 7].

The present work may be considered as a sequel to earlier work [6, 9] where a new
approach for the elastic-plastic analysis of plates of arbitrary shape has been proposed.
The present paper, like the previous ones, uses the concept of contour lines of equal
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deflection, that is, contour lines which are obtained by intersecting the bent surface by
a set of horizontal planes parallel to the base of the shell. This same concept is used
in the present investigation in order to analyse the elastic-plastic bending of shallow
shells using Illyushin’s theory of plastic deformation [5]. The advantage in using
contour lines of equal deflection is that the partial differential equations involved in
shell analysis can be transformed into ordinary differential equations. These are more
amenable to numerical solution where nonlinearity prevents an analytic solution.

In the following work, the force and moment equations of Vlasov shallow shell
theory [11] are transformed into ODE’s involving the shell vertical deflection and stress
function. The method is then illustrated by considering the elastic-plastic bending of
a shallow dome on an elliptical base with constant load. Central deflection response
with load for different aspect ratios is examined. Also, the variation of the plastic
strain at the centre and edge of the shell are studied for different aspect ratios.

2. Theory and derivation of basic equations

Consider a shallow shell of uniform thicknessh subject to a continuously distributed
normal load. Let the equation of the middle surface of the shell, referred to a system
of orthogonal coordinates.x; y; z/, be given by

z = x2

2Rx
+ xy

Rxy
+ y2

2Ry
;

where the shell will be called shallow ifr = √
x2 + y2 is small compared to the least

Rx, Ry and Rxy (the radii of curvature) everywhere in the region, and ifRx, Ry and
Rxy can be taken as constants.

When the shell is acted upon by a transverse loadq.x; y/ then the intersections
between the deflected surface and the parallelsz = constant yield contours which,
after projection onto the base plane, are a set of level curvesu.x; y/ = constant,
which are isodeflection contour lines. If the boundary of the shell is subjected to a
combination of clamping and simple support so that it does not move in a direction
perpendicular to the base plane, then clearly the boundary, assumed to be a simple
closed curvec, will belong to the family of lines of equal deflection and without loss
of generality, one may consider thatu = 0 on the boundary.

Consider the equilibrium of an element of the shell bounded by any contour lines
of equal deflection. The conditions for the equilibrium of an element of the shell
require that the sum of moments about the tangent line at any point to the curve
u.x; y/ = constant of all the forces acting on the element and the sum of all the forces
normal to the planez = 0 to vanish. Therefore proceeding in the same way as in [7],
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we obtain∑
M = n0 ·

∮
Mnn ds+ n0 ·

∮
Vn r 0 ds

− n0 ·
∫∫ [

q − Nx

Rx
− Ny

Ry
− 2Nxy

Rxy

]
r dx dy= 0 (2.1)

and ∑
Z =

∮
Vn ds−

∫∫ [
q − Nx

Rx
− Ny

Ry
− 2Nxy

Rxy

]
dx dy= 0; (2.2)

where.x0; y0/ is a fixed point on the lineu = constant,n and n0 denote the unit
vectors normal to this line at any arbitrary point.x; y/ and at the fixed point.x0; y0/

respectively, andr andr 0 denote the position vectors from the fixed point.x0; y0/ to
any arbitrary point inside the contour and on the contours respectively.

We use Illyushin’s theory of elastic-plastic deformation [5], which is for small
deformations and easy in application. Russian scientists based their work on this theory
on a deformation theory of plasticity, rather than flow theory. Use of a deformation
law predicts results close to those of a flow law, and can provide useful indications of
obtaining solutions by flow theories [4]. The theory defines a function� as

� =
{

0; whene ≤ 1 and the region is elastic;

½
(
1 − 3=.2e/+ 1=.2e3/

)
; whene ≥ 1 and the region is plastic.

Here

e = h√
3es

(
w2

xx +w2
yy +wxxwyy +w2

xy

)1=2
;

in which es is the yield strain and½ is a material constant.
The well-known expressions for the bending momentsMx, My and Mxy and the

shearing forcesQx and Qy, see Timoshenko and Woinowsky-Krieger [10], are then
multiplied by.1 −�/, so that they are modified only in the plastic case whene ≥ 1.

The membrane forcesNx, Ny andNxy are determined by

Nx = @2�

@y2
; Ny = @2�

@x2
and Nxy = @2�

@x@y
;

where� is the stress function. Making use of these relations, and proceeding as in
Mazumdar [8], (2.2) finally reduces to

d3w

du3

∮
.1 −�/R ds+ d2w

du2

∮
.1 −�/F ds+ dw

du

∮
.1 −�/G ds

+ d2w

du2

∮
D

(
�xux −�yuy

)√
t ds+ dw

du

∮
D√

t

(
�x K +�y L

)
ds



124 J. Mazumdar, A. Ghosh, J. S. Hewitt and P. K. Bhattacharya [4]

−
∫∫ [

q − 1

Rx

@2�

@y2
− 1

Ry

@2�

@x2
+ 2

Rxy

@2�

@x@y

]
dx dy= 0; (2.3)

where the expressions fort , R, F , G, K , L andH are given in [6].
It is to be noted that the moment equation (2.1) and the force equation (2.2) are

identical whenu.x; y/ = constant is the correct form of lines of equal deflection.
The condition for the continuity of deformation, a reduced form of the Beltrami-

Michell compatibility condition, in this case reduces to

∇4� = 12D.1 − ¹2/

h2
.1 −�/

(
1

Rx

@2w

@y2
+ 1

Ry

@2w

@x2
− 2

Rxy

@2w

@x@y

)
: (2.4)

Thus our problem now reduces to solving (2.3) and (2.4) for w and� giving the true
equations for the lines of constant deflection.

In the above equations� is a function ofe, which in turn is a function ofu.
Hence (2.4) can be transformed into an integro-differential equation by using Green’s
theorem, as has been shown in the case of elastic shells [7].

Since the intrinsic geometry of the middle surface of the shell is considered to be
Euclidean, we will assume that the deflection contours are as for the corresponding
flat plate problems.

Further, since (2.4) must hold for all points in the interior of the shell, by integrating
we get∫∫ [

∇4� − 12D.1 − ¹2/

h2
.1 −�/

(
1

Rx

@2w

@y2
+ 1

Ry

@2w

@x2
− 2

Rxy

@2w

@x@y

)]
dx dy= 0;

which after applying Green’s theorem reduces to∮
∇.∇2�/ · n ds

− 12D.1 − ¹2/

h2
.1 −�/

∮ (
Kx
@w

@y

uy√
t

+ Ky
@w

@x

ux√
t

)
ds = 0: (2.5)

Assuming as before that� is a function ofu, (2.5) finally reduces to

d3�

du3

∮
R ds+ d2�

du2

∮
F ds+ d�

du

∮
G ds

− 12D.1 − ¹2/

h2
.1 −�/

dw

du

∮ Kxu2
y + Kyu2

x√
t

ds = 0; (2.6)

whereKx andKy denote curvatures at a point, andKxy is taken to be zero in accordance
with the shallow shell theory.

Equations (2.3) and (2.6) are now two basic equations for our shallow shell analysis.
In the next section we will use these equations to illustrate a few important examples.
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3. Illustration

As an illustration consider here the bending of (i) a clamped and (ii) a simply
supported shallow dome of non-zero Gaussian curvature upon an elliptic base. The
geometry of the shell is as described in Figure1. The first approximation for the lines
of constant deflection for this case may be reasonably taken as

u = 1 − x2

a2
− y2

b2
= constant:

u = const

u = 0

x

y

O

1 − x2

a2
− y2

b2
= 0

u

vw

H

(a) Contour lines of equal deflection. (b) Shallow dome upon an elliptic base.

FIGURE 1.

Performing our contour integrations taken around the closed contour and the double
integration over the ellipse

x2

a2
+ y2

b2
= 1 − u; (3.1)

(2.3) now reduces to

.1 −�/.1 − u/
d3w

du3
− 2.1 −�/

d2w

du2

− d�

du

[
.1 − u/

d2w

du2
− 2P

(
1

a4
+ 1

b4
+ 2¹

a2b2

)
dw

du

]
+ q1 − 

D

d�

du
= 0; (3.2)

whereP = a4b4=.3a4 + 2a2b2 + 3b4/ andq1 = q P=2D. Equation (2.6) will reduce
to

.1 − u/
d3�

du3
− 2

d2�

du2
+ Eh.1 −�/

dw

du
= 0 (3.3)

with  = P.Kx=b2 + Ky=a2/.
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3.1. The boundary conditions The satisfaction of gross boundary conditions, that
is, the conditions on resultant forces or moments of the displacements of one surface
such as the middle surface, should be sufficient for problems involving what have been
defined as thin shells, but if it seems necessary to satisfy more complete conditions at
every point of cross sections, many of the supplementary methods and solutions used
for thin plates can be applied with reasonable accuracy to most shell problems [3].

For the present illustrations, the boundary conditions imposed onw and� are

w |u=0 = 0 = dw

du

∣∣∣∣
u=0

and

� |u=0 = 0 = d�

du

∣∣∣∣
u=0

(3.4)

for clamped edge conditions.
For a simply supported edge,w |u=0 = 0 = Mn |u=0 with similar conditions for the

stress function�.

3.2. Method of solution Using the non-dimensional parameters

w∗ = wh

esa2
; Q∗ = qa2h

2Des
; �∗ = �

Eesa2h
and Eh = 12.1 − ¹2/D

h2
;

the nonlinear differential equation (3.2) and Equation (3.3) are transformed into

.1 −�/

[
.1 − u/

d3w∗

du3
− 2

d2w∗

du2

]
− d�

du

[
.1 − u/

d2w∗

du2
− 2P1

dw∗

du

]

− 12.1 − ¹2/


h

d�∗

du
= −Q∗ P

a4
; (3.5)

P1 = P.1=a4 + 1=b4 + 2¹=a2b2/ and

.1 − u/
d3�∗

du3
− 2

d2�∗

du2
+ .1 −�/



h

dw∗

du
= 0: (3.6)

On substitution of the value of�, (3.5) and (3.6) will now reduce to{
.1 − u/

d3w∗

du3
− 2

d2w∗

du2

}
2e3.1 − ½/+ ½.3e2 − 1/

2e3

− ½

4

.e2 − 1/

e5
a4

[
2M

dw∗

du

d2w∗

du2
+ N

(
d2w∗

du2

)2

+ N
dw∗

du

d3w∗

du3

+ 2t2 d2w∗

du2

d3w∗

du3

][
.1 − u/

d2w∗

du2
− 2P1

dw∗

du

]
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FIGURE 2. Variation of central deflectionw∗ with Q∗ for varying =h.

− 12.1 − ¹2/


h

d�∗

du
− Q∗ P

a4
= 0 (3.7)

and

.1 − u/
d3�∗

du3
− 2

d2�∗

du2
+ 2e3.1 − ½/+ ½.3e2 − 1/

2e3



h

dw∗

du
= 0; (3.8)

wheree2 becomes

e2 = 1

3

[{
4c1

(
dw∗

du

)2

− 8c1.1 − u/
dw∗

du

d2w∗

du2
+ 4c3.1 − u/2

(
d2w∗

du2

)2
}

− 8

{
.1 − u/c2

dw∗

du

d2w∗

du2
− c2.1 − u/2

(
d2w∗

du2

)2
}

cos 2Þ

+ 4

{
c4.1 − u/2

(
d2w∗

du2

)2
}

cos2 2Þ

]
;

Þ denoting the eccentric angle at any point on the contour of the ellipse given by (3.1),
and

c1 = .1 + þ2 + þ4/; c2 = .1 − þ4/;

c3 = .1 + þ2/2; c4 = .1 − þ2/2 and þ = a=b:

Equations (3.7) and (3.8) are to be solved forw∗ and�∗. However, they do not appear
to yield exact solutions and hence one has to adopt some procedure for approximate
solution.

The method used for solution was a Runge-Kutta iterative scheme using the bound-
ary conditions of (3.4), combined with a shooting method in order to satisfy the
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FIGURE 3. Variation ofe at the centre withQ∗ for varying aspect ratio.

0 2 4 6 8 10 12 14 16
Q*

0.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
en

tr
al

 d
ef

le
ct

io
n 

w
*

λ = 1,  ν = 0.5
a/b = 1.0 2γ

  = 0.01
h

2γ
  = 2.0

h

FIGURE 4. Variation of central deflectionw∗ with Q∗ for varying =h.
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remaining boundary conditions

√
1 − u

dw∗

du

∣∣∣∣
u=1

= 0 and
√

1 − u
d�∗

du

∣∣∣∣
u=1

= 0: (3.9)

Figure2 shows the deflectionw∗ at the centre of the shell for aspect ratiosa=b =
1:0; 1:25; 1:5; 1:75 and 2:0 for 2 =h = 1:0, anda=b = 1:0; 1:5 and 2:0 for 2 =h =
0:5. The central deflection decreases asa=b increases and also as 2 =h increases.

Figure3 shows the variation in plastic straine at the centre of the shell versus the
load Q∗. At the maximum value ofe in each case, the shell has reached the limit of
elastic-plastic response at the edgeu = 0, wheree is much greater, as seen in Figure5.

The case 2 =h → 0 gives the response for a plate. Figure4 shows that there is
little change inw∗ for 2 =h varying from 0 to 0:5, but increasing as 2 =h increases
to 2. At the maximum value ofw∗ for 2 =h = 2:0 the response at the centre of the
shell is still elastic, while the limit of elastic plastic response at the edgeu = 0 has
been reached.

4. Conclusions

A new and uncomplicated method for the elastic plastic analysis of shallow shells
is presented. The method combines the use of contour lines of equal deflection with
Illyushin’s method of determining small plastic deformation. The method is illustrated
using the example of the bending of an elliptical dome. The procedure presented can
easily be adopted for other geometries.
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