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Abstract

A small gas bubble in a liquid, when driven by intense ultrasound, collapses and emits light
in a process called Single-Bubble Sonoluminescence (SBSL). While the dynamics of driven
bubbles are well studied, less is known of the physical conditions in the gas or whether it is
necessary to include ionisation in simpler studies of bubble dynamics. In this study, a model
was derived from Rayleigh-Plesset dynamics, a van der Waals equation of state and the
first law of thermodynamics (including interfacial heat transfer and ionisation). Stronger
model ionisation reduced the maximum collapse temperature, and altered other collapse
characteristics. Chaotic parameter regions are proximal to, but not coincident with, known
stable SL regions. Resonant behaviour was only markedly affected by ionisation close to
these chaotic regions.

2000Mathematics subject classification: 37N10, 76N99, 80A99, 65L07.
Keywords and phrases: buble dynamics, sonoluminescence, thermodynamics, ionisation,
bifurcation, resonance maps, chaos.

1. Introduction

Sonoluminescence (SL) is a phenomenon whereby light is emitted from collapsing
gas bubbles in a liquid. The high gas temperature required for SL is produced by
quasi-adiabatic bubble collapse, facilitated by acoustic driving.

SL occurs in two forms: Single-Bubble (SBSL), and Multi-Bubble (MBSL). This
study concerns SBSL, which was first observed in 1989 [7]. SBSL is easier to model
than MBSL, because radial symmetry can be assumed under appropriate conditions.
The SBSL system is a nonlinear oscillator, forced by an acoustic pressure field (typ-
ically ultrasound). This forcing induces cycles of cavitating expansion followed by
collapses.
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Bubble collapse usually occurs at least once each cycle. The bubble, after being
forced to expand to many times its normal radius, accelerates inwards under the
increasing-pressure phase of driving. This leads to a bounce, at which instant the
gas molecules are hard-packed, temperature reaches the order of 104 K and light may
be emitted. A more comprehensive summary of SBSL is given in the review by
Brenneret al. [2].

Areas of application of bubble dynamics include medicine, materials science, chem-
istry, physical electronics, plasma physics, engineering, and marine biology [2]. For
example, high pressures and temperatures near collapsing bubbles allow chemical re-
actions that may not otherwise occur. The interaction of microbubbles with ultrasound
may enhance drug delivery in human blood [39]. Microbubble-induced mechanical
or free radical action within tissue has been under study as a non-invasive treatment
for cancer [38].

Early bubble oscillator models made many approximations (such as a polytropic,
uniform, equilibrated gas) which were simple enough to allow numerical resonance
studies [22]. More recent models incorporate vapour transport, chemical reactions,
ionisation, radiation and even full gas hydrodynamics. Such models are described
in [2]. Despite recent increases in available computing power, these sophisticated
models are still prohibitively cumbersome for computational studies of bubble reso-
nance and bifurcation. Resonance studies still seem restricted to simplified models,
such as those of Lauterbornet al. [22, 24], Parlitz et al. [31] and Simonet al. [36].
Thus little is known of the effect of processes such as gas ionisation on bubble resonant
behaviour.

This study presents a relatively simple model of a spherical bubble, which is,
however, extended to include gas ionisation. The model includes a first-order chemical
scheme for ionisation, within a simple model based on Rayleigh-Plesset dynamics
and a uniform gas. Thermal behaviour will be derived directly from the first law of
thermodynamics, giving a temperature parametrisation avoiding the assumptions of a
polytropic law. A similar use of the first law has recently been described by Harris
et al. [11]. The present model is still simple enough to investigate the parametric
dependence of resonance.

Once the new model is developed, the effect of different ionisation strengths on
bubble motion will be investigated. This will involve observation of the model bubble’s
collapse and resonance characteristics, while paying attention to the stability regime
in which such a simple model is valid. It will be shown that including ionisation leads
to cooler, longer collapses with slightly less time between afterbounces.

Spherical symmetry will be assumed in the model. Shape instabilities (which lead
to departure from this symmetry) are believed to restrict the model’s validity to bubbles
of equilibrium radii between approximately 3¼m and 5¼m [15], frequencies below
approximately 35 kHz and driving below approximately 1.45 atm [12]. This stability
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region is not well defined; different physical conditions are suspected to extend the
parameter range of stability [16]. Stable, non-spherical oscillations have produced SL
outside this region [7, 19, 25]. The parameters used for this study are mostly within
this region. Sometimes larger radii were used, and it remains unclear whether such
conditions lead to stable bubbles.

While an undriven bubble will slowly dissolve due to the excess pressure created by
surface tension, driven bubble systems which satisfy certain conditions (such as high
dissolved gas content in the liquid) will increase in mass and size over many cycles by
a process called rectified diffusion [2]. Such bubbles are unstable and this model will
not apply. Because gas diffusion is ignored in this model, we mention that diffusive
stability affects the region of validity of the model’s results but not how these results
are affected. For a detailed discussion, see the review of Brenneret al. [2].

Driven nonlinear oscillators, such as this bubble model, exhibit elaborate resonance
structures. Using the notation of Lauterborn, Parlitz and co-workers [32, 22], a
nonlinear resonance is denotedRn;m, wheren is its torsion number andm is its period.
Resonance behaviour will be compared with the results of previous studies [31, 24, 36].
In particular, it will be shown here that the chaotic parameter region is little affected
by ionisation, and moves to larger bubbles for lower driving frequencies.

2. Model

2.1. Derivation Single-bubble systems have been under study since Lord Rayleigh
quantified the spherical bubble in 1917 [34], in an equation modified in 1949 by Milton
Plesset [33] and now known as the Rayleigh-Plesset Equation (RPE). The RPE takes
the form

RR̈ + 3

2
Ṙ2 = 1

²

(
pg − P0 − P .t/− 4�

Ṙ

R
− 2¦

R

)
:

Here, the fluid surrounding the bubble has density², dynamic viscosity� and
surface tension¦ at the bubble wall. The ambient pressure in the fluid isP0, andP.t/
is the pressure field of the applied acoustic forcing. The bubble’s radius isR.t/, and
the gas pressure within is denotedpg. Values for constants are given in Table1.

The Rayleigh-Plesset Equation becomes inaccurate when the velocity of the bubble
wall is comparable to the speed of sound in the liquid,c. The discrepancy stems from
damping of the bubble’s motion by its own sound emission, as reviewed in [2]. To
account for this, various modifications to the RPE have been used. The version used
for this study is
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TABLE 1. Notation and values [26] of constants

Density (water) ² 1000 kg m−3

Dynamic viscosity (water) � 8 × 10−4 kg m−1 s−1

Surface tension (water) ¦ 7:28× 10−2 N m−1

Speed of sound (water) c 1483.2 m s−1

Universal gas constant < 8.314 J K−1 mol−1

van der Waals (air) A 0.1391 Pa m6 mol−2

van der Waals (air) B 3.72×10−5 m3 mol−1

Interface heat transfer coefficient (estimated) cb 103 W m−2 K −1

Specific heat capacity (air) cvb 717.8 J K−1 kg−1

which incorporates a sound-radiation term of orderṘ=c times the other terms [18, 28].
Solutions to (2.1) differ considerably from solutions to the RPE at bubble collapse,
and are much more accurate [27].

The ability of uniform-gas interior bubble models to reproduce SBSL bubble dy-
namics has been a subject of debate. Undoubtedly such models cannot capture the
finest features of bubble collapse and luminescence. Early theories proposed shock
waves in the gas as the cause of SBSL; however, since then, mounting evidence
suggests otherwise [41, 4]. There is evidence that the collapsing bubble develops a
boundary layer of water vapour and chemical reaction species, in what is termed mass
segregation [37]. Such effects are not captured in uniform gas models; their signif-
icance in determining overall bubble dynamics is uncertain. Also, the involvement
of such processes in luminescence does not imply that they impact bubble dynamics
or overall collapse characteristics greatly, as the energies involved in luminescence
are very small. We present a model more detailed than those in similar previous
explorations of the parameter space, but still with a uniform bubble interior. As well
as permitting us to explore large regions of parameter space, this permits some alge-
braic analysis of the system (both of which are impossible for most nonuniform-gas
models due to their complexity). Having acknowledged the oversimplifications of this
approach, we point out that research of Vuong and Szeri [41], Hilgenfeldt et al. [16]
and Mosset al. [29] nevertheless suggests that uniform gas models are reasonably
accurate.

We cast the bubble’s uniform gas pressure term,pg, in terms of bubble volume and
gas temperature, through an equation of state (EOS). Because very high pressures are
achieved, it is necessary to use the van der Waals equation [1],(

pg + A.n=V/2
)
.V − nB/ = n<T; (2.2)

where molar amount, volume and temperature are represented byn, V and T re-
spectively. ConstantsA and B represent molecular interaction strength and molar
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hard-packed gas volume respectively.
It has been established indirectly that, over time, most of the gas in SL bubbles

reacts and dissolves into the water [28], leaving the noble gas content (for example,
Argon). While this is the case for the high temperatures in SL, the present model
was designed to model bubble dynamical behaviour over a larger parameter space,
in which rectification does not always take place. Because of the unknowns in this
aspect, we have used atomic weight, heat capacity and van der Waals constants for
air. This may be a source of error in regions where noble gas rectification occurs.

The time-dependent forcing pressure is

P.t/ = P∞0Þ sin.2³ f t/: (2.3)

When (2.2) and (2.3) are substituted into the modified RPE, Equation (2.1), the
equation of motion,
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is obtained, wherek0 = 4³=.3n</, k1 = B=< andk2 = 9An2=.16³2/.
Both the bubble radiusR.T/ and the gas temperatureT.t/ are unknown in (2.4)

and therefore a consideration of thermodynamics is needed to close the system. This
is discussed below.

Many uniform-gas bubble models incorporate heat transfer indirectly through the
use of a polytropic exponent [7, 16, 14, 13, 36], in which gas pressure and density
within the bubble are related by a simple algebraic equation. Close to collapse, the
bubble is almost adiabatic [2], while interfacial heat transfer is significant at other
times. Some models use discrete polytropic schemes in different parts of the cycle
to cope with this, which makes algebraic analysis very difficult. Many detailed
models additionally include the thermodynamics of chemical processes occurring in
the bubble and interface. For simplicity these are not done here; interfacial heat
transfer is treated as Newtonian, while chemical reactions and ionisation are treated
in one broad mathematical swoop. This is not expected to provide all the answers to
what happens at bubble collapse, but it will hopefully reflect the overall dynamical
qualities of the collapsing, reacting, ionising bubble system reasonably.

In this model, the van der Waals EOS is used in conjunction with the First Law of
Thermodynamics. The First Law states that any change in internal energy of a volume
of gas equals the sum of work done and heat input. Integrated over the entire bubble,
this may be written

d Eb

dt
+ pb

dVb

dt
= Q̇h;
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whereEb is the total internal energy anḋQh is the total rate of surface heat transfer
into the bubble. Expressing volume in terms of radius and internal energy in terms of
temperature gives

Mbcvb
dT

dt
+ 4³R2 d R

dt
pb = Q̇h; (2.5)

wherecvb is the specific heat of gas at constant volume andMb is bubble mass (derived
from the stipulated bubble rest radius at 1 atm ambient pressure). In this model, the
net heat transfer from the bubble is written

Q̇h = Q̇c + Q̇i ; (2.6)

where subscriptsc and i represent bubble wall heat conduction and gas ionisation
respectively.

The first term in (2.6) is the interfacial conductive heat transfer rate,Q̇c. This de-
pends on the bubble’s surface area and the temperature difference across the interface,
and is given by Newton’s law of cooling in the form

Q̇c = 4³R2cb.Tw − T/;

wherecb is a constant of proportionality andTw is water temperature.
Additional thermodynamic effects, such as chemical reactions and ionisation, are

represented by a single lumped ionisation reaction,

A
 A+ + e−;

in which the reaction rates are functions of temperature. This reaction serves to store
system energy at times of high bubble temperature. Thermodynamic equilibrium is
assumed [20]. The scheme is written as a single ionisation, but this may be considered
to parametrise the energy absorbed by single ionisation, multiple ionisations and
chemical reactions. The fraction,�, of gas “ionised” in this way is calculated on the
basis of Arrhenius kinetics to have the form

�.T/ = e−�=T :

From the bubble’s total energy of ionisation,−Qi = nI �.T/, the ionisation rate
immediately follows,

Q̇i = −�nI e−�=T Ṫ=T2;

which is the second term in (2.6). The effect of this model component is to absorb
heat energy at high temperatures — thereby mitigating peaks in temperature — and
releasing the heat energy again as the temperature falls.
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Equation (2.6) thus shows that the total rate of heat input into the bubble is

Q̇h = 4³R2cb.Tw − T/+ �nI e−�=T Ṫ=T 2: (2.7)

Substituting the heat transfer rate (2.7) into (2.5) and rearranging gives

Ṫ = .4³R2=Mb/[cb.Tw − T/− Ṙ.T=.k0R3 − k1/− k2=R6/]
cvb + �.I =mm/e−�=T=T2

: (2.8)

The molar mass of gas ismm.
The forced, highly nonlinear system of ordinary differential equations, (2.4)–(2.8),

describes the behaviour of the forced single-bubble system.
In the remainder of this paper, a non-dimensional form of these equations is used.

All quantities are scaled by:

length scale: Ls = 2¦=p∞0

time scale: −s = .2¦=p∞0/
√
.²=p∞0/ and

temperature scale: Ts = � .

Note that² is water (not air) density, so the velocity scale does not relate to the
speed of sound.

In nondimensional form, the system becomes

d R

dt
= v; (2.9a)
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}
;

with the dimensionless constants

¾ = 3Mb<Ts−
2
s =.4³mm²L5

s/; H3 = 3MbB=.4³mmL3
s/;

�1 = 3Mb A=.4³mm<L3
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s / Ž = �=Ts and Þ:
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Although the model notionally involves 15 dimensionless parameters (each being
dependent on several physical parameters), only four physical parameters can be
meaningfully varied in an experimental situation. These are forcing frequency (f ),
forcing amplitude (Þ) (specified as a fraction of the ambient liquid pressure), water
temperature (Tw) and ambient liquid pressure (p∞0). Bubble ambient radius, (Re),
is controlled by these parameters; however, (Re) is often visualised as an additional
independent variable in research on similar models [31, 7, 3].

This study will chiefly investigate the dependence of model behaviour upon gas
ionisation temperature (� ) and gas ionisation energy (I ). These variables were cho-
sen because they are important to this model’s parametrisation of energy exchange
(which is an extension of that of previous dynamical models). The forcing and liquid
parameters mentioned in the previous paragraph will still be manipulated to produce
maps, as has been done previously. However, the effect of the ionisation parameters
on these maps and on bubble collapse behaviour will also be assessed.

2.2. Equilibria and small-amplitude oscillations In this section, some analytical
procedures will be applied to the model (Equations (2.9) prior to their full numeri-
cal implementation). These will demonstrate physically relevant attributes such as
solution stability and the characteristics of resonance.

Firstly, equilibrium points will be located. Then, by perturbing in a similar manner
to Forbes [5], their stability, local behaviour and resonant frequency shall be found.

Equilibrium points Equilibrium points of the undriven (Þ = 0) system are found
by setting the three derivatives on the left-hand side of (2.9) to zero. From (2.9c),
the equilibrium temperature must equal the ambient water temperature,�w. The
equilibrium bubble radius,Re, is then determined from (2.9b) to satisfy the algebraic
equation

�w = .R3
e − H3/

(
�1

R6
e

+ �

¾
+ þ

¾Re

)
: (2.10)

A single equilibrium temperature,Te (= Tw), can be defined for each value ofRe.
Equilibrium radii were plotted againstTw, as shown in Figure1. In the physically
relevant parameter region for SBSL dynamics, there exists a single, stable solution.

Water temperature has been shown to strongly affect the amount of light emission
in SBSL [40], but this is due to the effect of water vapour in the bubble. Water
temperature changes complicate the system by affecting viscosity, reactions and other
things; the study of such properties of the medium constitutes its own field of research.
To keep matters simple, water temperature was kept at 293 K throughout this study.

This solution changed qualitatively for temperatures≈ 100 K, due to van der
Waals gas behaviour. The behaviour of gas bubbles at these very low temperatures —
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FIGURE 1. Relationship between equilibrium bubble radius (Re) and water temperature (Tw).

requiring liquids other than water and different gases — would be an interesting topic
for further study.

Local behaviour Once the system’s equilibrium point(s) are found from (2.10),
the behaviour of nearby trajectories is determined by linearisation and the Hartman-
Grobman theorem [8]. The linearised, unforced system can be derived from an
expansion about equilibrium values, in the form

R.t/ = Re + E R1.t/+ O.E2/;

v.t/ = 0 + Ev1.t/+ O.E2/;

T.t/ = Te + ET1.t/+ O.E2/;

in which E is a measure of some small departure from equilibrium. The first-order
terms then satisfy the linearised matrix system

d

dt


R1

v1

T1


 = J


R1

v1

T1


 ;

where the matrixJ is the usual Jacobian matrix of partial derivatives,

J =

@ f1=@R @ f1=@v @ f1=@T
@ f2=@R @ f2=@v @ f2=@T
@ f3=@R @ f3=@v @ f3=@T


 =


 j11 j12 j13

j21 j22 j23

j31 j32 j33


 :

The evaluated elements ofJ can be found in the Appendix.
Eigenvalues of the Jacobian matrix may be computed using MATLAB , and indicate

the behaviour of the linearised solution. The equilibrium configuration is only stable
if all these eigenvalues have negative real parts; see Guckenheimer and Holmes [8].
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Small-amplitude forcing and resonancesThe next analytical step is to investigate
the effect of slight acoustic forcing. Using the rationale of Forbes [6], the pressure-
forcing amplitude is assumed to be a function of radial perturbation amplitude. By
including the driving pressureP.t/ = −�Þ sin!t (Þ � 1) on the right-hand side
of (2.9b), the small-amplitude resonance behaviour of the system was derived. The
system becomes

d

dt


R1

v1

T1


 = J


R1

v1

T1


 +


 0

−�
0


 sin.!t/; (2.11)

and its solution (particular integral) is of the form

R1.t/ = M1 cos.!t/+ N1 sin.!t/; (2.12a)

v1.t/ = !.N1 cos.!t/− M1 sin.!t//; (2.12b)

T1.t/ = P1 cos.!t/+ Q1 sin.!t/; (2.12c)

where (2.12a) was substituted into the first row of the matrix system (2.11) to give
(2.12b). Equations (2.12) were then substituted into the two remaining equations in
system (2.11), to give two identities in cos.!t/ and sin.!t/. These produced the
following system of algebraic equations:

N1.!
2 + a/− j!M1 + cQ1 − � = 0;

M1.!
2 + a/+ b!N1 + cP1 = 0;

!.P1 − d M1/+ eQ1 = 0;

!.Q1 − d N1/− eP1 = 0;

(2.13)

with a = j21, b = j22, c = j23, d = j32 ande = j33 for convenience. The solution to
this system is the set of coefficients in the particular integral for the small-amplitude
forced system, as functions of forcing angular frequency!.

The amplitude ofR1.t/ is A = √
M2

1 + N2
1 . In terms of the solutions of (2.13),

A = A.!/ = �.!2 + e2/√[
.a + !2/.!2 + e2/+ cd!2

]2 + [
!b.!2 + e2/− !cde

]2
:

Resonance occurs whend A=d! = 0 for d2 A=d!2 < 0. The first condition gives
either! = 0 or

0 = 2�4 + �3.2a2 + b2 + 2cd + 6e2/+ �23e2
(
2a2 + b2 + 2.cd + e2/

)
+ �e2

(
c2d2 + 3b2e2 + 2e4 + 2cde.2e− b/+ 2a2.cd + 3e2/

)
+ e4

(
.cd − be/2 + 2a2.cd + e2/

)
; (2.14)
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where� = !2. Solving numerically for a 10¼m air bubble at 293 K, withI =
1:35 × 106 J mol−1 and� = 20000 K, gave four real� solutions, two negative and
two positive. The physically real solution is the larger positive root, a maximum
with d2 A=d!2 < 0. The smaller positive solution is a low-frequency amplitude
minimum (d2 A=d!2 > 0), while the imaginary square roots of the negative solutions
are nonphysical. The amplitude curve shape is illustrated in Figure2.

1.5 2 2.5 3 3.5 4 4.5
1

2

3

4

5

6

7

A
m

p
lit

u
d

e
a

rb
itr

a
ry

u
n

its

f .×105 s−1/

FIGURE 2. Frequency dependence of oscillation amplitude in the perturbed linearised system.
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The curve in Figure2 peaks at a frequency,fres, equal to the primary resonant
frequency of the nonlinear system in the limit of small driving amplitude. This
resonant frequency depends on most model parameters. Its dependence oncb, the
coefficient for heat transfer at the bubble wall, is shown in Figure3. Here, the largest
value of fresoccurs whencb ∼ 200 W m−2 K−1. The effect of the ionisation parameters
I and� on the resonant frequency was found to be very small.
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The damping in this system limits the oscillation amplitude at frequencyfres. An
undamped oscillator would show an infinite peak at this frequency. The amount of
damping in this system, and hence the peak height in Figure2, approximately depends
on elementj22 of the Jacobian matrix. The physical contributors to this matrix term,
and therefore the system’s damping, consist of liquid viscosity, gas thermodynamic
parameters and ionisation parameters. The ionisation parameters are the least well
known of these; knowledge of how sensitive the bubble motion is to errors in ionisation
parameters would be useful for SBSL modelling. The remainder of this study will
investigate this using a computer implementation of (2.9).

3. Methods

3.1. Numerical implementation To facilitate their solution in MATLAB , the non-
dimensionalised Equations (2.9) were transformed by the map

x1 = heu R=Re; x2 = j veu R=Re; x3 = k ln.wT=Te/; (3.1)

whereh, j , k, u andw are constants. This is an extension of the map used by Parlitz
et al. [31] to solve the RPE. Substituting (3.1) into (2.9), the system can be recast in
terms of the derivatives of the new variables,

dx1

dt
= x2

uh

Re j
; (3.2a)

dx2

dt
= j

h

(
dv

dt

)
x1 + x2

uv

Re
; (3.2b)

dx3

dt
= k

T

(
dT

dt

)
: (3.2c)

For simplicity, bracketed terms represent right-hand sides of the original Equa-
tions (2.9), and Equations (3.1) have not been fully substituted.

The transformation was used to minimise MATLAB ’s computational overhead (and
error) by producing the set of variablesx1, x2 andx3 with smoother time-behaviour
thanR, v andT . The inverse transformations are

R = .Re=u/ ln.x1=h/; v = .h=j /.x2=x1/; T = .Te=w/e
x3=k: (3.3)

Equations (3.2) were integrated in MATLAB using the stiff equation solver ODE23S.
The solution was then inverted using (3.3) to give R, v andT .

Most stable resonances were reproduced almost identically by both the transformed
and non-transformed methods. Bifurcation structures were essentially the same.
Numerical noise in bifurcation diagrams was largely removed by the transformed
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solution method. The transformed solution method was used for the remainder of the
study.

To produce bifurcation diagrams for this study, each cycle’s maximum radius was
recorded [36]. This method was used in preference to stroboscopic (regular) sampling
because the latter displayed noise from transients. At each of∼ 800 horizontal
parameter increments, the system was integrated over∼ 150 driving cycles. The first
50 cycles were discarded and the maximum radii of the remainder were plotted. The
system was not restarted after each increment, to minimise transients associated with
the change.

3.2. Ionisation parameters Following the derivation and implementation of the
model, the main aim of this study was to investigate the model’s collapse and resonant
behaviours under different gas ionisation conditions.

This model’s two adjustable ionisation parameters areI and� . These affect how
the bubble absorbs heat energy in ionisation (and other chemical) processes. The
parameterI is the molar energy absorbed by these processes. The parameter� is
a characteristic temperature at which these processes act. Such processes are most
pronounced at high temperatures of several thousandK . Below is a brief description
of how these two parameters were varied in this study.

Some of the investigations only compared two cases: “with” ionisation and “with-
out”. The default values used for the former case were calculated with the aim of
being physically sensible. These values areI = 1:35× 106 J mol−1 (which assumes a
single ionisation at a level of∼ 14 eV per molecule), and� = 20000 K. These values
will be hence referred to as “normal” ionisation.

The � value in normal ionisation translates to the gas being∼ 13:5% ionised at
10000 K and∼ 37% ionised at 20000 K. This corresponds to slightly more ionisation
(and, hence, more energy involvement) at a given temperature threshold than SL
research suggests [9, 2]. However, other effects such as chemical reactions (which,
at bubble collapse, absorb heat energy in a similar way to ionisation) have not been
included in this model, so a conservative� estimate was used to accommodate them.
We emphasise that current knowledge of the energies involved in ionisation for SL is
limited, so the values used here are estimates.

The effects of these parameters on the characteristics of both bubble collapse and
resonance were examined, as summarised below.

3.3. Collapse characteristics A representative “cycle” was generated for a 10¼m
bubble driven at 26.5 kHz and 1.6 atm (a period-1 oscillation close to the edge of the
chaotic zone). This was first attempted by “winding up” the oscillator until a stable
cycle was reached. However, this method was abandoned because it was extremely
numerically sensitive, resulting in noise and poor repeatability. A simpler and more
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repeatable result was obtained by providing a typical pre-collapse initial condition
(taken from a sample cycle), and then integrating the system for 1 driving cycle. The
shape of the radius-time curve for 1 driving cycle was compared for a bubble with
varying levels of ionisation and zero ionisation. Afterbounces were also examined,
because these indicate the oscillator’s cycle-to-cycle stability.

Next, the bubble’s initial collapse was integrated, and properties of the collapse were
recorded. These include: the full-width half-maximum (FWHMT ) of the temperature
pulse, the maximum temperature (Tmax), the maximum speed of the infalling bubble
wall (vmax), and the total energy of ionisation (EI ). This simulation was repeated at a
grid of 50× 50 combinations ofI and� .

Collapse characteristics were compared with results from other published models,
for example, Yasui [43], Ho [17] and Hilgenfeldt [14]. Most of these models are
much more complicated than the system used here. They include processes such as
gas hydrodynamics, detailed chemical reactions, vapour exchange and ionisation.

3.4. Resonance characteristics We next investigated the effect of ionisation on
model behaviour over many cycles. While a series of bifurcation diagrams is useful
to visualise the effect of two parameters on bifurcations, a more condensed method is
to use 2-D maps which indicate the parameter areas of different resonances. These
“resonance maps” are essentially collapsed bifurcation diagrams with an additional
control parameter dimension. They can either show lines of bifurcation, or (equiva-
lently) have image pixels shaded different colours for different resonances. The latter
method was chosen for this study. The model was run over thousands of driving cycles
at each combination ofI and� in a fine grid of pixels. Different periods of motion
were allocated different colours, and a 2-D map was produced.

With a similar technique, maps inRe (initial bubble radius) andÞ (driving am-
plitude) were produced. Similar maps have been produced for a simpler bubble
model [36]. In this study, maps were produced with and without ionisation to see if
the location of the chaotic region was affected.

These maps have not been extensively used in the past, possibly because of the
large computing resources required to produce them. They were used by Parlitz [30],
Lauterborn and Mettin [23] and Simonet al. [36] to visualise the shape of resonance
horns.

4. Results and discussion

As an introduction to this section, a typical oscillation cycle of the model is dis-
cussed. This is followed by a brief overview of the model’s bifurcation structure.
Results are then presented showing the effect of ionisation on the bubble’s behaviour.



[15] Including ionisation in a simple model of SBSL 347

4.1. Model behaviour The acoustic driving frequency (∼ 20 kHz) is much lower
than the bubble’s natural oscillation frequency (∼ 500 kHz). While small driving
pressures produce bubble oscillations that are nearly linear, larger pressures of∼ 1 at-
mosphere produce violent, rebounding collapses.

Figure4displays two typical cycles. The bubble is under tension initially, producing
a large expansion to over ten times its ambient radius. As pressure increases, this
expansion halts and the bubble wall accelerates inwards. The infalling bubble wall,
having begun its contraction at a large radius, achieves a very large velocity under
the high acoustic pressure. The bubble wall continues to accelerate inwards until a
bounce occurs, accompanied by a sharp temperature peak of approximately 10000 K.
This occurs as the bubble contents approach their van der Waals hard-core radius.

Following the initial collapse and rebound are several smaller “afterbounce” col-
lapses. Eventually these dampen into steady oscillations close to the bubble’s natural
oscillation frequency. If the forcing frequency is low enough and damping mecha-
nisms are sufficient, the afterbounces virtually disappear by the next cycle.
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FIGURE 4. Typical oscillations of a 7¼m SL (ionising) air bubble driven by 1.6 atm ultrasound at 20 kHz:
(a) bubble radius, and (b) bubble temperature. The dotted line in (a) indicates the phase of acoustic
driving.

Figure5 shows a series of frequency bifurcation diagrams for a 10¼m bubble. It
is a useful illustration of the effects of forcing frequency (f ) and forcing amplitude
(Þ) on bubble resonance. For smallÞ, the period-1 resonances (Rn;1) dominate,
and become more prominent asÞ is increased. Period-2 resonances (Rn;2) are born
suddenly in a period-doubling bifurcation asÞ is increased. This happens first at high
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frequencies, then for low frequencies at larger forcing amplitudes. Further increase
of amplitudeÞ increases the depth of bifurcation, and eventually chaos is reached.
In Figure 5 (a), Þ is just large enough for the 2 subharmonicsR5;2 and R7;2 to be
present. In Figure5 (b), R5;2 has bifurcated to chaos, whileR7;2 has bifurcated at
least to period 4 (R14;4). ForÞ & 0:9, large regions of chaos are present; a period-3
window can be seen beneathR3;1 in Figure5 (d). This bifurcation structure is typical
of those observed in nonlinear oscillators. For a more comprehensive description of
bifurcations in bubble oscillators, refer to Parlitzet al.[31], Scheffczyket al.[35] and
Parlitz [30].
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(d) Þ = 0:95 for a 10¼m, non-ionising bubble. Selected resonances are labelled.

4.2. Effects of ionisation on cycle and collapse characteristicsDifferences in
radius-time behaviour were found between bubbles with� = 10000 K and bubbles
with � = 20000 K, as shown in Figure6. Smaller, higher frequency afterbounces
were produced for� = 10000 K. For� = 10000 K,I had to be reduced by a factor of
around 20 before theR.t/ curve resembled the� = 20000 K (dashed) curve. Small
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differences in radius-time behaviour have been shown to alter bubble resonance when
rebound oscillations are not damped away by the next cycle [36].
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FIGURE 6. Effect of � on a 10¼m bubble oscillation cycle, withf = 26:5 kHz, Þ = 1:6 and I =
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A close-up of the collapse region is shown in Figure7. Reducing� from 20000 K
to 10000 K (both physically feasible values) approximately halved the bubble’s max-
imum collapse temperature.

The minimum collapse radius was very similar for both ionisation scenarios, and
was close to the van der Waals hard core radius. While not illustrated here, the
minimum radius was smallest for large ionisations and largest with no ionisation.



350 Angus I. S. Munro and Larry K. Forbes [18]

The more detailed investigation of extrema in bubble collapse properties involved
contouring these extrema in theI -� plane, as shown in Figure8. The same initial
condition was used to generate all the data for these plots.
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The maximum temperatures reached as high as 15000K . This occurred for very
small values ofI (ionisation energy). Small values of� (characteristic temperature of
ionisation) led to low maximum temperatures, particularly for largeI . The maxima
for infalling wall speed fell within a relatively narrow range. The largest value was
∼ 1540 ms−1, for small� . It fell to ∼ 1520 ms−1 in the limit of large� (or, equivalently,
zero ionisation). These are similar to values from other more comprehensive models.
They are all similar to the speed of sound within the bubble at this high density, so
shock waves remain a possibility.

The temperature full-width half-maximum (FWHM) pulse lengths, shown in Fig-
ure8 (c), were shorter for lower� and largerI .

The energy of ionisation was generally larger for small� and largeI , but diminished
again for very small� . This can be seen in Figure8 (d). This can be thought of as
a competition between the larger amount of ionisation at higher temperatures and the
self-quenching of the maximum temperature by ionisation itself.
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TABLE 2. Collapse predictions for different models

Tmax vmax Eionis �max FWHMT Re f Þ

Model (kK) (ms−1) (nJ) (%) (ns) (¼m) (kHz) (atm)
Present 10 1520 5a 14 5 5 25 1.6
Yasui [43] 10 1900 1.4 2 5 20.6 1.35
Ho [17] 60 3100 0.3 20 0.5 4.7 26.5 1.35
Xavier [42] 20 0.5 3 4.5 26.5 1.35
Kwak [21] 13 1440 4.5 26.5 1.35
Hammer [10] 16 1180 5.5 33.4 1.48
Hilgen [14] 20 1 1.1 5 20 1.3

aIncludes energy of chemical reactions and ionisation

In Table2, values (at normal ionisation), of the quantities discussed above were
compared to approximate values from more sophisticated published models. All the
models chosen for comparison involved full gas hydrodynamical modelling, except
for that of Hilgenfeldtet al. [14], which involves a uniform gas bubble interior.

Hammer and Frommhold [10] calculated that the energies consumed in ionisation
and chemical reactions were similar. If that was true for the data presented in Table2,
the relative size ofEionis (which includes chemical reactions) for the present model
would be more consistent withEionis (ionisation energy only) for the other models.
The total ionisation energyEmax = �maxI and the temporal pulse-width for this model
are possibly over-estimated. Doubling� and halvingI was found to reduceEmax

to ∼ 1 nJ and reduce pulse width to∼ 3 ns. Notwithstanding the simplicity of the
present model and the variation between the predictions of all models, the results are
in reasonable agreement with the more sophisticated hydrodynamic models.

The accuracy of the results summarised in Table2 is still not well known. Notwith-
standing the simplicity of the present model and the variation between the predictions
of all models, the predictions are in reasonable agreement with the more sophisticated
hydrodynamic models. Total ionisation energyEmax = �maxI for this model is perhaps
too high, and the temporal pulse width is perhaps slightly too long. Doubling� and
halving I was found to reduceEmax to ∼ 1 nJ and reduce pulse width to∼ 3ns.

4.3. Resonances We have established that this model produces similar bubble
collapse behaviour to several more complicated models. This allows us now to
investigate the effects of ionisation parameters on the bubble’s resonance structure, a
question which has hitherto received little attention.

Response curves and bifurcation diagramsFrequency bifurcation diagrams were
created using both normal ionisation and zero ionisation. No visible difference was
generally observed between diagrams produced with these two scenarios at a forcing
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of 1.6 atm. This was true for bubbles in the SL radius regime (∼ 6¼m) and for bubbles
of larger radii (∼ 20¼m).

However, there were instances where some resonances were “missed” as frequency
was varied. With no ionisation for a 10¼m bubble driven at 0.85 atm, the order of res-
onances encountered whilst running the system from high frequency to low frequency
was (essentially)R3;1, R9;2, R5;1, R11;2. In the presence of “normal” ionisation, this
sequence becameR3;1, R4;1, R11;2. By skipping R4;1, the oscillation amplitude was
approximately halved through a 20 kHz frequency range, and a period-2 bifurcation
was avoided. Small changes in other parameters may also lead to large differences
in behaviour, as is expected in forced oscillator systems. Attention has been drawn
to this here to highlight the experimental consequences of such behaviour. It also
leads to the question of whether similar changes are brought on by small differences
in modelling of ionisation and chemical reactions.

When � was lowered to enhance ionisation, resonance behaviour did change
slightly. This can be seen in Figure9, where a period-doubling cascade occurred
as� was increased. Period-doubling bifurcations were seen to result from increasing
the driving amplitude, as in Figure5. The increase in driving promotes stronger
collapse; increasing� has a similar effect because it “frees” more internal energy to
contribute to collapse temperature.
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FIGURE 9. Bifurcation diagram in� : Re = 10¼m, f = 81:3 kHz,Þ = 1:3 andI = 1:35× 106 Jmol−1.

Resonance mapsFigure10consists of two resonance maps (which show different-
period behaviour as different shades) inÞ-Re space, with f increasing upwards.
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Maps in forcing amplitude (Þ) and bubble ambient radiusRe were used for this
investigation, because forcing pressure and initial radius, together with frequency, are
the most important control parameters for the oscillating bubble.
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FIGURE 10. Resonance maps at driving frequencies 50 kHz (top) and 15 kHz (bottom), with ionisation
(I = 6:75× 106 Jmol−1; � = 10000 K). Boxes mark the approximate area of stable SL. The (frequency-
dependent)Re stability thresholds are based on Hilgenfeldt and Lohse [15].

The structure in Figure10 comprises higher-period/chaotic islands on a period-1
background, as has been found before at a single frequency [36]. The transition
between these behaviours usually occurs via period-doubling. A vertical chaotic band
is located consistently atÞ ∼ 1 for radii & 10¼m. The band is eroded at low
frequency, because slower driving allows enough time for rebounds to dampen into
acquiescence, for a bubble of a given radius [2]. This longer dampening time leads to
more stable behaviour.

Resonance horns can be seen protruding from the steady chaotic band toward larger
driving amplitudes. The oscillator’s softening character causes bending toward smaller
radii at larger amplitudes. At the lower frequency, bifurcation depth is generally less
than at the higher frequency. Figure10 shows the onset of bifurcations and chaos at
∼ 6¼m for 50 kHz driving and∼ 13¼m for 15 kHz. The onset of chaos appears
much more abrupt at the higher frequency.

At f = 50 kHz the resonance horns have virtually fused together into two large
regions of chaos. Presence or absence (not shown) of the ionisation component had
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little effect at this frequency. The chaotic region is much closer to the SL region at this
frequency; however, it is unlikely that collapse temperatures are sufficient to cause SL
at 50 kHz. Additionally, afterbounce instability is problematic at this frequency [2].

Similar resonance maps of radius versus driving amplitude have been published
by Simon [36]; however, no publications were found showing the dependence of
structures in these maps on other parameters (in this case, frequency). The maps
published here are expected to be of practical interest in experimental situations.

Figure11 shows fractal structure in a chaotic region of theÞ-Re space for bubbles
of approximately 50¼m diameter. Period-1 areas (dark shading) pervade the chaos
as a result of stretch-and-fold behaviour.

FIGURE 11. Example of strange attractors for bubble resonances in this model.

In most regions of stable, periodic oscillations, changing the ionisation parameters
alone did not change the period numbers of resonances. In and close to chaotic
regions, however, the resonances became much more sensitive.

Figure12 shows the dependence of resonance period upon� and I , for a bubble
driven at a high frequency. Resonances in Figure12 show a similar dependence
on these ionisation parameters as maximum temperatures in Figure8 (a). This pat-
tern (with considerably more noise) was also found at the lower driving frequencies
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associated with SL.

5. Summary and Conclusion

A model of Single-Bubble Sonoluminescence was formulated in which heat transfer
and ionisation were included through the first law of thermodynamics. The bubble
was assumed to be spherically symmetric, with its gas content at equilibrium.

Equilibria of this stiff system of three first-order ordinary differential equations were
found. The linearised system was solved in the case of small- amplitude oscillation
to find the system’s resonant frequency.

The full nonlinear equations were implemented in MATLAB and solved numerically.
Bubble collapse was influenced by changes in the characteristic ionisation temperature
(� ) more than changes in ionisation energy (I ). Maximum collapse temperatures were
strongly reduced in the presence of increased ionisation. Other collapse quantities
such as collapse duration and maximum bubble-wall velocity were also affected.
While the ionisation parameters (� and I ) generally had a small effect on the visual
appearance of one oscillation cycle, areas in which the effect magnified during many
cycles resulted in the resonance period being changed. This sensitivity suggests that it
will be difficult to reconcile models and experiments even in areas of stable resonance.

Bifurcations and chaos were observed to emerge for∼ 6¼m bubbles at 50 kHz and
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for 13¼m bubbles at 15 kHz. This threshold is near to the parameter region where SL
has been observed. It remains possible that SL may be observed in a radially chaotic
bubble. If this occurs then dynamical models would need to account for ionisation.

The absorption of energy by chemical reactions and ionisation affected dynamics
similarly to a slight decrease in forcing amplitude. These high-temperature gas
processes reduce the maximum temperature and pressure within the bubble, which are
usually most directly controlled by forcing amplitude. The parametrisation of these
processes is the main innovation in this model, compared to similar previous models.
Because little is known for sure about these processes, continued study of their effects
on temperature maxima in collapsing bubbles is warranted.

The effects of this “ionisation” model component are expected to be relevant be-
yond the (small) SL / ionisation parameter range, because chemical reaction processes
absorb energy in a much larger parameter range. Thus more accurate knowledge of the
location of bifurcations and chaos outside the SL region should be of interest in sono-
chemistry. This model should be of use wherever RP-type dynamics are applicable
(subject to various stability requirements), and significant chemical processes affect
the energy exchange at collapse.

Appendix A. The Jacobian matrix

The Jacobian matrix,J, was evaluated in theEquilibria and small-amplitude
oscillationssection using a perturbation technique, in order to study the local behaviour
of the system around equilibrium points.

The elements ofJ, denotedji j , are

j11 = 0; j12 = 1; j13 = 0;
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