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EXPLICIT BOUNDS FOR THIRD-ORDER DIFFERENCE
EQUATIONS
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Abstract

This paper gives explicit, applicable bounds for solutions of a wide class of third-order dif-
ference equations with nonconstant coefficients. The techniques used are readily adaptable
for higher-order equations. The results extend recent work of the authors for second-order
equations.
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1. Introduction

This paper studies explicit, applicable growth rates for third-order difference equations.
In particular, we will consider solutiong,} = {b,(bo, by, by)} of equations of the
form

A3bn—2 = pnbn - qnbn—l + rnbn—Za (11)

where for a sequend@; }, A is the forward difference operator andy, = a,,1 — &.
That s,

bn+l = (3 + pn)bn - (3 + qn)bn—l + (1 + rn)bn—Zs (12)

for n > 2. We provide sharp inequalities f@y; } in terms of the sequencésg;}, {q:}
and{r;}, and the initial value®,, b; andb,. Solutions of difference equations of the
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formin (1.1) have been studied by many authors (see, for exanijlg, 4, 5, 6, 7, 8,
9,12, 10, 11]). Often these studies have focused on the understanding of oscillatory
or asymptotic behaviour.

In what follows, it will be convenient to have the following notation.

For a sequenca = {a}, define the linear operatd?’ by

L@ € pa — Gad 4 Miaa_g,  for i > 1.

We now state our main result which extends recent results for second-order equa:
tions (see, for examplel] and [13]). Closely related results can also be found in
[14].

THEOREM 1.1. Suppos€ B}, {pi}, {ai} and {r;} are real-valued sequences such
that{B;} is positive, nondecreasing and convex, and for éaeh?, either

p>max@,0 and r; >0, or g <min(r;,0) and p >0 (1.3)
In addition, suppose there exist positive constamys;; andc,, satisfying

CoA%b (1,0, 0) = A?bi(c, 0,0) > 0,
A%B > { ;A% (0, —1,0) = A%, (0, —¢;, 0) > 0, (1.4)
CZAZbi (07 07 1) = AZbi (Oa 03 CZ) Z Oa

fori =0, 1, 2. Now, define the sequenfé(i)} via

Vi) L A®B_, — Z(B), for i > 1. (1.5)
If
V(i) =>0, for i > 3, (1.6)
then
|bn| < (|b—°| + @ + |b—2|> B,, for n> 3. 1.7)
Co Cy C2

The key to employing Theorerh.1 is to determine a positive, nondecreasing
sequenceB satisfying (L.4) and (L.6). While this can be done inductively for many
{(pj, ;. r))}, it is particularly convenient when the third derivative of an extension,
B, to [0, co) of the bounding sequend® exists. The next lemma follows directly
from the fact thatA®B,_; = B”(¢), for some; € [n — 1, n + 2].

LEMMA 1.2. SupposeB” exists.

Q) If B” is nondecreasing, and far > ny, £ (B), < B”/(n —1),thenV(n) >0
for n > no.
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(2) If B” is nonincreasing, and fon > ng, .Z(B), < B”(n + 2), thenV(n) > 0
for n > no.

It will be helpful to have the following notation, which will be useful when demon-
strating that {.4) holds for particular examples.
For given{b;} and{B;}, defineG andh via

G=|0io 011 OG>
| 920 Q21 Q22
[ A%by(1, 0, 0) A?by(1, 0, 0) A?b,(1, 0, 0) :|

Qoo Gox 90,2i|

= | A%by(0, —1,0) A%b;(0,—1,00 AZ2b,(0,-1,0)
| A%1(0,0,1) A%b,(0,0,1) A?b,(0,0,1)

andh = (hg, hy, hy) o (A2By, A%B;, A%B,). Note that (.4) can be rewritten as

hi > ¢;g;; > 0,forO<i,j <2. Infact, ifh; > 0andg;; > 0,for0<i <2, we
may tak&J = minogigz{hi /gj,i }
We now give some examples of applications for Theolein

EXAMPLE 1 (Power-type rate boundsTonsider{B,} defined byB, = n* (with
k € R), and note thaB given by B(x) = xX, is positive, nondecreasing and convex
for k > 1. Taking derivatives give8” (x) = k(k — 1)(k — 2)x¥~3 and B¥(x) =
k(k—1)(k — 2)(k — 3)x¥~*, and hencd"” is nondecreasing for £ k < 2 andk > 3,
and nonincreasing for 2 k < 3.

Now, setc = k(k—1)(k — 2). Employing Lemmadl.2, each of the following satisfy
(1.6) of Theorem1..1:

) p=g=0,k>3,andfomn > 3,

c
0<ry:=< m ; (1.8)
(i) p=qg=0,ke[23],andforn > 3,
n+2\% ¢
: 1.
Osr”“S(n—l) n+2°’ 19
(i) g=r =0,k > 3, and fon > 3,
c(n — 13
0<pPrir < W ; and (2.10)
(iv) g=r =0,k e [2,3],and forn > 3,
k—3
0< pyy < X0H2 (111)

(n+ D)k
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Fork > 2, cis nonnegative, and hence the sequences in (i)—(iv) all satis$y. (
Now, note that (a), defined byr,, = ¢/n® satisfies both.8) and (L.9), and (b) p,
defined byp, = ¢/(n + 1)® satisfies {.11). We will consider these two instances in
some detail.

(@) (. = c/n® Thatr, = c¢/n? satisfies {.8) is immediate. To see that the right-
hand inequality in1.9) also holds, note that

M+2>*N-—D<n+2n—-1?=n*-3n+2 < (n+1)>
Now, employing the formulae in Tabkebelow, we have the values
1 14+¢/8 1+4c/8
G=|2 2 2—c/27|.
1 1 1

Hence there exist, > 0,¢; > 0 andc, > 0 satisfying (.4), whenever O< ¢/27 < 2,
that is, 2< k < ko, Wwherek, ~ 4.867936. For example, whdn= 3 (c = 6), we

haveh = (6, 12, 18) and
1 74 7/4
G=|2 2 169].
1 1 1

Thus, taking ratios as suggested earlier, we maycgisec, = 6 andc; = 3in (1.7).
(b) (p, = c/(n + 1)%) Here we have

__ ¢ _ ¢ n+ 2\
Prv1 = N+23~ n+23\n+1
and (L.17) is satisfied. In addition,
1 1 1+ P3
G=|2 2 2+ 3ps3 , (1.12)
1 1+p2 1+3ps+ p2+ pPap2

and since each entry id (12) is strictly positive, there exish > 0,¢; > O andc, > 0
satisfying (L.4), for all 2 < k < 3. For example, whek = 2.5 (c = 1.875), we have

h= (4[2— 2. 9V/3-8, 32— 18\/§~|—4~/§)
~ (3.656854248 527474877 6.479939708.

Hence, employing1(.12 with p, = 5/72 ~ 0.06944444444 ang; = 15/512 ~
0.02929687500, we may takg = ¢, = 3.65 andc; = 1.82in (1.7).
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ExamMPLE 2 (Exponential rate boundsonsiderB = {B,} and B defined by
B, = ne" and B(x) = x&, respectively. We then hav@”(x) = (x + 3)€*, and
henceB” is nondecreasing. Employing Lemrii&2, each of the following satisfy the
requirements of Theoref1:

(i) p=g=0andforn> 3,

2
0<ry1=< :%1 and (1.13)
(i) g=r =0,andfom > 3,
(n+2)e?
0<pn1 =< Thr1 (1.14)

As an example of, satisfying (.13, we have, = (n+ 1)/(n — 1). Here

h=(2¢"—2e 3€’—4€’+ e 4¢e'— 66’ +2¢)
~ (9.341548544 33.41866819 1126574908,

1 4 4
G=1|2 2 ol. (1.15)
11 1

Thuscy = 8.35,¢; = 4.67 andc, = 9.34 satisfy (.4), and Theorem.lis applicable.

r2=3,r3=2and

We now turn to a proof of Theoreh 1.

2. Proof of Theorem1.1

In this section we will prove Theoreh 1.
Prior to proving Theorem.1 we quote the following two tables which we use in

the proof of the theorem.

TABLE 1. Values for{b;}.

Case| b, by b, bs b,
1 Co 0 0| A+r0c 3+ P3)(1+r2)Co
2 0 - 0| @B+ @B+ p)B+g)c— (1+r3)C
3 0 0 | B+plt B+ P38+ pa)te— B+ 0
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TABLE 2. Second-order differences f(is; }.

Case| A?by A%b, A%Db,
1 Co (1+r2)C (14 pa)(1+r2)Co
2 26 2+ 1+ ps)B+g)ci— (1+T13)C
3 Cc (A+p)c (14 p3)B+ p)C— 2+ o),

PROOF OFTHEOREM 1.1 Suppos€ pi}, {gi}, {ri}, {Bi} and(cy, c1, C,) satisfy the
hypotheses of the theorem. We will consider three caseff@n,, b, by)}, namely
Case 1:{bi(cy, 0,0)}, Case 2:{b; (0, —cy, 0)} and Case 3{b;(0, 0, ¢,)}. The values
in Tablesl and2 follow directly from (1.2).

Now, note that, for each casb, > 0, Ab, > 0, and by (.4), A% > 0, for
i =0,1,2. Also, forn > 2, expandind,; via (1.2) and simplifying, gives

A%D,_1 = b1 — 20, + by = A%by_o + Z(b),_1. (2.1)

Assuming thatA?b; > 0 fori < N — 1, givesb, > 0for2<i < N+ 1 and
Ab; > 0for1<i < N. Hence (.3) implies that either

ZDO)n—1 = puby — Onbnoz +rvbyz > (pv — an)bnos +Ivby_2 > 0

or Z(b)n_1 > pnbn+(—aqn+rn)bn_2 > 0. Thus, combining this with the induction
hypothesis and(1) gives A%by_; > 0, and the induction is complete. In particular,
we haveAb, > 0 fori > 1 andb, > 0, fori > 2.

Now, fori > 0, defineg; by ¢ gef B, — b,. The values o¢;, for the first fewi, are
given in Tables.

TABLE 3. Values for{e; }.

Case € € €
1 By — G B, B,
2 Bo B+ ¢ B,
3 Bo B, B, — G

We will show thate; > 0 for alli > 3; the result in {.7) then follows, since for
generaby, b; andb,, we then have

b b
|by (b, by, by)| = @bn«:o, 0,0) — —b,(0, —cy, 0) + —by, (0, 0, ¢y)
CO Cq C

b b
DBlg By bl

1 C
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Note that (.4) guarantees thak?¢; > 0, fori = 0, 1, 2 and the assumptions @
give A¢y > 0 ande; > 0 (see Tableg). Now, assumeA?e, > 0, forn < N. It then
follows immediately that

€n > €n_1 >0, (22)
forl1<n < N + 2. Hence we have

A’ey = A’By — A%y
= A°By_1 + A%By_1 — A%by
= A®By_1+ A?By_1 — byyo + by — by
= A°By_1 + A®By_1 — ((3+ Prn+1) N1
— B+ )by + 1+ rN+l)bN—1) + 2by 1 — by
= (A®Bn-1 — Prnr1Bni1 + OniaBy — MniaBron)
+ Prsi€n+t — Onsien + Tnsien—1 + (A®By_g — A%by_y)
> V(N) + APey g
>0. (2.3)
The second to last inequality i8.@) follows from (2.2) and (L.3). The final inequality

follows from (1.6) and the induction hypothesis. Th{is} is positive (and convex),
and as mentioned](7) now follows. O
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