EXPLICIT BOUNDS FOR THIRD-ORDER DIFFERENCE EQUATIONS

KENNETH S. BERENHAUT^{Cl}, EVA G. GOEDHART¹ and STEVO STEVI \acute{C}^2

(Received 30 April, 2005)

[Abstract](http://www.austms.org.au/Publ/ANZIAM/V47P3/2307.html)

This paper gives explicit, applicable bounds for solutions of a wide class of third-order difference equations with nonconstant coefficients. The techniques used are readily adaptable for higher-order equations. The results extend recent work of the authors for second-order equations.

2000 *Mathematics subject classification*: 39A10, 39A11. *Keywords and phrases*: explicit bounds, applicable bounds, third-order linear difference equations, growth rates, nonconstant coefficients.

1. Introduction

This paper studies explicit, applicable growth rates for third-order difference equations. In particular, we will consider solutions ${b_n} = {b_n(b_0, b_1, b_2)}$ of equations of the form

$$
\Delta^3 b_{n-2} = p_n b_n - q_n b_{n-1} + r_n b_{n-2}, \tag{1.1}
$$

where for a sequence $\{a_i\}$, Δ is the forward difference operator and $\Delta a_i = a_{i+1} - a_i$. That is,

$$
b_{n+1} = (3+p_n)b_n - (3+q_n)b_{n-1} + (1+r_n)b_{n-2}, \tag{1.2}
$$

for $n \geq 2$. We provide sharp inequalities for $\{b_i\}$ in terms of the sequences $\{p_i\}$, $\{q_i\}$ and $\{r_i\}$, and the initial values b_0 , b_1 and b_2 . Solutions of difference equations of the

¹Wake Forest University, Department of Mathematics, Winston-Salem, NC 27109, USA; e-mail: [berenhks@wfu.edu.](mailto:berenhks@wfu.edu)

²Mathematical Institute of Serbian Academy of Science, Knez Mihailova 35/I 11000 Beograd, Serbia; e-mail: sstevic@ptt.yu and [sstevo@matf.bg.ac.yu.](mailto:sstevo@matf.bg.ac.yu)

c Australian Mathematical Society 2006, Serial-fee code 1446-8735/06

form in (1.1) have been studied by many authors (see, for example, [\[2,](#page-6-0) [3,](#page-6-1) [4,](#page-6-2) [5,](#page-6-3) [6,](#page-6-4) [7,](#page-7-1) [8,](#page-7-2) [9,](#page-7-3) [12,](#page-7-4) [10,](#page-7-5) [11\]](#page-7-6)). Often these studies have focused on the understanding of oscillatory or asymptotic behaviour.

In what follows, it will be convenient to have the following notation.

For a sequence $a = \{a_i\}$, define the linear operator $\mathscr L$ by

$$
\mathscr{L}(a)_i \stackrel{\text{def}}{=} p_{i+1}a_{i+1} - q_{i+1}a_i + r_{i+1}a_{i-1}, \text{ for } i \ge 1.
$$

We now state our main result which extends recent results for second-order equations (see, for example, [\[1\]](#page-6-5) and [\[13\]](#page-7-7)). Closely related results can also be found in [\[14\]](#page-7-8).

THEOREM 1.1. *Suppose* {*Bi*}*,* {*pi*}*,* {*qi*} *and* {*ri*} *are real-valued sequences such that* ${B_i}$ *is positive, nondecreasing and convex, and for each* $i \geq 2$ *, either*

 $p_i \ge \max(q_i, 0)$ *and* $r_i \ge 0$, *or* $q_i \le \min(r_i, 0)$ *and* $p_i \ge 0$. (1.3)

In addition, suppose there exist positive constants, c_0 , c_1 *and* c_2 *, satisfying*

$$
\Delta^2 B_i \ge \begin{cases} c_0 \Delta^2 b_i(1, 0, 0) = \Delta^2 b_i(c_0, 0, 0) \ge 0, \\ c_1 \Delta^2 b_i(0, -1, 0) = \Delta^2 b_i(0, -c_1, 0) \ge 0, \\ c_2 \Delta^2 b_i(0, 0, 1) = \Delta^2 b_i(0, 0, c_2) \ge 0, \end{cases}
$$
(1.4)

for $i = 0, 1, 2$ *. Now, define the sequence* $\{V(i)\}$ *via*

$$
V(i) \stackrel{\text{def}}{=} \Delta^3 B_{i-1} - \mathcal{L}(B)_i, \qquad \text{for } i \ge 1.
$$
 (1.5)

If

$$
V(i) \ge 0, \qquad \qquad \text{for } i \ge 3, \tag{1.6}
$$

then

$$
|b_n| \le \left(\frac{|b_0|}{c_0} + \frac{|b_1|}{c_1} + \frac{|b_2|}{c_2}\right) B_n, \quad \text{for } n \ge 3. \tag{1.7}
$$

The key to employing Theorem [1.1](#page-1-0) is to determine a positive, nondecreasing sequence *B* satisfying (1.4) and (1.6) . While this can be done inductively for many $\{(p_i, q_j, r_j)\}\$, it is particularly convenient when the third derivative of an extension, \tilde{B} , to [0, ∞) of the bounding sequence *B* exists. The next lemma follows directly from the fact that $\Delta^3 B_{n-1} = B'''(\zeta)$, for some $\zeta \in [n-1, n+2]$.

LEMMA 1.2. *Suppose* $\tilde{B}^{\prime\prime\prime}$ exists.

(1) If \tilde{B}''' is nondecreasing, and for $n \ge n_0$, $\mathscr{L}(B)_n \le \tilde{B}'''(n-1)$, then $V(n) \ge 0$ *for* $n \geq n_0$ *.*

(2) If *B*^{*m*} is nonincreasing, and for $n > n_0$, $\mathcal{L}(B)_n < \tilde{B}^m(n+2)$, then $V(n) > 0$ *for* $n \geq n_0$.

It will be helpful to have the following notation, which will be useful when demonstrating that [\(1.4\)](#page-1-1) holds for particular examples.

For given $\{b_i\}$ and $\{B_i\}$, define *G* and *h* via

$$
G = \begin{bmatrix} g_{0,0} & g_{0,1} & g_{0,2} \\ g_{1,0} & g_{1,1} & g_{1,2} \\ g_{2,0} & g_{2,1} & g_{2,2} \end{bmatrix}
$$

$$
\stackrel{\text{def}}{=} \begin{bmatrix} \Delta^2 b_0(1,0,0) & \Delta^2 b_1(1,0,0) & \Delta^2 b_2(1,0,0) \\ \Delta^2 b_0(0,-1,0) & \Delta^2 b_1(0,-1,0) & \Delta^2 b_2(0,-1,0) \\ \Delta^2 b_0(0,0,1) & \Delta^2 b_1(0,0,1) & \Delta^2 b_2(0,0,1) \end{bmatrix}
$$

and $h = (h_0, h_1, h_2) \stackrel{\text{def}}{=} (\Delta^2 B_0, \Delta^2 B_1, \Delta^2 B_2)$. Note that [\(1.4\)](#page-1-1) can be rewritten as *h_i* ≥ *c_j* $g_{j,i}$ ≥ 0, for 0 ≤ *i*, *j* ≤ 2. In fact, if *h_i* > 0 and $g_{j,i}$ > 0, for 0 ≤ *i* ≤ 2, we may take $c_i = \min_{0 \le i \le 2} \{h_i/g_{i,i}\}.$

We now give some examples of applications for Theorem [1.1.](#page-1-0)

EXAMPLE 1 (Power-type rate bounds). Consider ${B_n}$ defined by $B_n = n^k$ (with $k \in \mathbb{R}$), and note that \tilde{B} given by $\tilde{B}(x) = x^k$, is positive, nondecreasing and convex for $k \ge 1$. Taking derivatives gives $\tilde{B}'''(x) = k(k-1)(k-2)x^{k-3}$ and $\tilde{B}^{(4)}(x) =$ $k(k-1)(k-2)(k-3)x^{k-4}$, and hence \tilde{B}''' is nondecreasing for $1 \le k \le 2$ and $k > 3$, and nonincreasing for $2 \le k \le 3$.

Now, set $c = k(k-1)(k-2)$. Employing Lemma [1.2,](#page-1-3) each of the following satisfy [\(1.6\)](#page-1-2) of Theorem [1.1:](#page-1-0)

(i) $p \equiv q \equiv 0, k > 3$, and for $n > 3$,

$$
0 \le r_{n+1} \le \frac{c}{(n-1)^3};\tag{1.8}
$$

(ii) $p \equiv q \equiv 0, k \in [2, 3]$, and for $n \geq 3$,

$$
0 \le r_{n+1} \le \left(\frac{n+2}{n-1}\right)^k \frac{c}{(n+2)^3};\tag{1.9}
$$

(iii) $q \equiv r \equiv 0, k > 3$, and for $n > 3$,

$$
0 \le p_{n+1} \le \frac{c(n-1)^{k-3}}{(n+1)^k}; \quad \text{and} \tag{1.10}
$$

(iv) $q \equiv r \equiv 0, k \in [2, 3]$, and for $n > 3$,

$$
0 \le p_{n+1} \le \frac{c(n+2)^{k-3}}{(n+1)^k} \,. \tag{1.11}
$$

For $k \geq 2$, c is nonnegative, and hence the sequences in (i)–(iv) all satisfy [\(1.3\)](#page-1-4). Now, note that (a) r_n defined by $r_n = c/n^3$ satisfies both [\(1.8\)](#page-2-0) and [\(1.9\)](#page-2-1), and (b) p_n defined by $p_n = c/(n + 1)^3$ satisfies [\(1.11\)](#page-2-2). We will consider these two instances in some detail.

(a) $(r_n = c/n^3)$ That $r_n = c/n^3$ satisfies [\(1.8\)](#page-2-0) is immediate. To see that the righthand inequality in [\(1.9\)](#page-2-1) also holds, note that

$$
(n+2)^{3-k}(n-1)^k \le (n+2)(n-1)^2 = n^3 - 3n + 2 < (n+1)^3.
$$

Now, employing the formulae in Table [2](#page-5-0) below, we have the values

$$
G = \begin{bmatrix} 1 & 1 + c/8 & 1 + c/8 \\ 2 & 2 & 2 - c/27 \\ 1 & 1 & 1 \end{bmatrix}.
$$

Hence there exist $c_0 > 0$, $c_1 > 0$ and $c_2 > 0$ satisfying [\(1.4\)](#page-1-1), whenever $0 < c/27 < 2$, that is, $2 < k < k_0$, where $k_0 \approx 4.867936$. For example, when $k = 3$ ($c = 6$), we have $h = (6, 12, 18)$ and

$$
G = \begin{bmatrix} 1 & 7/4 & 7/4 \\ 2 & 2 & 16/9 \\ 1 & 1 & 1 \end{bmatrix}.
$$

Thus, taking ratios as suggested earlier, we may use $c_0 = c_2 = 6$ and $c_1 = 3$ in [\(1.7\)](#page-1-5). (b) $(p_n = c/(n + 1)^3)$ Here we have

$$
p_{n+1} = \frac{c}{(n+2)^3} \le \frac{c}{(n+2)^3} \left(\frac{n+2}{n+1}\right)^k
$$

and [\(1.11\)](#page-2-2) is satisfied. In addition,

$$
G = \begin{bmatrix} 1 & 1 & 1+p_3 \\ 2 & 2 & 2+3p_3 \\ 1 & 1+p_2 & 1+3p_3+p_2+p_3p_2 \end{bmatrix},
$$
(1.12)

and since each entry in [\(1.12\)](#page-3-0) is strictly positive, there exist $c_0 > 0$, $c_1 > 0$ and $c_2 > 0$ satisfying [\(1.4\)](#page-1-1), for all $2 < k \leq 3$. For example, when $k = 2.5$ ($c = 1.875$), we have

$$
\mathbf{h} = (4\sqrt{2} - 2, 9\sqrt{3} - 8, 32 - 18\sqrt{3} + 4\sqrt{2})
$$

\approx (3.656854248, 5.27474877, 6.479939708).

Hence, employing [\(1.12\)](#page-3-0) with $p_2 = 5/72 \approx 0.06944444444$ and $p_3 = 15/512 \approx$ 0.02929687500, we may take $c_0 = c_2 = 3.65$ and $c_1 = 1.82$ in [\(1.7\)](#page-1-5).

EXAMPLE 2 (Exponential rate bounds). Consider $B = \{B_n\}$ and \tilde{B} defined by $B_n = ne^n$ and $\tilde{B}(x) = xe^x$, respectively. We then have $\tilde{B}'''(x) = (x + 3)e^x$, and hence \tilde{B}''' is nondecreasing. Employing Lemma [1.2,](#page-1-3) each of the following satisfy the requirements of Theorem [1.1:](#page-1-0)

(i) $p \equiv q \equiv 0$ and for $n \geq 3$,

$$
0 \le r_{n+1} \le \frac{n+2}{n-1} \quad \text{and} \tag{1.13}
$$

(ii) $q \equiv r \equiv 0$, and for $n \geq 3$,

$$
0 \le p_{n+1} \le \frac{(n+2)e^{-2}}{n+1} \,. \tag{1.14}
$$

As an example of r_n satisfying [\(1.13\)](#page-4-0), we have $r_n = \frac{(n+1)}{(n-1)}$. Here

$$
\mathbf{h} = (2e^2 - 2e, 3e^3 - 4e^2 + e, 4e^4 - 6e^3 + 2e^2) \approx (9.341548544, 33.41866819, 112.6574908),
$$

 $r_2 = 3$, $r_3 = 2$ and

$$
G = \begin{bmatrix} 1 & 4 & 4 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix} .
$$
 (1.15)

Thus $c_0 = 8.35$, $c_1 = 4.67$ and $c_2 = 9.34$ satisfy [\(1.4\)](#page-1-1), and Theorem [1.1](#page-1-0) is applicable.

We now turn to a proof of Theorem [1.1.](#page-1-0)

2. Proof of Theorem [1.1](#page-1-0)

In this section we will prove Theorem [1.1.](#page-1-0)

Prior to proving Theorem [1.1](#page-1-0) we quote the following two tables which we use in the proof of the theorem.

364 Kenneth S. Berenhaut, Eva G. Goedhart and Stevo Stevic [6] ´

Case $\Delta^2 b_0$ $\Delta^2 b_1$ $\Delta^2 b_2$ 1 c_0 $(1 + r_2)c_0$ $(1 + p_3)(1 + r_2)c_0$ 2 $2c_1$ $(2+q_2)c_1$ $(1+p_3)(3+q_2)c_1 - (1+r_3)c_1$ 3 c_2 $(1 + p_2)c_2$ $(1 + p_3)(3 + p_2)c_2 - (2 + q_3)c_2$

TABLE 2. Second-order differences for {*bi*}.

PROOF OF THEOREM [1.1.](#page-1-0) Suppose $\{p_i\}$, $\{q_i\}$, $\{r_i\}$, $\{B_i\}$ and (c_0, c_1, c_2) satisfy the hypotheses of the theorem. We will consider three cases for $\{b_i(b_0, b_1, b_2)\}$, namely Case 1: $\{b_i(c_0, 0, 0)\}\)$, Case 2: $\{b_i(0, -c_1, 0)\}\$ and Case 3: $\{b_i(0, 0, c_2)\}\$. The values in Tables [1](#page-4-1) and [2](#page-5-0) follow directly from [\(1.2\)](#page-0-1).

Now, note that, for each case, $b_2 \geq 0$, $\Delta b_1 \geq 0$, and by [\(1.4\)](#page-1-1), $\Delta^2 b_i \geq 0$, for $i = 0, 1, 2$. Also, for $n \ge 2$, expanding b_{n+1} via [\(1.2\)](#page-0-1) and simplifying, gives

$$
\Delta^2 b_{n-1} = b_{n+1} - 2b_n + b_{n-1} = \Delta^2 b_{n-2} + \mathcal{L}(b)_{n-1}.
$$
 (2.1)

Assuming that $\Delta^2 b_i \geq 0$ for $i < N-1$, gives $b_i \geq 0$ for $2 \leq i < N+1$ and $\Delta b_i \geq 0$ for $1 \leq i \leq N$. Hence [\(1.3\)](#page-1-4) implies that either

$$
\mathcal{L}(b)_{N-1} = p_N b_N - q_N b_{N-1} + r_N b_{N-2} \ge (p_N - q_N) b_{N-1} + r_N b_{N-2} \ge 0
$$

or $\mathcal{L}(b)_{N-1} \geq p_N b_N + (-q_N + r_N) b_{N-2} \geq 0$. Thus, combining this with the induction hypothesis and [\(2.1\)](#page-5-1) gives $\Delta^2 b_{N-1} \ge 0$, and the induction is complete. In particular, we have $\Delta b_i \geq 0$ for $i \geq 1$ and $b_i \geq 0$, for $i \geq 2$.

Now, for $i \geq 0$, define ϵ_i by $\epsilon_i \stackrel{\text{def}}{=} B_i - b_i$. The values of ϵ_i , for the first few *i*, are given in Table [3.](#page-5-2)

TABLE 3. Values for $\{\epsilon_i\}$.

Case	E٥	ϵ_1	ϵ
	$-c_0$		
	B_0	$B_1 + c_1$	B,
			$-c2$

We will show that $\epsilon_i \geq 0$ for all $i \geq 3$; the result in [\(1.7\)](#page-1-5) then follows, since for general b_0 , b_1 and b_2 , we then have

$$
|b_n(b_0, b_1, b_2)| = \left| \frac{b_0}{c_0} b_n(c_0, 0, 0) - \frac{b_1}{c_1} b_n(0, -c_1, 0) + \frac{b_2}{c_2} b_n(0, 0, c_2) \right|
$$

$$
\leq \frac{|b_0|}{c_0} B_n + \frac{|b_1|}{c_1} B_n + \frac{|b_2|}{c_2} B_n.
$$

Note that [\(1.4\)](#page-1-1) guarantees that $\Delta^2 \epsilon_i \geq 0$, for $i = 0, 1, 2$ and the assumptions on *B* give $\Delta \epsilon_0 > 0$ and $\epsilon_1 > 0$ (see Table [3\)](#page-5-2). Now, assume $\Delta^2 \epsilon_n \geq 0$, for $n < N$. It then follows immediately that

$$
\epsilon_n \ge \epsilon_{n-1} \ge 0,\tag{2.2}
$$

for $1 \le n \le N + 2$. Hence we have

$$
\Delta^{2}\epsilon_{N} = \Delta^{2}B_{N} - \Delta^{2}b_{N}
$$
\n
$$
= \Delta^{3}B_{N-1} + \Delta^{2}B_{N-1} - \Delta^{2}b_{N}
$$
\n
$$
= \Delta^{3}B_{N-1} + \Delta^{2}B_{N-1} - b_{N+2} + 2b_{N+1} - b_{N}
$$
\n
$$
= \Delta^{3}B_{N-1} + \Delta^{2}B_{N-1} - ((3 + p_{N+1})b_{N+1}) - (3 + q_{N+1})b_{N} + (1 + r_{N+1})b_{N-1}) + 2b_{N+1} - b_{N}
$$
\n
$$
= (\Delta^{3}B_{N-1} - p_{N+1}B_{N+1} + q_{N+1}B_{N} - r_{N+1}B_{N-1}) + p_{N+1}\epsilon_{N+1} - q_{N+1}\epsilon_{N} + r_{N+1}\epsilon_{N-1} + (\Delta^{2}B_{N-1} - \Delta^{2}b_{N-1})
$$
\n
$$
\geq V(N) + \Delta^{2}\epsilon_{N-1}
$$
\n
$$
\geq 0.
$$
\n(2.3)

The second to last inequality in (2.3) follows from (2.2) and (1.3) . The final inequality follows from [\(1.6\)](#page-1-2) and the induction hypothesis. Thus $\{\epsilon_i\}$ is positive (and convex), and as mentioned, [\(1.7\)](#page-1-5) now follows. \Box

Acknowledgements

The first author acknowledges financial support from a Sterge Faculty Fellowship.

References

- [1] K. S. Berenhaut and E. G. Goedhart, "Explicit bounds for second-order difference equations and a solution to a question of Stević", *J. Math. Anal. Appl.* **305** (2005) 1-10.
- [2] Z. Došlá and A. Kobza, "Global asymptotic properties of third-order difference equations", *Comput. Math. Appl.* **48** (2004) 191–200.
- [3] J. Henderson and A. Peterson, "Disconjugacy for a third-order linear difference equation", Advances in difference equations, *Comput. Math. Appl.* **28** (1994) 131–139.
- [4] H. A. Hussein, "An explicit solution of third-order difference equations", *J. Comput. Appl. Math.* **54** (1994) 307–311.
- [5] R. K. Mallik, "On the solution of a third-order linear homogeneous difference equation with variable coefficients", *J. Differ. Equations Appl.* **4** (1998) 501–521.
- [6] N. Parhi and A. K. Tripathy, "On oscillatory third-order difference equations", *J. Differ. Equations Appl.* **6** (2000) 53–74.
- [7] J. Popenda and E. Schmeidel, "Nonoscillatory solutions of third-order difference equations", *Portugal. Math.* **49** (1992) 233–239.
- [8] B. Smith, "Quasi-adjoint third-order difference equations: oscillatory and asymptotic behavior", *Internat. J. Math. Math. Sci.* **9** (1986) 781–784.
- [9] B. Smith, "Oscillatory and asymptotic behavior in certain third order difference equations", *Rocky Mountain J. Math.* **17** (1987) 597–606.
- [10] B. Smith, "Oscillation and nonoscillation theorems for third-order quasi-adjoint difference equations", *Portugal. Math.* **45** (1988) 229–243.
- [11] B. Smith, "Linear third-order difference equations: oscillatory and asymptotic behavior", *Rocky Mountain J. Math.* **22** (1992) 1559–1564.
- [12] B. Smith and W. E. Taylor, Jr., "Asymptotic behavior of solutions of a third-order difference equation", *Portugal. Math.* **44** (1987) 113–117.
- [13] S. Stevic, "Asymptotic behavior of second-order difference equations", ´ *ANZIAM J.* **46** (2005) 157–170.
- [14] S. Stevic, "Growth estimates for solutions of nonlinear second-order difference equations", ´ *ANZIAM J.* **46** (2005) 439–448.