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GUIDE EXPANSIONS FOR THE RECURSIVE PARAMETRIC
SOLUTION OF POLYNOMIAL DYNAMICAL SYSTEMS
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Abstract

Recursive parametric series solutions are developed for polynomial ODE systems, based
on expanding the system components in series of a form studied by Weiss. Individual
terms involve first-order driven linear ODE systems with variable coefficients. We consider
Lotka-Volterra systems as an example.

2000 Mathematics subject classification: 34C20, 35C10.
Keywords and phrases: guide expansions, general series solutions, core functions.

1. Introduction

The method developed here is inspired by Hopf’s famous study [6] of Burger’s equation
(see also [2]). It can be viewed as a generalised Lagrange expansion that is adaptable
to the ODE system of interest. For the Navier-Stokes PDE application [8] an infinite
series of reaction-diffusion operators appears. There are also echoes of Poincaré’s
stretched-time perturbations and psi-series [10, 12]. The objective is to obtain solutions
to nonlinear vector operator equations as a sum of solutions of a series of recursively-
defined linear operators with variable weights while preserving for exploitation the
coefficients of the original vector operator in the various linear operators. This allows
arbitrary orders of variable perturbations. The method has application in connection
with both exact and numerical solutions. We present a streamlined and self-contained
account of the basic underlying ideas. Detailed applications will appear elsewhere
(see [4]).
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We consider an explicit polynomial ODE system of the form

ẋ j.t/ = a j.t/+
N∑

m=1

n∑
k1;:::;km =1

a j ;k1;:::km xk1 · · · xkm . j = 1; : : : ; n/; (1.1)

where the order zero coefficients (drivers) a j and the higher-order coefficients are
differentiable on a set S. Here N may exceed n. By Peano’s theorem, continuous
solutions exist. Uniqueness theorems require dominance conditions, such as those
of Lipschitz or Osgood [9]. Linear systems and matrix Riccati systems have known
explicit solutions [7]. Currently vector Riccati systems, and in particular Lotka-
Volterra species-dynamical solutions do not, except when all the coefficients are given
in terms of Taylor series convergent in a region T = {t : |t − t0| < r}. In this case
the solutions are in principle given by explicit convergent Taylor series on T using
convolution algebra. When the solutions are of nonpolynomial form, such as exp.t2/

or ln | ln t |, Taylor series may be impractical and other expressions are desirable.
The analysis turns on the use of a differentiable core function h.t/which is entirely

at our disposal and could be, for example, a suitably-stretched time, a key ingredient
in the x j.t/, or a combination of these. The underlying idea is to express the x j.t/ as
power series in 1=h.t/ with variable coefficients. The strategy in a given application
is to choose the core function to reduce the structural complexity of the problem or
speed the convergence of various series involved.

The choice of h allows some intuition or information about system behaviour to be
incorporated. The method can be extended to PDEs, where indeed it was first used to
produce exact solutions. Computationally an extensive memory is required compared
to traditional Runge-Kutta/Adams computing for ODEs to accommodate the recursive
tail. The Picard method of recursive integration to provide existence proofs has not
been computationally successful. This work may be regarded as an adaptation of
Picard’s original idea using Hopf’s algebraic approach.

There are two physically distinguishable cases. In the first, a j.t/ = 0 for all j , so
the dynamics are free. In case II, with core-dependent drivers, the a j.t/ are expressible
in terms of the core function via the series

a j.t/ =
∞∑

p=1

b j;p.t/h
−p (1.2)

assumed convergent on a set T . Similarly we ascribe to the x j.t/ a decomposition

x j .t/ =
∞∑

p=1

u j;p.t/h
−p . j = 1; : : : ; n/: (1.3)

The u j;p are termed guides and (1.3) a guide expansion.
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By scaling b j;p by a suitable power of h we obtain an alternative parameterisation
of the form

a j.t/ =
∞∑

p=0

b j;p.t/ [h.t/]−p (1.4)

in which (for at least one value of j ) b j;0.t/ is not identically zero. We associate with
this the formal expansion

x j .t/ =
∞∑

p=0

u j;p.t/h
−p . j = 1; : : : ; n/: (1.5)

This formulation with non-core drivers is sometimes more appropriate, though a
treatment as it stands requires a significant extension of the procedures that suffice for
cases I and II. For brevity we refer to it as case III.

With 1=h = ¦ , (1.3) is a special ODE case (for Þ = 0) of the Weiss series
¦−Þ∑∞

n=0 �n¦
n used in connection with the Painlevé property [13]. See also [1, 3, 11].

Formally, a classic example of a case III-type expansion with constant guides is
provided by the Lagrange formula

f .� / = f .a/+
∞∑

p=1

1

p!
[

d p−1

da p−1

{
f ′.a/[�.a/]p

}]
w p

(see [14, pages 132–133]).
In Section 2 we present the recursive differential algebra required for cases I and II

and in Section 3 that for case III. A discrete Hilbert-space construction of guides for
a given core h and target functions x j is outlined in Section 4. In Section 5 we give a
discussion of the method for Lotka-Volterra systems.

2. Case I and II numerator recursions

From (1.3) we have formally that

ẋ j =
∞∑

p=1

[
u̇ j;p − .p − 1/ḣu j;p−1

]
h−p: (2.1)

Substitution into (1.1) yields for j = 1; : : : ; n that the right-hand side of (2.1) is
equal to

a j.t/+
N∑

m=1

n∑
k1;:::;km=1

a j ;k1;:::;km

m∏
j=1

∞∑
p=1

uk j ;ph−p; (2.2)
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so that

∞∑
p=1

[
u̇ j;p − .p − 1/ḣu j;p−1

]
h−p

=
∞∑

p=1

b j;ph−p +
N∑

m=1

n∑
k1;:::;km =1

a j ;k1;:::;km

m∏
j=1

∞∑
p=1

uk j ;ph−p: (2.3)

Put uk := .uk;0; uk;1; : : : / and .uk/p := uk;p. We introduce the convolution

.uk ? u`/p =
p∑

r=0

uk;ru`;p−r : (2.4)

In the present context

uk;0 = 0 for k = 1; : : : ; n; (2.5)

so the right-hand side of (2.4) reduces to
∑p−1

r=1 uk;r u`;p−r . We write

m

�
r=1

ukr = uk1 ? uk2 ? · · · ? ukm

for the .m − 1/-fold convolution and interpret�1
r=1 ukr = uk1 .

Complete separation of (2.3) according to the exponent of h yields

u̇ j;1 = b j;1 +
n∑

k=1

a j ;kuk;1 . j = 1; : : : ; n/ (2.6)

and for p > 1

u̇ j;p = .p − 1/ḣu j;p−1 + b j;p +
N∑

m=1

n∑
k1;:::;km =1

a j ;k1;:::;km

(
m

�
r=1

ukr

)
p

: (2.7)

By (2.5) the right-hand side of (2.7) involves terms uk;` (k = 1; : : : ; n) only for ` < p,
so that in principle (2.6) may be solved for the u j;1 and then (2.7) solved for u j;p

( j = 1; : : : ; n) recursively in p.
In practice u j;p may diverge for p → ∞ while the basic components v j;p.t/ =

u j;p.t/[h.t/]−p of x j are generally better behaved. We have immediately the recursions

d

dt
.v j;1h/ = b j;1 +

n∑
k=1

a j ;kvk;1h

and for p > 1

d

dt
.v j;ph p/− .p − 1/ḣv j;p−1h p−1 = b j;p + h p

N∑
m=1

a j ;k1;:::;km

(
m

�
r=1

vkr

)
p

:
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If c j;p = b j;ph−p denotes the p-th term in the expansion of a j , these recursions become

v̇ j;1 + v j;1
ḣ

h
= c j;1 +

n∑
k=1

a j ;kvk;1 (2.8)

and for p > 1

v̇ j;p + ḣ

h

[
pv j;p − .p − 1/v j;p−1

] = c j;p +
N∑

m=1

n∑
k1;:::;km =1

a j ;k1;:::;km

(
m

�
r=1

vkr

)
p

: (2.9)

This is a feedback system: if v j;p increases rapidly in t , a reduction is induced in its
successor v j;p+1 when ḣ is positive. As far as convergence is concerned, the choice of
the feedback coefficient ḣ=h is crucial in this recursive system. Experimentation with
Lotka-Volterra systems (for which N = 2) indicates that small ḣ=h can lead to fast
convergence for small t followed by unstable oscillations. Large ḣ=h promotes global
stability of the successive approximants

∑`

p=1 v j;p.t/ but slow convergence compared
to intermediate values, for which both convergence and stability are possible. This
suggests the use of time-dependent ḣ=h, but a suitable constant choice for ḣ=h seems
to often suffice when a j ;k and a j ;k;` are constant.

For the solution and/or numerical evaluation of the x j.t/, we employ

x j.t/ =
∞∑

p=1

v j;p.t/:

This method preserves the full set of parameters in the original system at the
cost of maintaining sequential convolutions containing all parameters. Each equation
contributes a matrix with . j; k/ entry a j ;k − k.ḣ=h/Ž j;k in a linear system driven by
the driving coefficients a j and a nonlinear combination of preceding states.

3. Extension to non-core drivers

We now consider the solution of (1.1) using the expansions (1.4) and (1.5). In place
of (2.3) we have

u̇ j;0 +
∞∑

p=1

[
u̇ j;p − .p − 1/ḣu j;p−1

]
h−p

=
∞∑

p=0

b j;ph−p +
N∑

m=1

n∑
k1;:::;km =1

a j ;k1;:::;km

m∏
j=1

∞∑
p=1

uk j ;ph−p: (3.1)

For convenience, we introduce u0 = .u1;0; : : : ; un;0/ and

8 j.u0/ =
N∑

m=1

n∑
k1;:::;km=1

a j ;k1;:::;km

m∏
j=1

uk j ;0 . j = 1; : : : ; n/:
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Equating coefficients of h−p in (3.1) for p = 0 now gives the nonlinear system

u̇ j;0 = b j;0 +8 j.u0/ . j = 1; : : : ; n/: (3.2)

Two possibilities arise, according to whether or not we have a solution u0 to (3.2).
Suppose first that u0 satisfies (3.2). Equating coefficients of h−p in (2.4) for

p > 0 yields (2.7). The convolution term .uk1 ? · · · ? ukm /p contains the n terms
u j;p

∏
k �= j uk;0. All other terms in the convolution are independent of u j;p, involving

products of quantities uk;q with q < p. Hence the equations for p > 0 form a system
of driven linear ODEs

u̇ j;p = b j;p +
N∑

m=1

n∑
k1;:::;km =1

a.p/j ;k1;:::;km
ukm ;p + Fj;p.uk;r ; k = 1; : : : ; n; r < p/;

where the a.p/ terms are combinations of the coefficients with products of components
of u0 and the Fj;p are nonlinear in the uk;r . The general solution for linear systems
with variable coefficients and continuous driving functions is addressed in Yoshida
[15]. See also [5].

If instead u0 does not satisfy (3.2), we combine the zeroth and first-order conditions
as

u̇ j;0 + u̇ j;1h−1 = b j;0 +b j;1h−1 +8 j.u0/+h−1
N∑

m=1

n∑
k1;:::;km=1

a j ;k1;:::;km

(
m

�
r=1

ukr

)
1

: (3.3)

We define

1 j;0.u0/ = h.t/
[
u̇ j;0 − (

b j;0 +8 j.u0/
)]

. j = 1; : : : ; n/;

which we may regard as an “h-magnified error” arising from non-satisfaction of the
zeroth-order condition. Then (3.3) may be recast for j = 1; : : : ; n as

u̇ j;1 = b j;1 −1 j;0 +
N∑

m=1

n∑
k1;:::;km =1

a j ;k1;:::;km

(
m

�
r=1

ukr

)
1

(3.4)

Since (
m

�
r=1

ukr

)
1

=
(

m∏
j=1

uk j ;0

)
m∑
`=1

u`;1
u`;0

;

(3.4) is a linear differential equation for u j;1 with coefficients depending only on u0.
Thus (3.4) permits explicit solution. The higher-order equations (2.7) for p > 1 and
j = 1; : : : ; n may be treated similarly. The convolution has n terms of the form
u j;p

∏
k �= j uk;0 linear in u j;p.
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As before, these equations can be written in terms of the v j;p. In particular,
u j;0 = v j;0 and

v̇ j;1 = c j;1 − [
v̇ j;0 − (

b j;0 +8 j.v0/
)]

+
n∑

k=1

(
a j ;k − ḣ

h
Ž j;k

)
vk;1 +

N∑
m=2

n∑
k1;:::;km =1

a j ;k1;:::;km

(
m

�
r=1

vkr

)
1

:

4. Construction of the guide coefficients

A discrete Hilbert-space technique is sufficient to construct the guide coefficients
for a given x , h and interval S. Let { k;n.t/} be the (essentially unique) double
sequence of functions on S defined for k; `; n = 0; 1; 2; : : : by∫

S

 k;n.t/ `;n.t/h
−n.t/ dt = Žk;`:

For S finite and n = 0, the  k;0.t/ are Legendre polynomials, while for S semi-infinite
and n = 0 they are Laguerre functions. For S infinite and n = 0, they are Hermite
functions. If h is exponential and S semi-infinite, the  k;n.t/ are n-scaled Laguerre
polynomials.

Also form the quadruple sequence

�k;n;`;r =
∫

S

 k;n.t/ `;r .t/h
−n.t/ dt

and define

c`;r =
∫

S

 `;r .t/x.t/ dt; �n.t/ =
∞∑

k=0

ak;n k;n.t/:

Our intention is to choose ak;n to produce x.t/ = ∑∞
n=0 �n.t/h−n.t/. This would imply

that

c`;r =
∫

S

 `;r .t/
∞∑

n=0

�n.t/h
−n.t/ dt

=
∫

S

 `;r .t/
∞∑

n;k=0

ak;n k;n.t/h
−n.t/ dt

=
∞∑

n;k=0

ak;n k;n.t/h
−n.t/ dt =

∞∑
n;k=0

ak;n�k;n;`;r

if the various sums are absolutely convergent.
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The last relation is a doubly-infinite set of equations for {ak;n} in terms of {c`;r }. Let
{� k1;n1

`;r } be defined implicitly for each k; k1; n; n1 by the inverse sequence condition

∞∑
`;r=0

�k;n;`;r�
k1;n1
`;r = Žk;k1Žn;n1 :

Then

∞∑
`;r=0

c`;r�
k1;n1
`;r =

∞∑
`;r=0

∞∑
n;k=0

ak;n�k;n;`;r�
k1;n1
`;r

=
∞∑

n;k=0

ak;n

∞∑
`;r=0

�k;n;`;r�
k1;n1
`;r

=
∞∑

n;k=0

ak;nŽk;k1Žn;n1 = ak1;n1 ;

so that the coefficients ak;n and �n.t/ are determined. If the sequences { k;n} are
complete for each n, then the above calculation is reversible, determining x.t/ via
{�k;n;`;r} and its inverse. The orthogonal examples given above are all complete. We
note that �k;n;`;n = Žk;` for each n.

5. Riccati system application

An example of a class of nonlinear system amenable to the method is the driven
q-dimensional Riccati system of Lotka-Volterra type

ẋ j = e j.t/+
q∑

i=1

a j ;i xi −
q∑
`=1

a j ;`;`x
2
` +

q∑
`�=k=1

a j ;`;k x`xk . j = 1; : : : ; q/

with a j ;`;` ≥ 0.
Let s1; : : : ; sq denote the singular values of the matrix A = .a j ;i/ and s = maxk sk .

We take
h.t/ = e.s+Ž/t

for Ž > 0 small. We may use the expansion

e j =
∞∑

p=1

b j;ph−p

given by b j;p = e j.t/h.t/Žp;1t , so that c j;p = e j.t/Žp;1.



[9] Guide expansions for the recursive parametric solution of polynomial dynamical systems 395

Here ḣ=h = s + Ž is constant and the guide recursion system is the sequence of
first-order linear equations

v̇ j;1 = e j − .s + Ž/v j;1 +
q∑
`=1

a j ;`v`;1 for j = 1; : : : ; q;

v̇ j;p = .s + Ž/
[
.p − 1/v j;p−1 − pv j;p

]+
q∑

i=1

a j ;ivi;p −
q∑
`=1

a j ;`;`.v` ? v`/p

+
q∑

`�=k=1

a j ;`;k.v` ? v`/p for p > 1 and j = 1; : : : ; q:

If the initial conditions are

v j;p.t0/ = x j;0Žp;1 for p ≥ 1 and j = 1; : : : ; q;

then x j.t0/ = x j;0.
The use of the enhanced singular value s + Ž guarantees that∣∣∣∣ v j;1.t/−

∫ t

t0

e j .− / d−

∣∣∣∣→ 0 exponentially as t → ∞.

The equations for v j;p retain the system structure, with a negative feedback for stabili-
sation. The procedure is suitable for computer programming and replaces in an orderly
way a nonlinear system by a similarly-structured linear system without compromising
the former.
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