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HYPERELLIPTIC PARAMETRISATION OF THE GENERALISED
ORDER PARAMETER OF THE N = 3 CHIRAL POTTS MODEL
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Abstract

It has been known for some time that the Boltzmann weights of the chiral Potts model can
be parametrised in terms of hyperelliptic functions, but as yet no such parametrisation has
been applied to the partition and correlation functions. Here we show that ter3 the
functionS(tp) that occurs in the recent calculation of the order parameters can be expressed
quite simply in terms of such a parametrisation.

2000Mathematics subject classificatio2B05.
Keywords and phrasestatistical mechanics, lattice models, order parameters, chiral Potts
model.

1. Introduction

There are a few two-dimensional models (and even fewer three-dimensional models)
in equilibrium statistical mechanics that have been solved exactly. These are lattice
models where sping are assigned to the sitesf a lattice (usually the square lattice).
Each spin takes one &f possible values and spins o; on adjacent siteis j interact

with a specified positive real Boltzmann weight functidf(c;, o;). One wants to
calculate the partition function (also called the sum-over-states)

Z = ZHW(O']',O'J'),
(ij)

where the sum is over all states of all the spins, and the product is over all@dpes
of the lattice.
If the number of sites i#1, we expect the limit

k= lim zYV
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to exist and to be independent of the shape of the lattice, provided it becomes large ir
all directions: this is the “thermodynamic limit”, andis the exponential of the free
energy per site. If L .., mare sites fixed on the lattice and the limit is taken so they
become infinitely deep within it, then we also expect the average

(flog,...,0m) = Z_lzl_[ f(oy,....om)W(oj, 0})
(ij)

to tend to a limit, for any given functior of thesem spins.

Because spins only interact with their neighbours, one can build up the lattice one
row at a time, and associate a row-to-row “transfer matrix” with such an operation.

To solve such a model, typically one shows that the Boltzmann weiyhsatisfy
the star-triangle or “Yang-Baxter” relation8][ These ensure certain commutation
relations between the transfer matrices, and this is usually a first step towards calcu-
lating «.

The next step is to calculate the order parameters, which are averages of certair
functions of a single spia; deep within the lattice. This is a harder problem than
calculatingx. For instance, Onsaget{] calculated« for the square-lattice Ising
model in 1944, but it was not till 1949 that he announced at a conference his result for
the order parameter (namely the spontaneous magnetisation), and not till 1952 befor
a proof of the result was published by Yaraf] .

However, since then the “corner transfer matrix” method has been developed by
Baxter {], and the “broken rapidity line method” by Jimbo, Miwa and Nakayashiki
[18]. For many of the solved models (those with the “rapidity difference” property),
these methods make the calculation of the order parameters comparatively straighfor
ward.

Even so, one model has proved challenging, namely the chiral Potts model. This
is an N-state model wher®/ (o, o;) depends only on the spin differenee — o,
mod N. The Boltzmann weights also depend on two paramepers (known as
“rapidities”), and on given positive real constakik’, related by

K2+ k%=1 (1.1)

The parametek’ plays the role of a temperature, being small at low temperatures. For
0 < k' < 1 the system displays spontaneous ferromagnetic order, becoming critical
ask’ — 1.

Its order parameters can be taken to be

j\/lr = (wml), (12)

wherew = exp2ri/N) andr = 1,..., N — 1. It was shown in 1988 that its
Boltzmann weights satisfy the star-triangle relatianl7], and the partition function
per sitex was soon calculated] 7].
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The order parameters were another story. The model had developed from a one
dimensional quantum spin chain, which has the same order parameters. From serie
expansions it was conjectured] jn 1989 that

M, = KN/, (1.3)

Much effort was expended in the ensuing years (certainly by the author) in attempting
to derive this result. It was not until 2005 that this was dahg 15].

FIGURE 1. The square lattice (circles and solid lines, drawn diagonally) and its medial graph of dotted or
broken lines.

The method used was based on that of Jirabal. [18]. In Figure 1 we show the
square latticeZ, drawn diagonally, denoting the sites by circles and the edges by solid
lines. We also show as dotted (or broken) lines the medial grapgh dvery edge
of £ is intersected by two dotted lines. With each dotted line we associate a rapidity
variable (o, g, h orv). In general these variables may differ from dotted line to dotted
line. They must be the same all along the line, except for the horizontal broken line
immediately below the central spin. We break this below; and assign a rapidity
p to the left of the break and a rapidigyto the right. With these choices of rapidities,
define

Foq(r) = (@),

In the thermodynamic limit, the star-triangle relations will ensure fF@(r) is
independent of the “background” rapiditiesh, because it allows us to move any of
these dotted lines off to infinity3]. However, the effect of the break is that we cannot
move the broken ling, g away fromos, s0 F,(r) will indeed depend omp andg.

An important special case is when= p. Then thep, q rapidity line is not in
fact broken, so it can be removed to infinity alﬁg,(r) must be independent gfand
equal to the order parametéi, defined by £.2): M, = Fpu(r).
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We also define

'qu(r)

Gpg(r) = =2
pall) Foar — 1)

(1.4)

The author wrote dowrll[l] functional relations satisfied b@,4(r) in 1998. They
do not completely specifs,4(r ), but must be supplemented by information on the
analyticity properties oG 4(r). (Just as the relatiofi(z + 1) = f(z) only tells us
that f (2) is periodic of period 1: however, if we can also show thi&r) is analytic
and bounded in the domain® Re(z) < 1, then it follows from Liouville’s theorem
that f (2) is a constant.)

For N = 2 the chiral Potts model reduces to the Ising model and it is quite easy
to find the needed analyticity information, to solve the functional relations and obtain
the Onsager-Yang resulit; = k¥4,

For N > 2 the problem is much harder. It was not until late 2004 that the author
realised that it is not actually necessary to solve for the general fur@tig). It is
sufficient to do so for a special “superintegrable” case wigeierelated top. The
function then has quite simple analyticity properties and it's quite easy to solve the
relations (in fact one does not even need all the relations), to ofgi(r) for this
case and to verify the 16-year old conjectute3f. Forr =1, ..., N, the functions
Gpq(r) can all be expressed in terms of a single functgty) which is defined below.

Even so, it would still be interesting to understa@g,(r) more generally. A
fundamental difficulty is that foN > 2 the rapiditiesp and q are points on an
algebraic curve of genus greater than 2, and there is no explicit parametrisation of this
curve in terms of single-valued functions of a single variable. (There idlfet 2:
one can then parametrise in terms of Jacobi elliptic functions.) One can parametrise
in terms of hyperelliptic functionsd], but these hav®&l — 1 arguments that are related
to one another. As yet they have not proved particularly useful, but one lives in hope.
The functionS(t,) is a simple example of a thermodynamic property of the chiral Potts
model, and has the simplifying feature that it depends on only one rapidity, rather than
two. It is an interesting question whether it can be simply expressed in terms of these
hyperelliptic functions.

For N = 3 these hyperelliptic functions can be expressed in terms of ordinary
Jacobi elliptic functions. One still has two related arguments (here tezpaatiw),
but some of the properties can be expressed as products of Jacobi functions, each wit
an argumeng, or w,, or some combination thereof. A number of such results have
been obtained1[0], [9, pages 568-569].

There are two distinct ways of performing the hyperelliptic parametrisation. In
[8, 16] we used what we shall herein call the “original” parametrisation. What we
report here is that foN = 3 the functionS(t,) can be expressed quite simply as a
product of Jacobi functions &, andw,, providedwe use the second “alternative”
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parametrisation.
2. The function S(tp)

We can take a rapidity to be a set of variableg = {X,. y,, p, t,} related to one
another by

4

to=XpYp. Xp+Yy =kKA+x)y)), kx)=1- kyy =1-Kuy. (2.1)

pN
p
There are various automorphisms or maps that take onéxsey,. wp, ty} to

another set satisfying the same relatiohg); Four that we shall use are:

R: {Xrp, YRps Rrp: trRp} = {Yp, ©Xp, 1/ pp, wtp},
S: {Xsp Ysp Msp tsph = (Y, 5 X0, 0V 2yp/ (o), 11,
Vo {Xvp, W, Hvps tvp) = {Xp, @Yp, tp, olp),
M : {Xmp> YMp> Umps tap) = {Xps Yo, @tp, o).
They satisfy

RV'R=V, MRM=R, MSM=S &=VvV=MN=1 (2.3)

2.2)

Let g be another rapidity set, related pdoy g = V p, that is,
Xqg =Xp, Yq=®Yp, HUq = [p. (2.4)

We takeu, to be outside the unit circle, §p,| > 1. Then we can specify,
uniquely by requiring that-/(2N) < arg(xp) < 7/(2N).

We regardx,, Yy, 11 as functions ot,. Thent, lies in a complex plane contain-
ing N branch cutd3y, ..., By_1 on the lines argp) =0, 27/N, ..., 27(N — 1)/N,
as indicated in Figurg, while x;, lies in a near-circular region round the pokat= 1,
as indicated schematically by the regiq inside the dotted curve of Figug The
variabley, can lie anywhere in the complex plaaeceptn R, and inN — 1 corre-
sponding near-circular regiofg,, . . ., Rn_1 round the other branch cuts. With these
choices, we say thai lies in the “domain™D.

With these choices, we show i) that

Gpg(r) = KNH-2/N gt ) (2.5)

forr = 1,...,N — 1, while Gpq(0) = Gpq(N) = kNN gt )N Hence
Gpq(D) ---Gpg(N) = 1, in agreement with the definitiori @). The functionS, =
S(tp) is given by

2 1 [ k€’
log S(tp) = “NZ logk + N /0 T ke log[A(0) —t,]db, (2.6)
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B,

\a)

/.

B,

FIGURE 2. The cutt,-plane forN = 3, showing the three branch cuss, 1, B, and the approximately
circular regionR, in which x, lies whenp € D.

whereA(6) = [(1 — 2k’ cost + k%) / kYN,
From [14], particular properties are

SO =1 S(e0) =k, Sty)Sety) - St =k Nx,.  (2.7)

The function S(t,) is single-valued, non-zero and analytic in the tutplane of
Figure2, but only the cut on the positive real axis is necessary: the other cuts can be
removed for this function. 16.(t,) is the analytic continuation di(t,) across the
branch cut,, then

S(tp) for r #£0;

2.8
(Yp/Xp)S(t,) for r =0. (2.8)

%c(tp) = {

If we interchangep, g in [15, Equation 49], then apply the restrictiah.4) and use
the relationR S= MV R SVtogether with [L5, Equation 50], we obtain

Gpg(MNGpg(N—=T1)=1,
wherep’ = V™'q' = RSV p It follows thatS(t,) also has the symmetry

S Srsvp= S(tp) S(L/t,) = k2N, (2.9)

3. The Riemann sheets (“domains”) formed by analytic continuation

We shall want to consider the analytic continuation of certain functioris ofito
other Riemann sheets, that is, beyond the dorfailiVe restrict attention to functions
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that are meromorphic and single-valued in the cut plane of Figuend similarly

for their analytic continuations. Obvious examples &gey, and S(t,). They are
therefore meromorphic and single-valued on their Riemann surfaces, but we need tc
know what these surfaces are.

We start by considering the most general such surface. As a first step,.g)ltw
move from outside the unit circle to inside. Thgrwill cross one of theN branch
cutsB; in Figure2, moving onto another Riemann sheet, going back to its original
value but now withy, in R;. Sincey, is thereby confined to the region near and
surroundingy', we say that/, >~ «'. Conversely, by, >~ «' we mean thay, € R;.

We say thatp has moved into theomainD; adjacentto D. There areN such
domainsDg, D4, ..., Dy_1.

Now allow ., to become larger than one, gpagain crosses one of thé branch
cuts. Again we require thdp returns to its original value. If it crossés;, then it
moves back to the original domai. However, if it crosses another cl{ thenx,
moves intoR;_;, and we say thap is now in domairD; ;_;.

Proceeding in this way, we build up a Cayley tree of domains. For instance, the
domainD;j is a third neighbour ofD, linked via the first neighboud; and the
second-neighboub;;, as indicated in Figur8. Herex, >~ 1inD, y, ~ o in Dy,

Xp >~ ! in Dj; andy, ~ o in D;jx. We reject moves that takeback to the domain
immediately before the last, §o£ 0 andk # i. We refer to the sequenéke j, k, ...}
that define any domain asaute We can think of it as a sequence of points, all with
the same value df,, on the successive Riemann sheets or domains.

The domainsD, Djj, Dij. ... with an even number of indices, have~ ’,
wheret is the last index. We refer to them as being of eparity and oftypef. The
domainsD;, Djjx, ... havey >~ " and are of odd parity and type

D — D; — Dij — Dij«
FIGURE 3. A sequence of adjacent domaiRsD;, D, Diji.

The automorphism that takes a pomin D to a point inD;, respectively, is the
mappingA = VI"IRV. If g = A p, then

Xq =0 Yo, Yqg=@%Xp, tg=1,. (3.1)

Because 0of4.3), A,y = A, so there aréN such automorphisms.

We can use these maps to generate all the sheets in the full Cayley tree. Suppose w
have a domain with routg, j, k, ...} and we apply the automorphis#, to all points
on the route. From3(1) this will generate a new routier, i — o, ] + o, K — , .. .}.
For instance, if we apply the mafy, to the route{m} from D to D,,, we obtain the
route{o, m — «} to the domairD, .. Thus the map that takd3 to D;; is A Ai;.
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Iterating, we find that the map that takPo Dk mn IS

AALA Kk Anine (3.2)
We must have
A =1, (3.3)

since applying the same map twice merely retyprie the previous domain.

Let us refer to the general Riemann surface we have just descril§edtasonsists
of infinitely many Riemann sheets, each sheet corresponding to a site on a Cayley
tree, adjacent sheets corresponding to adjacent points on the tree. A Cayley tree i
a huge graph: it contains no circuits and is infinitely dimensional, needing infinitely
many integers to specify all its sites.

Any given function will have a Riemann surface that can be obtained ffom
by identifying certain sites with one another, thereby creating circuits and usually
reducing the graph to one of finite dimensionality.

From 3.1, the mapsAo, Ay, ..., Ay_; leavet, unchanged. We shall often find
it helpful to regardt, as a fixed complex number, the same in all domains, and to
consider the corresponding valuesgf y, (and the hyperelliptic variables, w,) in
the various domains. To within factors ©f the variablex, andy, will be the same
as those fofD in even domains, while they will be interchanged on odd domains.

Analytic continuation of S(t,) Now return to considering the functidsit,). It is
sometimes helpful to write this more explicitly &x,, y,). Then from ¢.8) the map
that takesS(t,) from domainD to D, is

d=APp: SXq Yo) = Ya/%q) " S(Xp, ¥p), (3.4)

wherex,, yq are given by 8.1) ands; = 1if i = 0, modN; otherwise; = 0. Note
thatxy, Yy are obtained by interchanging, y, and multiplying them by powers of.

For givent,, let S(t,) be the value of5(t,) in the central domai®, given by the
formula @.6). Iterating the mappings3(4) from domain to domain, in any domain
we must have

S(Xpa yp) = wa(yp/xp)rSJ(tp)a (3-5)

whereew, r are integers. Note that in this equatiap, y, are the values for the
domain being considered: they aretthe corresponding initial values of the central
domainD.

In particular, in the domaif®;j, we obtain

r = —8i +8i+j — 8j+k. (36)
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4. The original hyperelliptic parametrisation for N = 3

Hereinafter we restrict our attention to the c&¢e= 3 and use the hyperelliptic
parametrisation and notation of previous pap8r4, 9, 12]. We use only formulae
that involve ordinary Jacobi elliptic (or similar) functions of one variable.

Givenk, k', we define a “nomek by

K k)2_27xﬁ<1_)(3n>12 (4.1)
/"= 1-xn) '

n=1

We regardk as a given constamiptthe same as the rapidity variabdg. It is small at
low temperaturesk( small), and increases to unity at criticalit/ & 1). We introduce
two elliptic-type functions

ﬁ (1— wx"12)(1 — w?Xx"/2)

— w2 —
h(z) = w°h(x2) = o X2 (L= ax/2) 4.2)
(1 _ X3n 2/2)(1 X3n—1z)
Z1/3
(Z) 1_[ X3n 22)(1 _ X3n_l/Z) ' (43)
We then define two further variables, w, by
tp = XpYp = 0h(zp) = h(=1/wy) = &*h(—wy/Z). (4.4)

These are the relations (27) dfd]. The relations (32) off(] are also satisfied:
X, Volt® = ¢ (XZp/wh)® = (=X Zowp)* = d(—Xwy/Z)°, (4.5)
as are the relations (4.5), (4.6) & [in particular,

ﬁ — X" 1z/w)(1 — x*w/z)(1 — x5 5zw) (1 — x5z 1w 4.6)
(A= x"2z/w)(1 — x2w/2)(1 — xO"~2zw) (1 — x4z w1 '
writing z,, wp, here simply ag, w.
Thez,, w, variables satisfy the automorphisms
Zrp = X2, Zsp = 1/(Xz), 2yp = —1/wy, @7
WRp = Zp/Whp, wsp = 1/(Xwp), Wyp = Zp/Wp. '

The operationp — Mp multiplies (z,w,)*?® by , but does not change,, w,
themselves.

The variables,, w, are of order unity whel’, x are small,u,, is of order YK/,
andx, >~ 1. This is the low-temperature limiting case pfe D. It is convenient to
defineu, = {z,, —1/wp, —wp/Zp}.
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The three automorphisms that leayainchanged, while taking to Dy, D,, D,
respectively, are

Ay =V?R, A, =RV?) A,=VRV. (4.8)
If g = A p, then
Xq =0 Yp, Yqg=0'%p, tq=1p, (4.9)

andug = Ajup, whereA,, A, A, are the three-by-three matrices

0 x* O 0 0 x 10 O
A=|x 0 0], A4=|10 1 0}, A=|0 0 x**
0 0 1 x1 00 0 x O
They satisfy the identities
AAA = AjAA; (4.10)

foralli, j.

They permute the three elememts —1/w,, —w,/z, of u, and multiply them by
powers ofx, the product of the elements remaining unity. t%twg be the values of
z,, wp on the central she@. Then it follows that on any sheet, for the same common
value oftp,

Z, = X"y, wp = X"Bp, (4.11)

where{a,, —1/8,, —Bp/a,} is a permutation ofz), —1/wf, —w?/zp}.

Repeated applications of the three automorphisms will therefore generate a two-
dimensional set of permutations and multiplications of the elements,.ofEach
member of the set corresponds to a site on the honeycomb lattice of Bighdgacent
Riemann sheets correspond to adjacent sites of the lattice. Sheets of even parit
correspond to sites represented by circles, those of odd parity are represented b
squares. If is the integer inside the circle or square, then for even sites o,
while on odd sitey/, >~ '. The numbers shown in brackets alongside each site are
the integersn, n of (4.17).

Thus for the functiong, andw, of t,, the graply of the Riemann surface reduces
to this two-dimensional honeycomb lattice.

Note that the siteX, Y, Z in the figure are third neighbours of the central dite
and each can be reached fr@rin two three-step ways. For instandgjs bothDg,,
andD,;,. (Note that forD;j, we here take the intermediate sjt¢o be represented in
Figure4 by the integerj, mod 3. This is changed in the next sectiont.)

ThusY is obtainable fronD by the mapsy A, Ag and A, AgA,. From @.10 these
are the same, so we can identify the two sheets as one, represented by
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Similarly, X corresponds toA; A, A; = A A1A; and Z to AgAtAg = AT AGA;.
This is whyG reduces to the honeycomb lattice.

However the automorphisms3(4) of the functionS(t,) do notin general satisfy
(4.10. On its Riemann sheefBy,;, D,1; We find from @.6) thatr = —2 and 1. Thus
from (3.5 the analytic continuation d(t,) is (Yp/Xp) 2S(tp) and(y,/Xp) S(tp) ONn
each sheet, respectively (ignoring factorsudf Thus the result foi¥ depends on the
route taken to it. (The same is true of but not forX.)

Hence the values @, (andw) are the same 0l andD,;4, butS(t,) is different.
It follows thatz,,, w, do not uniquely determing(t,). Hence neithes(t,) nor St)3
is a single-valued function of these hyperelliptic varialtgsw,: one must look
elsewhere for such a parametrisation.

FIGURE 4. The honeycomb lattice formed by the hyperelliptic varialzles in either parametrisation.
Circles (squares) denote sites of even (odd) parity.

5. The alternative hyperelliptic parametrisation for N = 3

There is another way of parametrisikRgxp, Y,. 1tp, tp SO that the nome is small
whenk’ is small. It can be obtained from the original parametrisation of the previous
section by a simple mapping, and we do this in the Appendix. We take the results
(A.1)—(A.4) therein and drop the hats o, y,, ..., V, M to obtain

5 o) l— X3n 12
—k =27X1_[(1—X”) . (5.1)
n=1
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Yo/Xp = wh(zy) = h(=1/wp) = w’h(=wp/2p), (5.2)
—X%y 1% = P (XZp/w?)® = P (—XxZywp)® = P (—Xwy/Z)°. (5.3)
Zrp = —XWyp, Zsp= —1/(Xwp), Zyp = —1/wp, (5.4)

WRp = Wp/Zp, wsp = —1/(XZy), Wyp = Zp/Wp.

Again zy, = z,, wwp = wp. These equations replacé.q), (4.4), (4.5, (4.7) of
Sectiond. The functionsh(z), ¢ (z) remain defined by4.2) and @.3), and the relation
(4.6) remains satisfied.

We now regard,, Yy, ..., V, M as being the same variables and automorphisms
as those above, satisfying.(), (2.2 and @.3). Then the hyperelliptic variables
X, Zp, wp aredifferentfrom those of Sectiod. If one takesp € D and expands the
functions in powers of the low-temperature variailghen to leading ordez,, w, are
the same as thg,, w, of Section4, being of order unity and satisfying, = z, + 1;

X is negated and is of ordéf.

The three automorphisms that leayeunchanged while takin@ to Do, D,, D,
are again given by4(8) and @.9). Using the rulesg.4), we find thatz,, w, transform
according to the rules

g=Ap: zZ=x"¥/z, we=x"w, (5.5)

fori = 0,1, 2, writing §; asés(). If zg, wg are the values of,, w, on the central
sheetD, then it follows that on any Riemann sheet the analytic continuations of,
(for a given value of,) are

xm(zg)ﬂ, x”(wg)ﬂ, (5.6)

choosing the upper (lower) signs on sheets of even (odd) parity.rhlerare integers
satisfying

0 (mod 3 onevensheets

m-+n=
1 (mod 3 on odd sheets
The Riemann surface fax,, w, therefore corresponds to a two-dimensional gréph
each site ofj being specified by the two integers n.

In fact thisG is the honeycomb lattice shown in Figutebut we must interpret it
slightly differently from how we did in Sectiod. Adjacent sites still correspond to
adjacent Riemann sheets, and the parities of the sites are shown as in 8dwmtion
circles and squares. Again, on odd siygs~ ', wherei is the number shown in the
figure. However, on even sites we now take~ '. For each site, the bracketed
integers shown in Figuré are now the integergn, n) of (5.6).
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As in the previous section, the sites Y, Z in the figure are third neighbours of
the central siteD, and each can be reached frdmin two three-step ways. There
is the difference that th¢ of D;j is now the number inside the corresponding circle
of Figure4, so in this sectiornX is bothD,;q andD;5, so from B.2) and @.3) it is
obtainable fronD by the map, AgA; andA; AgA,. The reason we can identify,;q
with Dy is that 6.5) implies thatA, AgA; = A1 AgA;. More generally, it implies that

AA A = AA A (5.7)

for all permutationd, j, k of 0,1, 2. This means that eacX, Y, Z corresponds to
a single Riemann sheet rather than two, and is the reasoryjtheduces (for the
functionsz,, w, of t,) from the full Cayley tree to the honeycomb lattice.

Properties ofz,, w,, S(t,) Within the central domaif® there is some circle of non-
zero radius, centre the origin, such that none,ofv,,, 1/z,, 1/wp, z,/wp, w,/Z, can
lie within the circle (forx small the radius is of order'/?). Two special values op
that lie withinD are

1
P : zgm——=——P_? v, =0, x,=k"3 St,)=1 (5.8)
Wp Zp
and
1 wp -1/3 -2/9
PR): zZp=——=——=0, Ypy=o00, Xy=k3 St,)=k % (5.9
Wp Zp

using @.1) and @.7).

Remembering thak, ~ 1, one can verify that the conditiond.¢), (5.2) are
satisfied. These are the only two points witliwherey,/x, has a zero or pole.

Any point where one of,, —1/w,, —w,/z, is equal taw?x™ or wx™, for non-zero
integerm, necessarily liesputsideD (that is, on another Riemann sheet). It follows
that the function&(z,), . . ., h(—wp/z,) defined and used in the next section have no
zeros or poles fop € D: they are finite and non-zero therein. The same is trug, of
S(t,) and the functioré(zp, wp) defined below.

Now consider the map#y for the functionS(t,), as given in 8.4—3.6). The
mapping A Aj Ac simply multiplies S(t,) by a power ofw and by (y,/x,)", where
r = —&; +8; — 8. Obviously this exponemtis unchanged by interchangingvith k,
so is the same for both sides &f 7).

The powers ofv arenot necessarily the same, but we can avoid this difficulty by
simply working with S(t,)? instead ofS(t,). The automorphismg\ for S(t,)® do
satisfy 6.7) and S(t,)? is the same on the two sheé®s;o, D10, SO againX reduces
to a single sheet. Similarly, so dbandZ.

As a result,S(t,)? is uniquely determinedf we know z, andwy,. In fact on any
Riemann sheeam, n) the analytic continuation o§(t,)* is

(yp/Xp)erO(tp)sv (5.10)
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where
(m+n)/3 on even sheets

r = (5.11)
(m+n—1)/3 onodd sheets

Thex,, y, in (5.10 are those of the sheet under consideration.

It therefore makes sense to look for a single-valued meromorphic functiagn of
andw, that is equal taS(t,)3. We can writeS(t,) itself asS(z,, w,) provided we
accept that it is three-valued in the rather trivial way that its values differ by factors
of w. Then from the automorphism8.¢) and 6.5), this function must satisfy the
three relations

S(Zp. wp) = (Xp/Yp) S(X 12,0, X w ) = S(xz, wt) = S(z,t xw, Y (5.12)
for all z,, w,. Also, using R.2) and €.4), the relation 2.7) becomes
S(Zp, wp) S(—1/wp, Zp/wp) (—wp/Zp, —1/2p) = K 73X,. (5.13)

The functionx;l has no zeros or poles on even sheets, whereas on odd sheets
(wherey, >~ &') it has the same zeros and polesyagx,. It is therefore useful to
work not with S(z,, wp)3, but the function

S(zp. wp) = X5 S(zp, wy)°, (5.14)

since from 6.10 and 6.11) this has the same poles and zerogyggx,)™" onall
Riemann sheetdn, n), even and odd. Fronb(2) we can write(y,/Xp) as a function
of eitherz,, w, or z,/w,: this suggests that it may be possible to wig,, w,) as

a product of functions of these individual variables. We do this in the next section.

6. S(tp) as a function ofz,, w,

Define the functions

o0

B (1-xlz)! _ Fw2)
F(Z)_Eu—x?zl)i and C@=¢ 64

soF(z2) =1/F(z1),G(2) = G(z'1) and
G(2)/G(x2) = wh(2) (6.2)

for all complex numbers.
Consider the product

P = G(z)* G(—1/wp)’ G(—wp/zp)” (6.3)
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for arbitrary integersg, 8, y. As afirst step, we ask if we can choeses, y so thatP
has the same poles and zeroéazsp, wp), thatis, agy,/x,)™" on all sheetgm, n).
The integeran, n specify a sheet and are defined . From 6.2), on sheet

(m, n) the functiony,/x, has a simple zero whey = X"w?, w, = —X"w, Z,/w, =
—o™ "w. Any one of these equalities implies the other two, so at this Fﬁ(izy, Wp)
has a zero of orden-+n. On the other hand, the three factordoiave zeros of order
—ma, NB, (m—n)y, respectively. Thus we requir+n = —ma +ng + (M—n)y,
for all allowed integersn, n and fixed values af, 8, y. This will be so if and only if

a=y—-1 p=y+1 (6.4)

There are also possible zeros and poles whes x"w, w, = —X"0?, Z,/w, =
—o™ "w?, but the only difference from the above is that all the orders are negated, so
again we obtain the condition§.4).

Neither S(z,, w,) not P has any other other zeros or poles, &@,, w,) is
independent of the integer, which is still arbitrary. Substitutings(4) into (6.3), this
implies that the functions

8(zp, wp)G(Zp)/G(—1/wp),  G(2)G(—1/wp)G(—wp/Zp)

have no zeros or poles anywhere on the Riemann surface. Us@aiid 6.14), they
have valuek~3, F(w)~2at p = p(1), so if they were constants it would follow that

S(zp, wp) = K 3G(=1/wp)/G(zp), (6.5)
G(zp)G(—1/wp)G(—wp/2zp) = 1/F(60)3- (6.6)

We can prove that these relations are indeed true by using Liouville’s theorem for
a single Riemann sheet. L&(z,, w,) be the ratio of the RHS of5(14) to the RHS
of (6.5). Then from 6.12 and 6.1)—(6.2) it follows that

T(Zp, wp) = T(X'Z,t x w,H) =T(xz,h w, ) =T(z,h xw,b).
Thus the functionT is unchanged by the three automorphisis A, A, It is
therefore a single-valued function of the variaflevithoutthe branch cuts of Figuge
It has no zeros or poles i, so it has no zeros or poles in the comptgxplane,
including the point at infinity. By Liouville’s theorem it is therefore a constant. It is
unity whenz, = ®? or w, that is, whert, = 0 or oo, so it is one. This proves the
identity (6.5). The identity 6.6) can be proved similarly by taking(z,, wp) to be
the ratio of of the LHS of§.6) to the RHS.
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Two more identities We originally tried a much more general ansatz for the prod-
uct P, allowing for factors such as 4 x/z raised to a power linear i and
mod (], 3). As a result we discovered yet two more identities satisfiead oy .
Define the function

[ee}

s 1 - x32pz)(1 - x> 1w?/2)
h@=]] (1 — x32022)(1 — x31w/2)’

n=1

then we find that
h(zp) A(—wp) = h(=1/wp) A(=zp/wp) = h(—wy/zp) h(L/Zp).  (6.7)

We can prove these identities in a similar way. First note that

- /X 1 -z w? -7\~ (1
h(-)==—, h(=)==——— d h@=h(=)h(@h{|-=
(z) h(z)’ (x) h(x-1z-1) an @ (x) @ (z)
for all z. We can use this last formula a6l ?) to eliminate ratios such as
h(—xtw™b
h(x~1z)

in favour ofh functions whose arguments do not conteifias a factor. Using this fact
and applying the automorphisnfg, A;, A, to the ratios of the expressions id.7),

we find that the automorphisms merely permute these ratios. If we write the three
expressions a3y, J,, J; and form, for arbitraryy,

T B % % J J % %
apvo=(e=3) («=3) (= 3) (= 3) (= 3) (- 3)

then thisT (z,, wp) is unchanged by the automorphisms, so is a single-valued function
of t,. It has no zeros or poles (P, so by Liouville’s theorem it is a constant. At
p = p(1) or p(2), the J’s are equal, so for alt,, w,

T(zp, wp) = (¢ — 1)°.

It follows that J; = J, = J; for all t,, which establishes the identitie. 7).

For an arbitrarly chosen numerical valuezgf working to 32 digits of accuracy, we
have successfully checked the identitiesb(—(6.7) to twenty terms in an expansion
in powers ofx.

From 2.2 and 6.4), the mapp — RSV ptakesxy, t,, z,, wp t0 1/Xp, 1/t,, —wy,
—2,. From 6.14) and 6.5), noting thatG(—1/w,) = G(—w,), it is apparent that

SpS’RSVp= S(Zpa wp)S(_wpv —Zp) = k72/9,

in agreement with4.9).
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7. Summary

For the case whelN = 3 andq is related top by (2.4), the generalised order
parameter functio® ,q(r ) is given by @.5), Wherexlgls(tp)3 can be simply expressed
by (5.14 and 6.5 as a product of functions of the hyperelliptic variablgsw,
of Section5. This is the first time that a thermodynamic property of te> 2
chiral Potts model has been so expressed. (As distinct from algebraic functions of the
Boltzmann weights, such as the functionfgf, of [12].)

The functionsF(z), G(2) in (6.1) are infinite products similar to elliptic functions,
except that factors such as-1x/z are raised to the powegr. Such extensions of
elliptic functions occur in the free energies of other solvable models, notably the Ising
model. Good examples aréd, Equations (B.10), (B.17) and (B.18)].

We emphasise thab(14) and 6.5 are in terms of thalternative hyperelliptic
parametrisation of Sectiob herein. Papersg] to [16] are in terms of the original
hyperelliptic parametrisation of Sectidgn

It is still an interesting question wheth&,4(r) can be simply expressed as a
function of such variables for arbitrany, g. The result of this paper implies that one
must use the hyperelliptic parametrisation of Sectiprather than that of Sectich
There is a difficulty with this: if we writeR®p, R°q asp’, g/, the relations§.4) imply
thatz, = z, andwy, = wp, whereas it imot true thatG, 4(r) = G,4(r) or that
Gpq(r) = Gyy(r). This means thaG,4(r) cannot be a single-valued function of
Zp, Wp, Zy, wq. However, the functioh ,(r) = Gpq(r)Grqrp(r) of [11]is unchanged
by p — p/, and byq — ', so may be so expressible.

Appendix A.

Here we show how the alternative hyperelliptic parametrisation of Segtian be
obtained from the original parametrisation of Sectidoy a simple mapping.

Letk, K, Xp, Yp, 14p, tp be the variables of Sectioh Define new variablek, k',
Xps Yo, fLp, T SO that

k=k? K=ik/k x=21%, Yo=79p
wp =" Rofp, Yp/Xp = .
Leavex, z,, w, and the function$i(z), ¢ (z) unchanged.
Then the relations1(1), (2.1) remain satisfied if we replade K', X, Yp, tp, tp
therein byk, K', Xy, ¥p, fip, fp. The relations4.1), (4.4), (4.5) become

. [e%) l—X3n 12
—k's = 27x , A.l
E(l_xn) (A1)
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A

Jo/Rp = 0N(zp) = h(=1/wy) = w*h(=wp/z,, ), (A.2)
—R393 1,0 = ¢ (XZp/wD)® = P (—XZwp)® = P (—xwy/Z2)°. (A.3)

Define automorphism®, S, V, M by (2.2 with x,, Yp. ..., M, replaced by
Xp, ¥ps - .-, Mp. Then

R=VS S=M11IR V=V, M=M

and the relations(3) remain satisfied iR, S, V, M therein are replaced by, S, V,
M. From @.7) it follows that

Zgp = —XWp, Zyp = —1/(Xwp), Zyp = —1/wp,

(A.4)
Wap = Wp/Zp,  wWgp=—1/(Xz),  wy,=Zp/wp.
Now drop the hats ok, k', X, . .., M to obtain §.1)—(5.4). Equations{.1), (2.1),
(2.2 remain true.
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