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Abstract

Planar hinged segmented bodies have been used to represent models of biomechanical
systems. One characteristic of a segmented body moving under gravitational acceleration
and torques between segments is the possibility that the body’s segments spin through
more than a revolution or past a natural limit, and a computational mechanism to stop
such behaviour should be provided. This could be done by introducing angle constraints
between segments, and computational models utilising optimal control are studied here.
Three models to maintain angle constraints between segments are proposed and compared.
These models are: all-time angle constraints, a restoring torque in the state equations and
an exponential penalty model. The models are applied to a 2-D three-segment body to
test the behaviour of each model when optimising torques to minimise an objective. The
optimisation is run to find torques so that the end effector of the body follows the trajectory
of a half-circle. The result shows the behaviour of each model in maintaining the angle
constraints. The all-time constraints case exhibits a behaviour of not allowing torques (at
a solution) which makes segments move past the constraints, while the other two show a
flexibility in handling the angle constraints which is more similar to what occurs in a real
biomechanical system.

2000Mathematics subject classification: primary 92C10; secondary 49N15.
Keywords and phrases: biomechanics, optimal control, all-time constraints.

1. Introduction

The dynamic behaviour of multi-degree-of-freedom biomechanical systems is usually
studied by computer simulation of their dynamic equations [1]. Planar hinged seg-
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FIGURE 1. Body diagram of thei th segment.

mented body models have been used for analysis of biomechanical systems [6, 7, 8].
This is due to the need for simplified biomechanical models that represent a particular
system accurately and which are capable of providing simulation results which satisfy
the requirement for that system. This type of model has been used not only for dy-
namics simulation and analysis [3, 13] but also for control purposes, as shown in [10].
Therefore, studies in this area will provide advancement in the field of biomechanics
and sport sciences.

Computational control of segmented body models under the effect of gravity has
been consistently studied by many researchers, especially in the area of robotics [2].
However, certain improvements and modifications are needed since there are wide
areas of application of this type of system with recent developments in robotics as
well as in biomechanics. One of the most important characteristics of segmented rigid
body models moving under the effect of gravity is the possibility that a body’s segments
spin past a natural limit and a computational mechanism to stop such behaviour should
be provided.

In practice, for instance in robotics, this behaviour is simply stopped by introducing
hard constraints to stop the segment from moving beyond its angle limit. Parallels
can be drawn with what occurs in a real biomechanical system where the muscle and
bone structure of a human body prevent its segments from moving past natural limits.
However, hard constraint bounds are not fit for biomechanical systems, because large
forces imposed at certain joints of the human body can cause injury. As a result,
it is necessary to introduce different types of mechanisms into the computational
model of this control problem, so that appropriate control signals (torques) can be
generated to suit the corresponding real system. In this study, three different types
of models to control angle constraints between segments are introduced. The first
uses a restoring torque in the dynamic equations when the segments move past their
constraints, the second uses an exponential penalty in the objective function, and the
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third uses additional all-time constraints.
Consider a 2-D body made up ofn segments, each of which is a straight line,

joined by revolute joints. Thei th segment has length̀i , massmi and moment of
inertia I i about its centre of mass (CM), which is a distancer i from its proximal end.
Each segment position is known from one fixed point on the segment (for example,
the proximal end) and the angle�i that the segment makes with the positiveX-axis
(Figure1).

Using this geometric frame, the augmented equation of motion for 2-D segmented
bodies resulting from the translational and rotational equations of motion is given by
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The first row in Equation (1.1) is obtained from the rotational equations of motion,
while the next two rows are horizontal translational equations and balances of hori-
zontal forces respectively, and the last two rows are similar equations for the vertical
direction. In the equation,J is the diagonal matrix of moments of inertia of the seg-
ments w.r.t. their centre of mass,α is the angular acceleration vector,τ is the vector of
torques at the joints,T is the matrix with entries 1 or−1 depending on the influence
of each torque on each segment,ω is the angular speed vector,m contains the masses
of the segments,g is gravitational acceleration,f X consists of forces in the horizontal
direction, f Y consists of forces in the vertical direction, andA is a matrix with entries
1 and−1 reflecting the direction of translational forces.

The matricesF X, FY, J X, JY andS are given by

F X = Ds

[−Dr 0 Dl − Dr

]
; J X = DmL Dc; S = [

I −m I
]
;

FY = Dc

[
Dr 0 −.Dl − Dr /

]
; JY = DmL Ds;

whereDr = diag.r1; : : : ; rn/, Dc = diag.cos�1; : : : ; cos�n/, Dl = diag.l1; : : : ; ln/,
Ds = diag.sin�1; : : : ; sin�n/, Dm = diag.m1; : : : ;mn/, andL is given by

L =




r1 0 0 0 : : : 0
l1 r2 0 0 : : : 0
l1 l2 r3 0 : : : 0
:::

:::
:::

:::
: : :

:::

l1 l2 l3 l4 : : : rn



:

The complete derivation of the model is to be found in [5].
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The model of 2-D segmented bodies could be classified into two cases: the case
of one contact at the proximal end of segment one and the case of free flight. For the
case of one contact at the proximal end of segment one, using the special structure of
matricesS and A, the model can be simplified as

Q.θ/α = f .θ ;ω; τ /:

This simplified model is particularly of interest in this study, since it is readily used
for the remainder of the paper.

2. Models to maintain angle constraints between segments

The purpose of this study is to explore models for the optimal control of 2-
dimensional segmented bodies that maintain angle constraints between their segments
while moving on a desired trajectory. Preserving angle constraints between segments
is aimed especially at preventing a segment of the body from spinning around its trans-
verse axis as the result of fast movement of its adjacent segments. (In computational
models, large torques applied to heavier segments can make the lighter (foot or hand)
segments spin.) In addition, it is also useful for determining a set of initial guesses
of the control parameters for a multi-link robot, where convergence to the solution
can only be achieved with a set of initial control parameters that are relatively close
to the solution. Inverse analysis is usually used to obtain the initial torque estimates
as shown in [5]. A particular study has also been conducted in [9] where an intuitive
“Blind Man” algorithm was proposed for searching for a workable initial guess of
control to avoid numerical integration failures, which usually occur due to extreme
unrealistic velocities of lighter segments.

Taking z as the system parameters, the optimal control statement for this problem
can be written in the following form:

minimise
τ ;z

: G̃.τ ; z/ = 80.θ.T/;ω.T/; z/+
∫ T

0

L .θ.t/;ω.t/; τ .t/; z/ dt

subject to the equations of motion forn-segmented bodies in the state space form

θ̇ = ω; Q.θ/ω̇ = f .θ ;ω; τ ; z/;

with initial conditionsθ.0/ = θ 0 andω.0/ = ω0. This is subject to the path constraints
F̃.θ ; t/ = 0, with constraints on the angle between segmenti andi − 1

�1 ≤ θi − θi −1 ≤ �2; for some i ∈ {2; : : : ; n}: (2.1)
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Obviously, this problem could be solved through discretisation of state and control
variables, resulting in a static optimisation problem in the form of finite difference
equations. However, since extra constraints are necessary to represent the restric-
tion of the angles between segments, this may produce an overdetermined system
where the number of active constraints is larger than the number of variables near
the solution. Another possible approach is to replace (2.1) by setting the lower and
upper control bounds dependent on the state of the system. This approach can be
implemented in the framework of full discretisation of state and control variables, as
extra constraints. Again this may also produce an overdetermined system. Alterna-
tively, this problem could be solved using control parametrisation approaches where
optimal control problems are transformed into optimal parameter selection problems
and gradients of the objective function as well as constraints w.r.t. the parameters
are computed using costate variables. The latter approach is used here, since it has
been successfully used in many previous works [8, 6, 7] and is proven to work very
efficiently. The software for this method (MISER3.3 [4]) is also available and details
of its mathematical background are given in [11].

Three different strategies for maintaining a small range of angles between segments
are proposed. The first strategy is to introduce all-time constraints restricting the angle
between segments in addition to the existing path constraints. Secondly, a type of
restoring torque is introduced inside the state equation representing the dynamics of
the segmented bodies. Finally, a penalty similar to a restoring torque is added to the
objective function where its value increases very rapidly if the angle between segments
increases beyond its limits.

2.1. All-time angle constraints The angle constraint between segmenti andi − 1,

�1 ≤ �i − �i −1 ≤ �2; (2.2)

is converted into the following two inequality constraints:

h1.θ/ = �i − �i −1 − �1 ≥ 0; (2.3)

h2.θ/ = �i −1 − �i + �2 ≥ 0: (2.4)

These constraints are then transformed into the standard canonical constraints to be
added to the original standard optimal control problem. A method for solving these
types of inequality constraints is readily available in MISER3.3 with a smoothing
technique that provides a more accurate and stable computational result [12].

2.2. Restoring torque in the state equation The characteristics of the restoring
torque are designed such that if the bounds on the relative angles are exceeded, the
restoring torque will push the segments to restore the constraints. If�i − �i −1 > �2,
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FIGURE 2. Graph of− r
i for �1 = −0:5, �2 = 0:5 and¼ = 5.

then the restoring torque forces segmenti to decrease velocity and at the same time
forces segmenti − 1 to increase velocity to keep the angle difference less than�2. On
the other hand, if�i − �i −1 < �1, then the restoring torque forces segmenti to increase
velocity and at the same time forces segmenti −1 to decrease velocity to keep the angle
difference greater than�1. Such a design needs a relatively large amount of torque as
soon as the differences between�i and�i −1 hit the bounds. Here, the restoring torque
is modelled using an exponential function, since this function increases very rapidly
for positive arguments. The restoring torque for segmenti is modelled as follows:

− r
i = −h1.θ/e

−¼h1.θ / + h2.θ/e
−¼h2.θ /; (2.5)

where¼ is a relatively large positive value. Ifh1 is negative (infeasible) the restoring
torque on segmenti is positive, while ifh2 is negative the restoring torque is negative.
Whenh1 andh2 are positive the restoring torques are small and of opposite sign. It is
assumed that¼ is chosen large enough to make these small torques inconsequential
compared to theτ of the system. The restoring torque on segmenti − 1 is opposite
to that on segmenti . A typical graph of− r

i and how it works on segmenti are shown
in Figures2 and3. Note that− r is zero at�1 and�2 and has slope−1 at these two
points. Hence multiples of this torque or multiples of the two individual components
could also be used, depending on how quickly larger restoring torques should come
into action. The values of�1 and�2 can also be adjusted to be slightly ‘inside’ the real
life limits.

As a result, when this one restoring torque is imposed on the model, the state
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FIGURE 3. How− r works on segmentsi andi − 1: (a) Lower and upper bound, (b) Exceed upper bound,
(c) Exceed lower bound.

equations are typically changed to:

(
θ̇

Q.θ/ω̇

)
=




ω

f1.t; θ ;ω; τ ; z/
:::

fi −1.t; θ ;ω; τ ; z/− − r
i

fi .t; θ ;ω; τ ; z/+ − r
i

:::

fn.t; θ ;ω; τ ; z/



: (2.6)

A state equation with all restoring torques replaces the original state equation,
which is then combined together with the objective function and path constraints to
form an optimal control problem.

To prevent the restoring torques from significantly distorting the optimal actual
torques, the resulting optimal states in the optimisation should not, at any time interval,
violate the bounds of the angle constraints. If the resulting optimal states violate the
angle constraints, then the restoring torques should be added to the optimal torques to
obtain the actual torques working on the corresponding joint. In this case, the solution
may not be accepted as a viable solution.

2.3. Exponential penalty in the objective function With the exponential penalty,
the segment is allowed to move freely according toτ . However, a penalty in the
objective function is imposed if the difference between angles of segmenti andi − 1
is not in the interval.�1; �2/. Therefore the penalty function is quite similar to the
restoring torque, with the following form:

P = −h1.θ/e
−¼h1.θ / − h2.θ/e

−¼h2.θ /: (2.7)
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FIGURE 4. Graph of exponential penalty for�1 = −0:5, �2 = 0:5 and¼ = 5.

If h1 < 0 then the first term of the penalty function produces a big positive value
in the objective function, which through the optimisation algorithm will be pushed
back to stay within the limit. On the other hand, ifh2 < 0 then the second term of
the penalty function produces a big positive value in the objective function, which
through the optimisation algorithm will be pushed back to stay within the limit. A
typical graph of the exponential penalty function is shown in Figure4.

The ‘shallow’ form of the graph near the upper and lower bound of the angle
constraint is important, since the optimisation software is expected to converge quickly
once the angle constraint is achieved. Although the exponential penalty function
appears to have two local minima, the function is very flat in between the lower and
upper bounds of the angle constraint. Therefore, it can only dominate the overall
objective if the optimal control objective is very flat. If this is the case, almost any
point in the flat region is a good enough solution.

3. Results and discussion

Each of the approaches is applied to a three-segment body of lengths 4, 2 and
1 metres with a mass of 6, 3 and 1.5 kgs respectively. The algebraic path constraint
is the trajectory of a half-circle centred at.5; 0/ with a radius of 1 m, starting from
rest at a point close to.5; 1/ moving in a counter-clockwise direction to move to the
point.5;−1/. The end effector of the body is required to move along the trajectory in
1 second. Hence, it is expected that the optimal control software will generate a large
torque to the first two segments, which in turn will cause the adjacent segment, which
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is smaller in mass, to move extremely quickly and hit the angle constraint between
segments. Here, the model is specifically intended to prevent the last segment from
spinning, with the angle constraint|�3 − �2| ≤ 0:5. The optimal control problem
is run using MISER3.3, where the algebraic path constraint is treated as integral
constraints by introducing additional state variables. The additional state variables
are formulated as

ẋa = .x3.t/− xtraj.t//
2; xa.0/ = 0;

ẋb = .y3.t/− ytraj.t//
2; xb.0/ = 0;

where .x3.t/; y3.t// are the coordinates of the distal end of segment three, while
.xtraj.t/; ytraj.t// is the planned trajectory defined as:

.xtraj.t/; ytraj.t// = .5 − sin.³ t/; cos.³ t//:

The additional state variables are combined with terminal state constraintsxa.1/ = 0
andxb.1/ = 0 to replace the path constraint.

The objective of the optimal control is to minimise

G̃.τ ; z/ =
∫ 1

0

(
.τ1/

2 + .τ2/
2 + .τ3/

2
)

dt:

The initial state position valuesθ.0/, were allowed free (and hence were parameters
of the optimisation) while the initial angular velocities were set at zero. Second-order
regularisation is added to the objective as a penalty for deviation of torques from a
straight line. This tends to give a smooth torque in time, instead of a stop-start torque.

Different methods applied in the treatment of angle constraint between segments
will cause an additional computation for each iteration during optimisation, compared
to the original problem. The software consists of two main computations, that is,
computation of states, costates, objective, constraints and the gradient of the objective
and constraints in one group and optimisation routine computation in another group.
The computation of the optimisation routine depends on the number of control para-
meters and constraints, therefore only the all-time constraints method will change the
amount of computation in the optimisation routine per iteration, since it introduces
additional constraints.

In the first group of computation in the software, the number of computation for
each iteration changes for all methods. For the restoring torque, the change occurs in
the computation of the state and costate equations with the additional term in the state
equation, and this causes a significant increase in the amount of computation. For
the all-time constraints, the computation change is more significant than the restoring
torque case, since extra computation is needed for the gradient of the extra constraints
and their costate variables as well. For the penalty method, the difference only
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TABLE 1. Violation of angle constraint. Abbreviation used: pwc: Piecewise constant control; pwl: Piece-
wise linear control; pwc reg: Piecewise constant control with regularisation; pwl reg: Piecewise linear
control with regularisation.

Methods Type of No. Times Maximum Average
Control Violated Violation Violation
pwc 2 0.0377 0.0238

All-time pwc reg 9 0.0097 0.0058
Constraints pwl 7 0.1542 0.0888

pwl reg 17 0.0264 0.0169
pwc 85 0.6260 0.3968

Restoring pwc reg 96 0.9035 0.3802
Torque pwl 102 0.8432 0.6496

pwl reg 91 0.9327 0.3609
pwc 30 0.2854 0.0485

Penalty pwc reg 51 0.2227 0.1076
pwl 41 0.3306 0.1019
pwl reg 57 0.2399 0.1193

appears in the computation of the costate of the objective which can be considered as
an insignificant change. Finally, the amount of computation for solving the state and
costate equations also depends on the stiffness of the corresponding ode, where a stiff
ode is more difficult and takes a longer time to integrate. In this study, more frequent
stiffness occurred in the restoring torque method, as expected.

One of the most important issues in this simulation is how well each model keeps
the relative angle inside the interval of[−0:5; 0:5]. This result could be used as a
hint as to which type of application each of the approaches is suitable for. From the
result in Table1, it is very obvious that the all-time constraints approach is the best
in stopping the segments from moving beyond their bounds. From 130 quadrature
points, the segments violate their angle constraint only a few times and only a relatively
small distance. The final torques generated here are such that the segments do not
‘crash’ into their bounds. The restoring torque approach is quite flexible in holding
the angle constraint inside the interval. This method allows the system to violate
the angle constraint very frequently with a relatively large distance from its bound.
This characteristic suits certain biomechanics systems in the human body in which
flexibility is needed when large forces are applied to the system due to external
contacts. It can indicate dangerous types of ‘optimal’ movement where joints are put
at risk of injury. The exponential penalty method behaves moderately compared to
the other two, which is good for the less flexible biomechanical system. There is
flexibility built into the restoring torque and penalty approach in that parameters¼,
� and an overall scale parameter can be used to adjust the violations of any solution.
For static optimisation, too large a value of¼ in any penalty method may cause ill-
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conditioning for the Hessian matrix of the penalty objective which in turn may make
the optimisation routine unstable. Some eigenvalues of the Hessian are large like¼,
while others are small. The exponential penalty here does not contain the control
parameters directly, so the effect of¼ may be spread over all eigenvalues of the
Hessian when integration in the objective is taken into account. The big¼ value may
contribute to the costate ode integration failure due to the increasing of its stiffness.
Similarly for the restoring torque method, if the value of¼ is too big, then for some
parameter values in the line searches both the state and costate ode may become very
stiff and impossible to integrate.

During optimisation, the penalty approach allows the segment to exceed the angle
bound since this is a very common behaviour of penalty methods. The small segment
may spin for a particular setting of parameter values during optimisation and inte-
gration failure may occur if the optimisation is permitted to try inappropriate torque
values in its line search. Therefore, upper and lower bounds of control parameters for
this method have to be set properly. The final solution may also exceed the bound
by a small quantity. The restoring torque method allows the body to generate torques
which do care for the angle limits and does prevent the smaller segments from spin-
ning whenever the optimisation tries an evaluation with inappropriate torque values in
its line search. The behaviour of the all-time constraint method during optimisation
depends on the optimisation algorithm used within the software. If the optimisation
algorithm is of a type which begins with an infeasible point, then the small segments
may spin and integration failure may occur without a proper lower and upper bound
of the control parameters. On the other hand, if the optimisation algorithm is of a type
which maintains feasibility during optimisation, then the optimisation may prevent
small segments from spinning.

Other common issues explored in this study are accuracy in following the trajectory
and time per iteration needed in the optimal control software to obtain a fairly accurate
final set of control parameters. These results are summarised in Table2, which shows
the average amount of time needed for one iteration of the optimal control software.
Accuracy is defined asxa.1/+ xb.1/, which is obtained from the integral constraints.
As appears in the table, without regularisation, the amount of time for the exponential
penalty method is relatively small compared to the other two methods and this is
consistent with the previous analysis on the amount of computation. The restoring
torque method requires more time than the all-time constraints approach, although it
needs less computation. This is due to the frequent stiffness which occurred in the
state and costate equations resulting from this approach. Introducing regularisation
also appears to make the states and costates ODEs more difficult to integrate since it
increases the amount of time for all methods.

From these results, the restoring torque method in general appears to be the best
in following the designed trajectory of the segmented bodies. This advantage of the
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TABLE 2. Time per iteration and accuracy. Abbreviation used: pwc: Piecewise constant control;
pwl: Piecewise linear control; pwc reg: Piecewise constant control with regularisation; pwl reg: Piecewise
linear control with regularisation.

Methods Type of Control Time (s) Accuracy
pwc 0:382 7:3×10−4

All-time pwc reg 2:824 1:24×10−3

Constraints pwl 0:241 9:3×10−4

pwl reg 2:233 1:05×10−3

pwc 0:466 6:2×10−4

Restoring pwc reg 1:058 8:4×10−4

Torque pwl 0:345 3:16×10−3

pwl reg 1:577 6:5×10−4

pwc 0:126 2:21×10−3

Penalty pwc reg 0:306 1:74×10−3

pwl 0:187 2:09×10−3

pwl reg 2:655 4:15×10−3

method is also complemented by a smaller number of iterations (304 iterations on
average) needed to complete the optimal control computation. On the other hand,
introducing all-time constraints gives a less accurate result in following the trajectory
compared to the restoring torque. This weakness is also followed with a larger
number of iterations (1125 iterations on average) in completion of the optimal control
computation. In the exponential penalty method, a less accurate path in following the
designed trajectory is found, however this is a result of a much smaller number of
iterations (247 iterations on average) required to complete the optimisation.

Sample plots of the actual and desired trajectory of the segmented bodies for each
method are shown in Figures5 and6. Sources of inaccuracy in the all-time constraints
method appear at the beginning and the end of motion, while in between it is fair in
following the designed trajectory. On the other hand, the restoring torque approach
does not result in much violation near the end of the motion. This is possibly because
it allows more flexibility for the segment to move. Similar behaviour is also found in
the exponential penalty method with much more inaccuracy shown for a longer time
at the beginning of the motion.

4. Conclusion

Three models to maintain angle constraints between segments in the optimal con-
trol of a segmented body are proposed. These models are: restoring torque in the state
equations, all-time constraints and an exponential penalty model. The models are ap-
plied to a 2-D three-segment body to exhibit the behaviour of each model. Simulations
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FIGURE 5. Actual and desired path of the body using piecewise constant control: (a) All-time constraints,
(b) Restoring torque and (c) Penalty method.
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constraints, (b) Restoring torque and (c) Penalty method.
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are run where the end effector of the manipulator is designed to follow the trajectory
of a half-circle. The results show the behaviour of each model in maintaining the
angle constraints, which can be concluded as:

(1) The all-time constraints model exhibits a behaviour of computing torques so as
not to ‘crash’ into constraints. Hence it is the best method to prevent the violation of
angle constraints.
(2) The restoring torque method allows more violation of angle constraints, however

it follows the path constraint more accurately compared to other methods as it treats
the angle constraints inside the state equations.
(3) The exponential penalty is the least favourable method both for violation of

angle constraints and for not achieving the most accurate optimum result.
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