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Abstract

Under the assumptions that the spatial variable is one dimensional and the distributed delay
kernel is the general Gamma distributed delay kernel, when the average delay is small, the
existence of travelling wave solutions for the population genetics model with distributed
delay is obtained by using the linear chain trick and geometric singular perturbation theory.
On the other hand, for the population genetics model with small discrete delay, the existence
of travelling wave solutions is obtained by employing a technique which is based on a result
concerning the existence of the inertial manifold for small discrete delay equations.
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1. Introduction

One of the cornerstones of mathematical biology is the population genetics model

@u

@t
= @2u

@x2
+ u.1 − u/[.−1 − −2/.1 − u/− .−3 − −2/u]; (1.1)

where u ∈ R, x ∈ R, t > 0. It is well known that this model was first formulated
by Fisher [8] and that it is an important reaction-diffusion equation for modelling
travelling fronts in population dynamics. For detailed biological backgrounds, see
[1, 2, 8, 17].
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Generally, it is assumed that −1 ≥ −3 and the range of the solution u.t; x/ is
contained in [0; 1]. Therefore, there are three cases

.1/ −3 ≤ −2 < −1; .2/ −2 < −3 ≤ −1 and .3/ −3 ≤ −1 < −2: (1.2)

Aronson and Weinberger [1, 2] discussed the stability properties of the equilibrium
states and the existence of the travelling wave solutions connecting these equilibria in
detail for Equation (1.2) under the above three different cases.

Recently, considerable interest has focused on the improvement of this model by
including temporal delay and spatial averaging acting on the nonlinear reaction term,
see [4, 11, 12].

Under the assumption that the distributed delay is a weak kernel, Ashwin et al.
[3] studied the existence of travelling wave fronts for the population genetics model
with distributed delay by using geometrical singular perturbation theory. Meanwhile,
Wu and Zou [20] discussed the existence of travelling wave fronts for the population
genetics model with discrete delay by employing the monotone iteration and upper
and lower solution methods. However, the equations considered in the papers [3]
and [20] only correspond to the delayed population genetics model (1.1) with the
above case (1), that is, when the parameters −1; −2 and −3 satisfy −3 ≤ −2 < −1.

In this paper, we consider the delayed population genetics model (1.1) with case (3)
above, that is, we assume that the parameters −1; −2 and −3 satisfy −3 < −1 < −2. In
this case, the reaction term function f .u/ = u.1 − u/[.−1 − −2/.1 − u/− .−3 − −2/u]
has the following properties.

For some þ ∈ .0; 1/, f .u/ < 0 in .0; þ/, f .u/ > 0 in .þ; 1/ , and f ′.0/ < 0,
f ′.1/ < 0,

∫ 1

0 f .u/ du > 0.
These properties imply that there exists some Þ ∈ .0; 1=2/ such that

Þ = −2 − −1

2−2 − −1 − −3

and f .u/ = .2−2 − −1 − −3/u.1 − u/.u − Þ/.
Because we discuss the problem on the infinite one-dimensional spatial domain

x ∈ R, it is possible and convenient to express Equation (1.1) in dimensionless
variables and parameters. Taking t∗ = .2−2 − −1 − −3/t; x∗ = x

√
2−2 − −1 − −3 and

dropping the asterisks for notational simplicity, we obtain

@u

@t
= @2u

@x2
+ u.1 − u/.u − Þ/: (1.3)

For convenience, we directly consider the existence of travelling wave fronts for
the following population genetics model with distributed delay:

@u

@t
= @2u

@x2
+ u.1 − gk ∗∗ u/.u − Þ/; (1.4)
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where the convolution gk ∗∗ u is denoted by

gk ∗∗ u.x; t/ =
∫ ∞

−∞

∫ t

−∞
g.x − y; t − s/k.t − s/u.s; y/dsdy;

and the following population genetics model with discrete delay:

@u

@t
= @2u

@x2
+ u[1 − u.t − −; x/].u − Þ/; (1.5)

where − > 0 is a small delay. We assume that

g.x; t/ = 1

2
√
³ t

e−x2=4t and
∫ ∞

0

k.t/ dt = 1; tk.t/ ∈ L1..0;∞/;R/:

The derivation of this kind of kernel can be found in [4]. The average delay for the
distributed delay kernel k.t/ is defined as

− =
∫ ∞

0

tk.t/ dt:

Usually we use the Gamma distribution delay kernel

k.t/ = Þntn−1e−Þt

.n − 1/! ; n = 1; 2; : : : ; (1.6)

where Þ > 0 is a constant, n is an integer, with average delay − = n=Þ. Two special
cases k.t/ = Þe−Þt (n = 1) and k.t/ = Þ2te−Þt (n = 2), are called the weak delay
kernel and the strong delay kernel respectively [18].

Mathematically, the convolution gk ∗∗ u in Equation (1.4) which depends on both
the temporal delay and spatial averaging is called spatiotemporal delay or nonlocal
delay. A reasonable and detailed discussion on introducing nonlocal delay into the
biological model is presented in the articles [4, 11, 12].

Under the assumption that the distributed delay kernel k.t/ is the general Gamma
distributed delay kernel (1.6) and by using the linear chain trick, the population
genetics model (1.4) with distributed delay can be transformed into a non-delay 2n +2
dimensional ordinary differential system. When the average delay − is sufficiently
small, the 2n + 2 dimensional ordinary differential system is a standard singularly
perturbed system. By using geometric singular perturbation theory [7, 15], we will
prove in this paper that there exists a travelling wave solution for Equation (1.4)
connecting the equilibria u1 = 0 and u3 = 1 for a particular wave speed.

However, for the population genetics model with discrete delay (1.5), there is no
way to recast Equation (1.5) into a non-delay finite-dimensional ordinary differential
system. Therefore, the linear chain trick and geometric singular perturbation theory
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[7, 15] cannot be applied to show the existence of a travelling wave solution for
Equation (1.5). From the viewpoint of dynamical systems, travelling wave equations
(1.5) are infinite dimensional and thus the search for travelling wave solutions is a
much deeper and more difficult problem. In this paper, we will employ a technique
from the papers [5] and [6] to deal with the existence of the travelling wave solution
for the population genetics model with discrete delay (1.5). This technique is based
on a result concerning the existence of the inertial manifold for delay equations with
small discrete delays.

There are many papers [3, 10, 13, 14, 19] in which the existence of travelling wave
solutions for a single-species biological model with distributed (or nonlocal) delay is
obtained by geometric singular perturbation theory. However, it is always assumed
in these papers that the distributed delay kernel k.t/ is a weak or strong kernel. In
this paper, we assume that the distributed delay kernel k.t/ is the general Gamma
distributed delay kernel (1.6). Moreover, these models in [3, 10, 13, 14, 19] only
possess two equilibria and the travelling waves of these models are Fisher waves. In
this paper, the model under consideration has exactly three equilibria and the travelling
wave of the model is a bistable travelling wave.

Recently, geometric singular perturbation theory has also been used to justify the
existence of a periodic solution for differential equations with distributed delay [16].

This paper is organised as follows. In Section 2, the existence of a travelling wave
for the population genetics model with distributed delay is justified by employing the
linear chain trick and geometric singular perturbation theory. Section 3 presents some
preliminaries, while Section 4 deals with the existence of a travelling wave for the
population genetics model with discrete delay.

2. Existence of a travelling wave for the population genetics model
with distributed delay

For convenience, we present some results from the papers [1] and [2] which will
be employed in the proof of our theorem.

Making the travelling wave transformation u.t; x/ = u.z/, z = x −ct , where c > 0
is the wave speed, and substituting u.t; x/ = u.z/ into Equation (1.3), we obtain

u ′′ + cu ′ + u.1 − u/.u − Þ/ = 0: (2.1)

Let u ′ = v. Equation (2.1) is equivalent to the following system:

u ′ = v;

v′ = −cv − u.1 − u/.u − Þ/:
(2.2)
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Obviously, system (2.2) has three equilibria, E1 = .0; 0/, E2 = .Þ; 0/ and E3 = .1; 0/,
which correspond to the three equilibria u1 = 0, u2 = Þ and u3 = 1 of Equation (1.3)
respectively.

The following results can be found in the papers [1] and [2].

LEMMA 2.1. There exists a unique wave speed c = c∗ > 0 such that system (2.2)
possesses a heteroclinic orbit �0.z/ connecting the critical points E1 = .0; 0/ and
E3 = .1; 0/. Moreover, the travelling wave u.z/ is strictly monotonically decreasing.

In this section, we will prove the following theorem.

THEOREM 2.2. Assume that the distributed delay kernel k.t/ is the general Gamma
distributed delay kernel (1.6). Then for sufficiently small average delay − , (1.4)
possesses a travelling wave solution �− .z/ connecting the equilibria u1 = 0 and
u3 = 1 for a particular value c = c.− / with c.0/ = c∗.

PROOF. When the distributed delay kernel k.t/ is the general Gamma distributed
delay kernel, we define

wn.t; x/ =
∫ ∞

−∞

∫ t

−∞

e−.x−y/2=4.t−s/

2
√
³.t − s/

(n

−

)n .t − s/n−1e−n.t−s/=−

.n − 1/! u.s; y/ ds dy;

:::

w1.t; x/ =
∫ ∞

−∞

∫ t

−∞

e−.x−y/2=4.t−s/

2
√
³.t − s/

(n

−

)
e−n.t−s/=−u.s; y/ ds dy:

By computation, it is easy to see that Equation (1.4) is transformed to

@u

@t
= @2u

@x2
+ u.1 −wn/.u − Þ/;

@wi

@t
=

⎧⎪⎪⎨⎪⎪⎩
@2wi

@x2
+ n

−
wi−1 − n

−
wi ; i = n; : : : ; 2;

@2w1

@x2
+ n

−
u − n

−
w1; i = 1:

Making the travelling wave transformation u.t; x/ = u.z/, z = x − ct , where c > 0
is the wave speed, and similarly for the other state variables, yields

−cu ′ = u ′′ + u.1 − wn/.u − Þ/;

−cw′
i =

⎧⎪⎨⎪⎩
w′′

n + n

−
wi−1 − n

−
wi ; i = n; : : : ; 2;

w′′
1 + n

−
u − n

−
w1; i = 1;

(2.3)
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where ′ denotes differentiation with respect to z. Let us introduce v = u ′ and vi = w′
i ,

i = 1; : : : ; n. Because we are interested in the situation in which the delay is small,
we can replace − with "2− , where " is a small parameter. Then system (2.3) becomes

u ′ = v; v′ = −cv − u.1 −wn/.u − Þ/;

w′
n = vn; "2v′

n = −"2cvn − n

−
wn−1 + n

−
wn;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w′
1 = v1; "2v′

1 = −"2cv1 − n

−
u + n

−
w1:

If we introduce the new state variables

ũ = u; ṽ = v; w̃n = wn; ṽn = "vn; : : : ; w̃1 = w1; ṽ1 = "v1;

and then drop the tildes, we have

u ′ = v; v′ = −cv − u.1 −wn/.u − Þ/;

"w′
n = vn; "v′

n = −"cvn − n

−
wn−1 + n

−
wn;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

"w′
1 = v1; "v′

1 = −"cv1 − n

−
u + n

−
w1:

(2.4)

Note that when " is a small parameter, system (2.4) is a standard singularly perturbed
system. By introducing a new independent variable � defined by z = "�, system (2.4)
transforms into

u̇ = "v; v ′ = "[−cv − u.1 −wn/.u − Þ/];
ẇn = vn; v̇n = −"cvn − n

−
wn−1 + n

−
wn;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẇ1 = v1; v̇1 = −"cv1 − n

−
u + n

−
w1;

(2.5)

where ˙ denotes differentiation with respect to �. The singularly perturbed systems
(2.4) and (2.5) are called the slow and the fast systems respectively. The two systems
are equivalent when " > 0.

Note that the system (2.4) has two equilibria denoted by 
E1 and 
E3,


E1 = .0; 0; : : : ; 0; 0/ and 
E3 = .1; 0; : : : ; 1; 0/:

Therefore, when " > 0 (that is, when the delay is present), the existence of a travelling
wave solution of Equation (1.4) connecting the equilibria u1 = 0 and u3 = 1 is
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equivalent to the existence of a heteroclinic connection between the equilibrium points

E1 and 
E3 of the .2n + 2/-dimensional system (2.4) that correspond to the equilibria
u1 = 0 and u3 = 1 of Equation (1.4).

It is obvious that the critical manifold M0 can be taken as any compact subset of
the following set{

.u; v; wn; vn; : : : ; w1; v1/ ∈ R2n+2 : vn = · · · = v1 = 0; wn = · · · = w1 = u
}
;

and the critical manifold M0 should be chosen to be large enough to contain the
heteroclinic orbit �0.z/. By the geometric singular perturbation theorem in [7, 15], we
know that if M0 is normally hyperbolic, then for sufficiently small " > 0, there exists
an invariant slow manifold M" for the system (2.4), which implies the persistence of
the slow manifold M0. Furthermore, by analysing system (2.4) restricted to the slow
manifold M", which is a two-dimensional submanifold of R2n+2, the existence of the
heteroclinic connection we are seeking can be established.

To verify normal hyperbolicity, it is necessary to verify that when " = 0, the matrix
of the linearisation of the fast system (2.5) at any point of the critical manifold M0 has
exactly two (= dim M0) eigenvalues on the imaginary axis and the remainder with
nonzero real part. The matrix of the linearisation of the fast system (2.5), when " = 0,
is the following .2n + 2/× .2n + 2/ matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 1 0 0 0 0 · · · 0 0 0 0 0
0 0 n=− 0 −n=− 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 1 0 0 · · · 0 0 0 0 0
0 0 0 0 n=− 0 −n=− 0 · · · 0 0 0 0 0
:::

:::
:::

:::
:::

:::
:::

::: · · · :::
:::

:::
:::

:::

0 0 0 0 0 0 0 0 · · · 0 0 1 0 0
0 0 0 0 0 0 0 0 · · · 0 n=− 0 −n=− 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 1

−n=− 0 0 0 0 0 0 0 · · · 0 0 0 n=− 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
which has eigenvalues{

0; 0;
√

n=
√
− ; : : : ;

√
n=

√
− ; −√

n=
√
− ; : : : ; −√

n=
√
−
}
:

Thus, normal hyperbolicity is verified. Therefore, the geometric singular perturbation
theorem [7, 15] implies that there exists an invariant manifold M", close to M0, for the
singularly perturbed system (2.4) when " > 0 is sufficiently small. Moreover, M" can
be expressed in the following form:

M" =
{
.u; v; wn; vn; : : : ; w1; v1/ ∈ R2n+2

∣∣∣∣∣wi = u + hi.u; v; "/; i = n; : : : ; 1;

vi = ki .u; v; "/; i = n; : : : ; 1

}
;
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with hi .u; v; 0/ = 0, ki.u; v; 0/ = 0 for i = 1; : : : ; n. The functions hi and ki can be
computed by substitution into system (2.4).

Indeed, straightforward calculations, utilising the fact that M" is an invariant man-
ifold for system (2.4), yield that the functions hi and ki respectively satisfy

"ckn − n.hn−1 − hn/ = "

[
@kn

@u
v + @kn

@v
[−c − u.1 − u − hn/.u − Þ/]

]
;

:::

"ck1 − n.−h1/ = "

[
@k1

@u
v + @k1

@v
[−c − u.1 − u − hn/.u − Þ/]

]
;

(2.6)

and

ki = "

[
v + @hi

@u
v + @hi

@v
[−c − u.1 − u − hn/.u − Þ/]

]
; i = n; : : : ; 1: (2.7)

Since hi.u; v; 0/ = 0 and ki .u; v; 0/ = 0 for i = 1; : : : ; n, we denote

hi .u; v; "/ = "h.1/i .u; v/+ "2h.2/i .u; v/+ · · · ;
ki .u; v; "/ = "k .1/i .u; v/+ "2k.2/i .u; v/+ · · · :

Substituting hi .u; v; "/ and ki.u; v; "/ for i = 1; : : : ; n into Equations (2.6) and
(2.7), and equalising the coefficients of the same order power of " in both sides of
Equations (2.6) and (2.7), we obtain

h.1/1 = · · · = h.1/n = 0; k.1/1 = · · · = k.1/n = v;

h.2/i = − i

n
u.1 − u/.u − Þ/; i = 1; : : : ; n; k.2/1 = · · · = k.2/n = 0:

In this way, we can determine the coefficients of "m in the functions hi and ki ,
i = 1; : : : ; n for an arbitrary natural number m.

Therefore the slow system (2.4) restricted to the manifold M" becomes

u ′ = v;

v′ = −cv − u.1 − u − hn/.u − Þ/;

that is,

u ′ = v;

v′ = −cv − u.1 − u/.u − Þ/+ O."/:
(2.8)

Note that the equilibria 
E1 and 
E3 are critical points for the full slow system (2.4) for
arbitrary ". Therefore, for " > 0 sufficiently small, the system (2.8) still possesses the
equilibria E1 = .0; 0/ and E3 = .1; 0/.



[9] Travelling waves for the population genetics model with delay 65

In the following, we employ a technique from [10] and [19] to prove that sys-
tem (2.8) has a heteroclinic orbit �".z/ connecting the equilibria E1 = .0; 0/ and
E3 = .1; 0/, when the parameter " > 0 is sufficiently small.

We may now rewrite system (2.8) as

u ′ = v;

v′ = 8.u; v; c; "/;
(2.9)

where8.u; v; c; 0/ = −cv−u.1−u/.u−Þ/. We know that when " = 0 the travelling
wave solution u.z/ for system (2.2) is strictly monotone if the wave speed c = c∗ > 0.
Therefore, in the .u; v/ phase plane, it can be characterised as the graph of some
function, that is, v = w.u; c∗/. By the stable manifold theorem, for sufficiently small
" we can also characterise the unstable manifold at the point .1; 0/ as the graph of
some function v = w1.u; c∗; "/, where w1.1; c∗; "/ = 0. Furthermore, by continuous
dependence of the solutions on parameters, this manifold must cross the line u = 1=2
somewhere if " is sufficiently small.

Similarly, let v = w2.u; c∗; "/ be the equation for the stable manifold at the origin.
Clearly, w2.0; c∗; "/ = 0 and it also crosses the line u = 1=2 somewhere if " is
sufficiently small. Thus, we have w1.u; c∗; 0/ = w2.u; c∗; 0/ = w.u; c∗/. For " = 0
and c = c∗, the equation of the corresponding wave in the .u; v/ phase plane is
v = w.u; c∗/. To show that there is a heteroclinic connection when " > 0 and is
sufficiently small, we want to show that there exists a unique value of c = c."/,
satisfying c.0/ = c∗, such that the manifolds w1 and w2 cross the line u = 1=2
at the same point. Define G.c; "/ = w1.1=2; c; "/ − w2.1=2; c; "/. Note that both
v = w1.u; c; "/ and v = w2.u; c; "/ satisfy the equation

dv

du
= 8.u; v; c; "/

v
:

We have

d

du

(
@w1

@c
.u; c∗; 0/

)
= @

@c

(
dw1

du
.u; c; 0/

)∣∣∣∣
c=c∗

= @

@c

(
8.u; w1.u; c; 0/; c; 0/

w1.u; c; 0/

)∣∣∣∣
c=c∗

= @

@c

(−cw1.u; c; 0/− u.1 − u/.u − Þ/

w1.u; c; 0/

)∣∣∣∣
c=c∗

= @

@c

(
−c − u.1 − u/.u − Þ/

w1.u; c; 0/

)∣∣∣∣
c=c∗

= −1 + u.1 − u/.u − Þ/

w.u; c∗/2

@w1

@c
.u; c∗; 0/:
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Therefore

d

du

(
@w1

@c
.u; c∗; 0/ exp

[
−

∫ u

1=2

¾.1 − ¾/.¾ − Þ/

w.¾; c∗/2
d¾

])
= − exp

[
−

∫ u

1=2

¾.1 − ¾/.¾ − Þ/

w.¾; c∗/2
d¾

]
: (2.10)

Integrating from 1=2 to 1, we get

@w1

@c
.1=2; c∗; 0/ =

∫ 1

1=2

exp

[
−

∫ s

1=2

¾.1 − ¾/.¾ − Þ/

w.¾; c∗/2
d¾

]
ds: (2.11)

Similarly, we can obtain

@w2

@c
.1=2; c∗; 0/ = −

∫ 1=2

0

exp

[
−

∫ s

1=2

¾.1 − ¾/.¾ − Þ/

w.¾; c∗/2
d¾

]
ds: (2.12)

Combining Equations (2.11) and (2.12), we have

@G

@c
.c∗; 0/ = @w1

@c
.1=2; c∗; 0/− @w2

@c
.1=2; c∗; 0/

=
∫ 1

0

exp

[
−

∫ s

1=2

¾.1 − ¾/.¾ − Þ/

w.¾; c∗/2
d¾

]
ds > 0:

Thus, by the implicit function theorem, for sufficiently small ", G.c; "/ = 0 has a
unique root c = c."/ in some neighbourhood c∗, satisfying c.0/ = c∗. This implies that
the manifolds w1 and w2 cross the line u = 1=2 at the same point. This indicates that
system (2.9) possesses a heteroclinic orbit �".z/ connecting the equilibria E1 = .0; 0/
and E3 = .1; 0/, when the parameter " > 0 is sufficiently small. Therefore, the proof
of Theorem 2.2 is complete.

REMARK 2.3. In fact, the existence of travelling wave solutions for system (2.8) is
also established in the paper [9] by another technique (see also [15]).

3. Preliminaries

In this section, we present some known results from the papers [5] and [6] which
will be employed in the proof of our theorem.

Consider the delay equations with small discrete delays

ẋ = f .x.t/; x.t − − //; (3.1)

where x ∈ Rn and − is a small delay.
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LEMMA 3.1. Suppose f : Rn × Rn → Rn is C∞ and globally Lipschitz. Then
for sufficiently small − > 0, the delay equations (3.1) have an n-dimensional smooth
inertial manifold U− in its infinite-dimensional phase space C.[−−; 0];Rn/, that is,
the inertial manifold U− is an invariant, finite dimensional and smooth manifold that
attracts all other solutions exponentially fast. Moreover, the inertial manifold U−

consists of the special flow �.t; ¾; − /.

REMARK 3.2. A solution �.t/ of the delay equations (3.1) is called a special solution
if �.t/ is defined on R and satisfies supt∈R e−|t |=− |�.t/| < +∞.

Suppose that � : R×Rn → Rn is a continuous function such that for each ¾ ∈ Rn

the function t �→ �.t; ¾ / is a special solution of the delay equations (3.1). Then �.t; ¾ /
is called a special flow for the delay equations (3.1) if

�.t; �.s; ¾ // = �.t + s; ¾ /; �.0; ¾ / = ¾;

whenever t; s ∈ R and ¾ ∈ Rn .
It is easily seen that the special flow �.t; ¾; − / for the delay equations (3.1) satisfies

�̇.t; ¾; − / = f .�.t; ¾; − /; �.t − −; ¾; − //; �.0; ¾; − / = ¾;

where ¾ ∈ Rn.
It should be noted that the inertial manifold U− for delay equations (3.1) is para-

metrised by Rn in the following way: for each vector ¾ ∈ Rn, the inertial manifold
contains a unique special solution t �→ �.t; ¾; − / of the delay equations (3.1) which
satisfies the initial condition �.0; ¾; − / = ¾ . Then we identify this special solution
t �→ �.t; ¾; − / with the vector ¾ ∈ Rn.

Restricted to the inertial manifold U− , the delay equations (3.1) reduce to the
following smooth and finite-dimensional vector X .¾; − /:

X .¾; − / := @�

@t
.0; ¾; − / = f .¾; �.−−; ¾; − //;

which is called a family of inertial vector fields. Therefore, the inertial vector fields
X .¾; − / determine the long-term behaviour of the delay equations (3.1).

The expansion of the family of inertial vector fields X .¾; − / = f .¾; �.−−; ¾; − //
with respect to − at − = 0 is

X .¾; − / = f .¾; ¾/− −D2 f .¾; ¾/ f .¾; ¾/

+ − 2

2!
{

D2
2 f .¾; ¾/. f .¾; ¾/; f .¾; ¾//

+ D2 f .¾; ¾/.D1 f .¾; ¾/+ 3D2 f .¾; ¾// f .¾; ¾/
} + O.− 3/:

(3.2)
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4. Existence of a travelling wave for the population genetics model
with discrete delay

To establish the existence of the travelling wave solution for the population genetics
model with discrete delay (1.5), we make the following travelling wave transformation
u.t; x/ = u.z/, z = x + ct , where z is the travelling wave variable and c > 0 is the
wave speed. Substituting u.t; x/ = u.z/ into Equation (1.5), we obtain the travelling
wave equation

u ′′ − cu ′ + u[1 − u.z − c− /].u − Þ/ = 0:

Let u ′ = v1, we obtain the equivalent system of first-order equations

u ′ = v1;

v′
1 = cv1 − u[1 − u.z − c− /].u − Þ/:

(4.1)

When there is no delay in system (4.1), we obtain

u ′ = v1;

v′
1 = cv1 − u.1 − u/.u − Þ/:

(4.2)

Similar to the proof of Lemma 2.1 of Section 2, we can obtain the following result.

LEMMA 4.1. There exists a unique wave speed c = c∗ > 0 such that system (4.2)
possesses a heteroclinic orbit �0.z/ connecting the critical points E1 = .0; 0/ and
E3 = .1; 0/. Moreover, the travelling wave u.z/ is strictly monotonically increasing.

We will now prove the following theorem.

THEOREM 4.2. For sufficiently small delay − , Equation (1.5) possesses a travelling
wave solution connecting the equilibria u1 = 0 and u3 = 1 for a particular value
c = c.− / with c.0/ = c∗ > 0.

PROOF. In R2, take a large enough open ball Br centred at the origin to contain the
heteroclinic orbit �0.z/ for the system (4.2). Fix the open ball Br in R2 × R2, take a
large enough open ball Sa to contain Br × Br . Meanwhile, in R2 × R2, take a larger
open ball Sb, where b > a.

Let V = [u.z/; v1.z/]T and F = .F1; F2/
T = [v1; cv1 −u[1−u.z −c− /].u −Þ/]T ,

where T denotes transpose. Then the system (4.1) can be rewritten in the following
form:

V ′.z/ = F.V .z/; V .z − c− //: (4.3)
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It is obvious that the function F : R2 ×R2 → R2 is not globally Lipschitz onR2 ×R2.
By using a smooth cut-off function defined on R2 × R2, we can construct a new
function 
F such that the new function 
F equals the original function F on the open
ball Sa and equals a constant in the complement of the larger open ball Sb. That is, we
construct the following new system:

V ′.z/ = 
F.V .z/; V .z − c− //; (4.4)

which agrees with the original system (4.3) on the open ball Sa and is constant in the
complement of the larger open ball Sb. Then it is easily checked that the new system
(4.4) is C∞ and globally Lipschitz on R2 × R2.

By Lemma 3.1, we know that for the wave speed c = c∗, the new system (4.4) has
an inertial manifold U− as long as the delay − is sufficiently small. Note that the new
system (4.4) reduces to system (4.3) on the open ball Sa. Since the delay − does not
change the equilibria, then system (4.3) still has the two equilibria E1 = .0; 0/ and
E3 = .1; 0/, which are contained in the open ball Sa . Therefore, the new system (4.4)
also has E1 = .0; 0/ and E3 = .1; 0/ as equilibrium points for the arbitrary delay − .

By employing the expansion (3.2) of the family of inertial vector fields X .¾; − /, it
can be seen that for sufficiently small − , the new system (4.4) restricted to the inertial
manifold U− reduces to the following system:

¾ ′.z/ = 
F.¾.z/; ¾.z//+ O.− /; (4.5)

which still has E1 = .0; 0/ and E3 = .1; 0/ as equilibrium points.
From the above construction of 
F , we know that when ¾ = .¾1; ¾2/

T ∈ Br ,
system (4.5) becomes

¾ ′.z/ = F.¾.z/; ¾.z//+ O.− /; (4.6)

which also possesses E1 = .0; 0/ and E3 = .1; 0/ as equilibrium points.
Thus, rewriting system (4.6), we have

¾ ′
1.z/ = ¾2;

¾ ′
2.z/ = c¾2 − ¾1.1 − ¾1/.¾1 − Þ/+ O.− /;

(4.7)

which has E1 = .0; 0/ and E3 = .1; 0/ as equilibrium points.
By employing the expansion (3.2) and further expanding up to second order with

respect to the delay − in the right-hand side of system (4.7), we can obtain

¾ ′
1.z/ = ¾2;

¾ ′
2.z/ = c¾2 − ¾1.1 − ¾1/.¾1 − Þ/− − [c¾2¾1.¾1 − Þ/]

+ − 2[¾1.¾1 − Þ/.c¾2 − ¾1.1 − ¾1/.¾1 − Þ//]c2=2 + O.− 3/:

(4.8)
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When the delay − is sufficiently small, system (4.7) possesses E1 = .0; 0/ and
E3 = .1; 0/ as equilibrium points. By Lemma 4.1 and similar phase plane arguments
for the existence of a travelling wave solution for system (2.8), we can show that
when the delay − is sufficiently small, system (4.7) still possesses a heteroclinic orbit
�.z; ¾; − / connecting the critical points E1 = .0; 0/ and E3 = .1; 0/. Moreover, this
heteroclinic orbit �.z; ¾; − / lies in some small neighbourhood of the heteroclinic orbit
�0.z/. Therefore the heteroclinic orbit �.z; ¾; − / also lies in the open ball Br . This
indicates that for the wave speed c = c∗ > 0, when the delay − is sufficiently small,
there exists some initial condition ¾ ∈ Br such that the new system (4.4) possesses a
special solution �.z; ¾; − /. Meanwhile, this special solution �.z; ¾; − / satisfies

�̇.z; ¾; − / = 
F.�.z; ¾; − /; �.z − −; ¾; − //; �.0; ¾; − / = ¾: (4.9)

Since this special solution �.z; ¾; − / lies in the open ball Br , system (4.9) becomes

�̇.z; ¾; − / = F.�.z; ¾; − /; �.z − −; ¾; − //:

Therefore this special solution �.z; ¾; − / is also a solution for the original system (4.3).
That is, for the wave speed c = c∗ > 0, when the delay − is sufficiently small,
the original system (4.3) (or system (4.1)) possesses a heteroclinic orbit �.z; ¾; − /
connecting the critical points E1 = .0; 0/ and E3 = .1; 0/. Thus Equation (1.5)
possesses a travelling wave solution connecting the equilibria u1 = 0 and u3 = 1.
This establishes the proof of Theorem 4.2.
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