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Abstract

Based on the theory of difference equations, we derive necessary and sufficient conditions
for the existence of eigenvalues and inverses of Toeplitz matrices with five different diago-
nals. In the course of derivations, we are also able to derive computational formulas for the
eigenvalues, eigenvectors and inverses of these matrices. A number of explicit formulas
are computed for illustration and verification.
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1. Introduction

A Toeplitz matrix is a matrix with values constant along each (top-left to lower-
right) diagonal. Several properties of these matrices are now known, including their
eigenvalues, eigenvectors and inverses. In particular, in a recent paper [4] by Dow,
Toeplitz matrices of the form

Tn =

⎛⎜⎜⎜⎜⎝
b c 0 0 · · · 0 Þ

a b c 0 · · · 0 0
0 a b c · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
Þ 0 0 0 · · · a b

⎞⎟⎟⎟⎟⎠
n×n

;

where the corner elements are the same, are discussed and their explicit inverses
are found. In many applications (such as boundary value problems for difference
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equations), Toeplitz matrices of the form An = Tn but with the Þ in the bottom left-
hand side corner replaced by þ, that is, [an1] = þ, where Þ �= þ, are also encountered.
Therefore, it is of great interest to find out more about these matrices. In this paper,
we derive the eigenvalues and their corresponding eigenvectors as well as the inverse
of An when ac �= 0 and at least one of the numbers Þ or þ is not zero. When
Þ = þ = 0, An reduces to the well-known tridiagonal matrix about which much is
known. For general information about Toeplitz matrices, the references in [4] can be
consulted.

For convenience, the set of integers, the set of nonnegative integers, the set of real
numbers and the set of complex numbers are denoted by Z, N, R and C respectively.
The number

√−1 is denoted by i . We will also set

ÞZ = {mÞ | m ∈ Z}; Þ ∈ C:
In particular, ³Z denotes the set {: : : ;−2³;−³; 0; ³; 2³; : : : }.

Toeplitz matrices are intimately related to boundary value problems involving
difference equations. This relationship has been exploited in [10, 2] for finding
eigenvalues or inverses of matrices arising from difference operators. We will again
base our investigation here on the method of difference equations. For this reason, we
recall some terminologies used in [1]. Let lN be the set of complex sequences of the
form x = {xk}k∈N endowed with the usual linear structure. A sequence of the form
{Þ; 0; 0; : : : } is denoted by Þ̄ (or by Þ if no confusion is caused), and the sequence
{0; 1; 0; 0; : : : } is denoted by h̄. Given two sequences x = {xk} and y = {yk} in lN,
their convolution is denoted by x ∗ y (or xy if no confusion is caused) and is defined by

xy =
{

j∑
k=0

xk y j−k

}
j∈N
:

It is easily verified that h̄2 = h̄ ∗ h̄ = {0; 0; 1; 0; 0; : : : } and h̄n = {h̄n
j} j∈N, n =

1; 2; : : : , is given by h̄n
j = 1 if n = j and h̄n

j = 0 otherwise. We will also set h̄0 = 1̄.
In the following discussions, we need, among other things, the well-known proper-

ties of the complex functions ez , sin z and cos z from the theory of complex analysis.
In particular, let z = x + iy ∈ C where x; y ∈ R. Then (i) sin z = 0 if and only if
y = 0 and x = k³ for some k ∈ Z, (ii) cos z = ±1 if and only if y = 0 and x = k³
for some k ∈ Z, and (iii) if z �= k³ for any k ∈ Z, then sin z �= 0, cos z �= ±1,
sin.z=2/ �= 0 and cos.z=2/ �= 0.

2. Necessary conditions for the eigenvalues

Consider the eigenvalue problem Anu = ½u, where a; b; c and Þ, þ are numbers in
the complex plane C. We will assume that ac �= 0. When ac = 0, the corresponding
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analysis is quite different and is treated elsewhere. To avoid trivial conditions, we will
also assume n ≥ 3 in the following discussions.

Let ½ be an eigenvalue (which may be complex) and .u1; : : : ; un/
† a corresponding

eigenvector of An. We may view the numbers u1; u2; : : : ; un respectively as the first,
second, . . . , and the n-th term of an infinite (complex) sequence u = {ui}∞

i=0. Since
Anu = ½u can be written as

u0 = 0;

au0 + bu1 + cu2 = ½u1 − Þun;

au1 + bu2 + cu3 = ½u2;

. . . . . . . . . . . . . . . . . . . . . . . . (2.1)

aun−2 + bun−1 + cun = ½un−1;

aun−1 + bun + cun+1 = ½un − þu1;

un+1 = 0;

we see that the sequence u = {uk}∞
k=0 satisfies u0 = 0; un+1 = 0 and

auk−1 + buk + cuk+1 = ½uk + fk; k = 1; 2; : : : ; (2.2)

where f1 = −Þun and fn = −þu1, while fk = 0 for k �= 1; n. Note that un

and u1 cannot be 0 simultaneously, for otherwise from (2.1), u2 = 0 and inductively
u3 = u4 = · · · = un = 0, which is contrary to the definition of an eigenvector.

Let f = { fk}∞
k=0 be defined above. Then (2.2) can be expressed as

c{uk+2}∞
k=0 + b{uk+1}∞

k=0 + a{uk}∞
k=0 = ½{uk+1}∞

k=0 + { fk+1}∞
k=0:

By taking the convolution of the above equation with h̄2 = h̄h̄, and noting that

h̄{un+1} = h̄{u1; u2; : : : } = {0; u1; u2; : : : } = u − u0

and

h̄2{un+2} = h̄2{u2; u3; : : : } = {0; 0; u2; u3; : : : } = u − u0 − u1h̄;

we have c.u − u0 − u1h̄/ + .b − ½/h̄.u − u0/+ ah̄2u = h̄. f − f 0/. Solving for u,
and substituting f0 = u0 = 0, we obtain(

ah̄2 + .b − ½/h̄ + c̄
)
u = .cu1 + f /h̄:

Since c �= 0, we can divide the above equation by ah̄2 + .b − ½/h̄ + c̄ to obtain [1,
Theorem 24]

u = .cu1 + f /h̄

ah̄2 + .b − ½/h̄ + c̄
: (2.3)
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Let

�± = −.b − ½/± √
!

2a

be the two roots of az2 + .b − ½/z + c = 0, where ! = .b − ½/2 − 4ac, which may
or may not be zero.

Based on the value of !, there are two cases to be considered.
Case I. Suppose ! �= 0 so that �+ and �− are distinct. Since �+�− = c=a �= 0,

we may write �± = e±i� =² for some � in the strip {z ∈ C | 0 ≤ Re z < 2³}, where
² = √

a=c and

cos � = .½− b/=2²c : (2.4)

Since sin � = √
!=.2i²c/ �= 0, we must also have � =∈ ³Z.

By the method of partial fractions, we can then write (2.3) in the form

u = 1√
!

(
1

�− − h̄
− 1

�+ − h̄

)
.cu1 + f /h̄

= 1√
!

{
� −. j+1/

− − � −. j+1/
+

}
j∈N .cu1 + f /h̄

= 2i√
!

{² j sin j�} ∗ {cu1;−Þun; 0; : : : ;−þu1; 0; : : : }:

By evaluating the convolution product, we obtain the j -th term of u,

u j = 2i√
!

(
cu1²

j sin j� − Þun²
j−1 sin. j − 1/�

− H. j − n/þu1²
j−n sin. j − n/�

)
(2.5)

for j ≥ 1, where H.x/ is the unit step function defined by H.x/ = 1 if x ≥ 0 and
H.x/ = 0 if x < 0.

In particular,

√
!

2i
un = cu1²

n sin n� − Þun²
n−1 sin.n − 1/� (2.6)

and √
!

2i
un+1 = cu1²

n+1 sin.n + 1/� − Þun²
n sin n� − þu1² sin �: (2.7)

By (2.6), we have

c²n.sin n�/u1 −
(√

!

2i
+ Þ²n−1 sin.n − 1/�

)
un = 0; (2.8)
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and by (2.7), and the condition un+1 = 0, we have(
c²n+1 sin.n + 1/� − þ² sin �

)
u1 − Þ²n.sin n�/un = 0: (2.9)

Since u1 and un cannot be both zero, we must necessarily have∣∣∣∣∣ c²n sin n� −
(√

!

2i
+ Þ²n−1 sin.n − 1/�

)
c²n+1 sin.n + 1/� − þ² sin � −Þ²n sin n�

∣∣∣∣∣ = 0;

which leads to the necessary condition

Þc²2n sin � − ²n
(
ac sin.n + 1/� − Þþ sin.n − 1/�

)+ aþ sin � = 0: (2.10)

Once we have found a � that satisfies (2.10), we obtain by (2.4)

½ = b + 2²c cos �; � �= m³; m ∈ Z: (2.11)

Case II. Suppose ! = 0 so that �+ = �−. In this case, .½ − b/2 = 4ac, and (2.3)
can be written as

u = .cu1 + f /h̄

c
(
1̄ − 2..½− b/=2c/h̄ + ..½− b/=2c/2h̄2

) = 1

²̃c

²̃h̄(
1̄ − ²̃h̄

)2 .cu1 + f /

= 1

²̃c

{
j ²̃ j
}

j∈N ∗ {cu1;−Þun; 0; : : : ;−þu1; 0; : : : } ;

where

²̃ = .½− b/=2c = ±√a=c = ±²: (2.12)

The j -th term of u now becomes

u j = 1

²̃c

(
cu1 j ²̃ j − Þun. j − 1/²̃ j−1 − H. j − n/þu1. j − n/²̃ j−n

)
; j ≥ 1:

(2.13)

In particular,

un = (
cu1n²̃n − Þun.n − 1/²̃n−1

)
=²̃c (2.14)

and

un+1 = 0 = (
cu1.n + 1/²̃n+1 − Þunn²̃n − þu1²̃

)
=²̃c: (2.15)

This leads to the necessary condition

Þc²̃2n − ²̃n
(
ac.n + 1/− Þþ.n − 1/

)+ aþ = 0: (2.16)
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Once we have found the ²̃ that satisfies (2.16), then we obtain by (2.12)

½ = b + 2²̃c: (2.17)

We remark that since (2.17) may be written as

½ = b ± 2²c = b + 2²c cos �; � = m³; m ∈ Z;
we may combine (2.17) and (2.11) and assert that an eigenvalue ½ of An is necessarily
of the form ½ = b + 2²c cos � .

According to the above discussions, when ½ is an eigenvalue of An , it is then
necessary that either (2.10) or (2.16) holds.

THEOREM 2.1. Let ½ be an eigenvalue of the matrix An and u = .u1; : : : ; un/
† its

corresponding eigenvector. If (2.10) is satisfied for some

� ∈ {z ∈ C | 0 ≤ Re z < 2³}\³Z;
then (2.5) and (2.11) hold.

THEOREM 2.2. Let ½ be an eigenvalue of the matrix An and u = .u1; : : : ; un/
† its

corresponding eigenvector. If (2.16) is satisfied for ²̃ = √
a=c or ²̃ = −√

a=c, then
(2.13) and (2.17) hold.

Recall that the first and last components u1 and un cannot be zero simultaneously.
There are some other interesting properties for the eigenvector u if ! �= 0.

COROLLARY 2.3. Let ½ be an eigenvalue of the matrix An and u = .u1; : : : ; un/
† its

corresponding eigenvector such that ! = .b − ½/2 − 4ac �= 0. Let � be the number
found in Theorem 2.1.

(i) If u1 = 0, then Þ �= 0.
(ii) If un = 0 or u1 = 0 then sin n� = 0.

(iii) If sin n� = 0, then either un = 0 or Þ = ±a²−n, and either u1 = 0 or
þ = ±c²n.

(iv) If þ �= ±c²n, then un �= 0.
(v) If Þ �= ±a²−n, then u1 �= 0.

(vi) If þ �= ±c²n and u1 �= 0, then sin n� �= 0.
(vii) If Þ �= ±a²−n and un �= 0, then sin n� �= 0.

(viii) If þ �= ±c²n and Þ �= ±a²−n, then u1 �= 0; un �= 0 and sin n� �= 0.

PROOF. If u1 = 0, then by (2.8)
√
!=.2i/+ Þ²n−1 sin.n − 1/� = 0. Since ! �= 0,

we must have Þ �= 0.
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If un = 0, then by (2.8) c²nu1 sin n� = 0. Since c²nu1 �= 0, we must have
sin n� = 0. Similarly, if u1 = 0, then by (2.9) Þ²nun sin n� = 0. Since Þ²nun �= 0,
we must have sin n� = 0.

If sin n� = 0, then by (2.8), either un = 0 or ²c sin � + Þ²n−1 sin.n − 1/� = 0.
Since sin.n − 1/� = sin n� cos � − cos n� sin � = ∓ sin � when sin n� = 0; the latter
implies ²c = ±Þ²n−1 or Þ = ±a²−n. Similarly, if sin n� = 0, then by (2.9), either
u1 = 0 or c²n+1 sin.n + 1/� − þ² sin � = 0. The latter implies þ = ±c²n.

Suppose þ �= ±c²n. If un = 0, then sin n� = 0. Since u1 �= 0, (iii) implies
þ = ±c²n, which is a contradiction.

Suppose Þ �= ±a²−n. If u1 = 0, then sin n� = 0. Since un �= 0, (iii) implies
Þ = ±a²−n, which is a contradiction.

Suppose þ �= ±c²n and u1 �= 0. If sin n� = 0, then by (iii), either u1 = 0 or
þ = ±c²n. This is a contradiction.

Suppose Þ �= ±a²−n and un �= 0. If sin n� = 0, then by (iii), either un = 0 or
Þ = ±a²−n. This is a contradiction.

The last assertion (viii) follows from (iv), (v) and (vi), (vii).

3. Additional conditions for eigenvectors

Given an eigenvalue ½ of the matrix An and its corresponding eigenvector u =
.u1; : : : ; un/

†, suppose ! �= 0 and let � be the number found in Theorem 2.1. For
1 ≤ j ≤ n, we have by (2.5)

u j = 1

²c sin �

(
cu1²

j sin j� − Þun²
j−1 sin. j − 1/�

)
; j = 1; : : : ; n: (3.1)

In the case when sin n� �= 0, we may find u which are simpler in form. Indeed,
suppose sin n� �= 0, then from (2.8),

u1 = .²c sin � + Þ²n−1 sin.n − 1/�/

c²n sin n�
un (3.2)

and from (2.9),

Þun = .c²n+1 sin.n + 1/� − þ² sin �/

²n sin n�
u1: (3.3)

Substituting (3.2) into (3.1), we have

u j = 1

²c sin �

(
² j sin j�

²n sin n�
.²c sin � + Þ²n−1 sin.n − 1/�/un − Þun²

j−1 sin. j − 1/�

)
= un

²c sin � sin n�

(
²c² j−n sin � sin j� + Þ² j−1 sin.n − j/� sin �

)
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for j = 1; 2; : : : ; n. By letting un = ²n sin n� , we obtain

u j = ² j sin j� + Þ

a
² j+n sin.n − j/�; j = 1; : : : ; n; (3.4)

which defines an eigenvector corresponding to ½ (if � is found). Similarly, substituting
(3.3) into (3.1), we may obtain

u j = ² j sin.n + 1 − j/� + þ

c
² j−n sin. j − 1/�; j = 1; : : : ; n: (3.5)

Suppose ! = 0. Then we have by (2.13)

u j = 1

²̃c

(
cu1 j ²̃ j − Þun. j − 1/²̃ j−1

)
; j = 1; : : : ; n:

In view of (2.14) and (2.15), a similar argument leads to

u j = ²̃ j j + ²̃ j+n Þ

a
.n − j/; j = 1; : : : ; n (3.6)

and

u j = ²̃ j.n + 1 − j/+ ²̃ j−n þ

c
. j − 1/; j = 1; : : : ; n: (3.7)

4. Eigenvalues and eigenvectors of special Toeplitz matrices

Now we can apply the results of the previous sections to find the eigenvalues
and the corresponding eigenvectors of several Toeplitz matrices of the form An . For
motivation, consider the case where Þ = þ = 0. Then (2.16) is reduced to

²̃nac.n + 1/ = 0

which is not possible so that, in view of Theorem 2.2, ! �= 0 and ½ cannot be of
the form b ± 2²c. In view of Theorem 2.1, (2.10) must hold for some � =∈ ³Z, or,
sin.n + 1/� = 0 for some � =∈ ³Z. Consequently, � = k³=.n + 1/ for some k ∈ Z
and � =∈ ³Z. An eigenvalue ½k is then necessarily of the form

½k = b + 2²c cos
k³

n + 1
; k = 1; : : : ; n:

A corresponding eigenvector, from (3.4), is given by

u.k/j = ² j sin
jk³

n + 1
; j = 1; : : : ; n; (4.1)

which has also been obtained in [10] and elsewhere. Finally, by reversing the ar-
guments that lead to Theorem 2.1, we see that each ½k is an eigenvalue of An and
the corresponding vector u.k/ = .u.k/1 ; : : : ; u.k/n /

† defined by (4.1) is a corresponding
eigenvector.

By similar ideas, we may now derive the eigenvalues and the corresponding eigen-
vectors for matrices of the form An .
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4.1. The case where a = c = ±α and β = 0, or α = 0 and a = c = ±β We will
use [x] to denote the integral part of x ∈ R. Note that [.k − 1/=2] + [.k + 2/=2] = k
for any positive integer k.

THEOREM 4.1. Suppose Þ = a = c and þ = 0, or, Þ = 0 and þ = c = a. Then
the eigenvalues of An are given by

½k = b + 2a cos
2k³

n
; k = 1; 2; : : : ; [.n − 1/=2] (4.2)

and

½m+[.n−1/=2] = b + 2a cos
.2m − 1/³

n + 2
; m = 1; 2; : : : ; [.n + 2/=2]: (4.3)

The eigenvectors corresponding to (4.2) and (4.3) are given by

u.k/j = sin
2k.n + 1 − j/³

n
; j = 1; 2; : : : ; n (4.4)

and

u.m+[.n−1/=2]/
j = sin

.2m − 1/.n + 1 − j/³

n + 2
; j = 1; 2; : : : ; n (4.5)

respectively for Þ = a = c and þ = 0, and

u.k/j = sin
2k j³

n
and u.m+[.n−1/=2]/

j = sin
.2m − 1/ j³

n + 2
; j = 1; 2; : : : ; n

respectively for Þ = 0 and þ = c = a.

PROOF. Suppose Þ = a = c and þ = 0, or Þ = 0 and þ = c = a. Then (2.16)
is reduced to .±1/n.n + 1/ = 1. This relation cannot be valid, and hence, in view of
Theorem 2.2, ! = 0 does not hold. In view of Theorem 2.1, (2.10) holds for some
� =∈ ³Z, or

sin
n�

2
cos

(
n + 2

2

)
� = 0; � =∈ ³Z:

Hence (a) sin.n�=2/ = 0 or (b) cos..n + 2/=2/� = 0 for some � =∈ ³Z. In case (a),
we have

� = 2k³=n; � =∈ ³Z; k ∈ Z; (4.6)

so that an eigenvalue must be of the form

½k = b + 2a cos.2k³=n/; k = 1; : : : ; [.n − 1/=2]:
Similarly, in case (b), we have

� = .2m − 1/³

n + 2
; � =∈ ³Z; m ∈ Z; (4.7)
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so that an eigenvalue must be of the form

½m+[.n−1/=2] = b + 2a cos
.2m − 1/³

n + 2
; m = 1; : : : ; [.n + 2/=2]:

The corresponding eigenvectors may be obtained as follows. For Þ = a = c and
þ = 0, since þ �= ±c²n, by Corollary 2.3 (iv) un �= 0, while u1 may or may not be 0.
If u1 = 0, then sin n� = 0. By (3.1)

u j = −un

sin �
sin. j − 1/�:

Since sin.n+1− j/� = sin n� cos. j −1/�−cos n� sin. j −1/� = ∓ sin. j −1/� when
sin n� = 0, we may write u j = .±un=sin �/ sin.n + 1 − j/� . Letting ±un = sin � ,
we have

u j = sin.n + 1 − j/�; j = 1; 2; : : : ; n: (4.8)

If u1 �= 0, then by Corollary 2.3 (vi), sin n� �= 0. Hence we may apply (3.5), which
leads to the same result (4.8) since ² = 1 and þ = 0. By substituting � given by (4.6)
or (4.7) into (4.8), we obtain the desired results (4.4) and (4.5).

For Þ = 0 and þ = c = a, a similar argument leads to u j = sin j� , j = 1; : : : ; n.
By substituting � given by (4.6) or (4.7), we obtain the desired results.

Once we have found the eigenvalues and their corresponding eigenvectors, we may
reverse the arguments leading to Theorem 2.1 and verify that they are indeed the true
eigenvalues and associated eigenvectors of An . The proof is complete.

We may follow the same arguments to show the following.
Suppose −Þ = a = c and þ = 0, or Þ = 0 and −þ = c = a. Then the eigenvalues

of An are given by

½k = b + 2a cos
2k³

n + 2
; k = 1; 2; : : : ; [.n + 1/=2] (4.9)

and

½m+[.n+1/=2] = b + 2a cos
.2m − 1/³

n
; m = 1; 2; : : : ; [n=2]: (4.10)

The eigenvectors corresponding to (4.9) and (4.10) are given by

u.k/j = sin
2k.n + 1 − j/³

n + 2
; j = 1; 2; : : : ; n

and

u.m+[.n+1/=2]/
j = sin

.2m − 1/.n + 1 − j/³

n
; j = 1; 2; : : : ; n;
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respectively for −Þ = a = c and þ = 0, and

u.k/j = sin
2k j³

n + 2
; j = 1; 2; : : : ; n

and

u.m+[.n+1/=2]/
j = sin

.2m − 1/ j³

n
; j = 1; 2; : : : ; n

respectively for Þ = 0 and −þ = c = a.

4.2. The case where α = −β = a = c, or −α = β = a = c

THEOREM 4.2. Suppose Þ = −þ = a = c, or −Þ = þ = a = c. Then the
eigenvalues of An are given by

½k =
{

b + 2a cos.k³=n/; k = 1; 2; : : : ; n − 1;

b; k = n:
(4.11)

The eigenvectors corresponding to (4.11) are given by

u.k/j =
{

sin. jk³=n/; k odd,

sin.. j − 1/k³=n/; k even,
(4.12)

and

u.n/j =

⎧⎪⎨⎪⎩
sin. j³=2/+ .Þ=a/ sin..n − j/³=2/; n odd,

sin. j³=2/; n = 6; 10; 14; : : :

sin.. j − 1/³=2/; n = 4; 8; 12; : : :

(4.13)

respectively for Þ = −þ = a = c, j = 1; 2; : : : ; n. For −Þ = þ = a = c, only the
odd-even relation for k in (4.12) should be interchanged.

PROOF. Suppose Þ = −þ = a = c, or −Þ = þ = a = c, then ² = 1, and (2.16)
is reduced to .±1/n2n = 0: This relation cannot be valid so that ! = 0 does not hold.
By Theorem 2.1, (2.10) holds for some � =∈ ³Z, or sin n� cos � = 0, � =∈ ³Z. In the
case where sin n� = 0 for some � =∈ ³Z, we have � = .k³=n/ =∈ ³Z, k ∈ Z, and the
eigenvalue must be of the form ½k = b + 2a cos.k³=n/, k = 1; 2; : : : ; n − 1. In the
case where cos � = 0, we have ½n = b.

The corresponding eigenvectors may be found as follows. For k = 1; : : : ; n − 1,
suppose Þ = −þ = a = c. Since sin n� = sin k³ = 0 and cos n� = cos k³ = −1
if k is odd and +1 if k is even, we have

c sin � + Þ sin.n − 1/� = a sin �.1 − cos n�/ = 2a sin � �= 0; k odd, and

c sin.n + 1/� − þ sin � = c.cos n� + 1/ sin � = 2a sin � �= 0; k even.
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Hence if k is odd, by (2.8) un = 0 and in view of (3.1) an eigenvector must be of the
form

u j = sin j�: (4.14)

If k is even, then by (2.9) u1 = 0 and an eigenvector must be of the form

u j = sin. j − 1/�: (4.15)

By substituting � = k³=n, we have (4.12). Suppose −Þ = þ = a = c, then (4.14) is
for even k and (4.15) is for odd k.

For k = n, we have � = ³=2 and sin n� = sin.n³=2/ = ±1 �= 0 if n is odd. We
may apply (3.4) to obtain

u.n/j = sin
j³

2
+ Þ

a
sin

.n − j/³

2
; j = 1; 2; : : : ; n:

If n is even, then sin n� = 0 and cos n� = −1 if n = 6; 10; : : : and +1 if n = 4; 8; : : : .
Hence by a similar argument as for k = 1; 2; : : : ; n − 1, we have for j = 1; : : : ; n

u.n/j =
{

sin. j³=2/; for n = 6; 10; 14; : : : ;

sin.. j − 1/³=2/; for n = 4; 8; 12; : : : :

The proof is complete.

4.3. The case where α = ±a and β = ±c In the case where Þ = a and þ = c,
An is the well-known circulant matrix [3]. There are many results [3, 7, 8, 9, 5, 6]
concerning the eigenvalues and inverses of such matrices. However, most of them
are algorithmic in nature. Here we will derive explicit formulas for the case where
Þ = −a and þ = −c based on our theorems, while those for Þ = a and þ = c will
be listed only since they are already known.

THEOREM 4.3. Suppose Þ = −a and þ = −c in the matrix An. Then the eigenval-
ues and the corresponding eigenvectors of An are given by

½k = b + .a + c/ cos
.2k − 1/³

n

+ i.a − c/ sin
.2k − 1/³

n
; k = 1; 2; : : : ; n (4.16)

and

u.k/j = e−i j .2k−1/³=n; j = 1; 2; : : : ; n (4.17)
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respectively. If a = c, an alternative formula for the eigenvectors is also given by

u.k/j = c1 cos
.2k − 1/ j³

n
+ c2 sin

.2k − 1/ j³

n
; j = 1; 2; : : : ; n; (4.18)

where c1 and c2 are two independent constants not both equal to 0: In particular, if
we take c1 = 1 and c2 = −i , we have (4.17) as its special case.

PROOF. Suppose the conditions in Theorem 2.1 hold. Then we must have ½ =
b + 2²c cos � , where � is some number that satisfies

²n
(

sin.n + 1/� − sin.n − 1/�
)+ .²2n + 1/ sin � = 0; � =∈ ³Z;

or, since sin � �= 0, ²2n + 2²n cos n� + 1 = 0, � =∈ ³Z. This yields

²n = − cos n� ± i sin n� = −e∓in� : (4.19)

Let ²n = −ein� , then since e±i.2k−1/³ = −1, we may write ²n = ein�e−i.2k−1/³ , so that

ei� = ²ei.2k−1/³=n; e−i� = ²−1e−i.2k−1/³=n (4.20)

and

cos � = 1

2

(
²ei.2k−1/³=n + ²−1e−i.2k−1/³=n

)
= 1

2

[(
² + 1

²

)
cos

.2k − 1/³

n
+ i

(
² − 1

²

)
sin

.2k − 1/³

n

]
:

Note that if a �= c, then ² �= 1 and cos � �= ±1 for any k ∈ Z. By noting that ²2c = a
and that sin x and cos x are periodic functions, we have finally for k = 1; : : : ; n

½k = b + 2²c cos � = b + .a + c/ cos
.2k − 1/³

n
+ i.a − c/ sin

.2k − 1/³

n
;

which is (4.16). If a = c, then ² = 1 and we have cos � = cos..2k − 1/³=n/ �= ±1
so that k �= .n + 1/=2 in (4.16). But then we have Theorem 2.2.

Suppose ! = 0 and the conditions in Theorem 2.2 hold. Then (2.16) is valid for
Þ = −a and þ = −c. Thus

²̃2n + 2²̃n + 1 = 0; (4.21)

which holds if a = c, ²̃ = −1 and n is odd. Furthermore, under these conditions, the
eigenvalue must be of the form ½ = b − 2c, which can also be written as ½.n+1/=2 in
(4.16). Hence (4.16) holds regardless of a = c or a �= c.
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In case the negative sign in e∓in� holds, then ²n = −e−in� = e−in�e−i.2k−1/³ , and it
is easily seen that we may get the same result (4.16).

To find the corresponding eigenvectors, we first consider the case a �= c. Then
² �= 1 so that þ �= ±c²n and Þ �= ±a²−n. By Corollary 2.3 (viii), u1; u2 �= 0 and
sin n� �= 0, so we may apply (3.4). Since by (4.20) e±i j� = ²± j e±i j .2k−1/³=n , we have

e±i.n− j/� = ²±.n− j/e±i.n− j/.2k−1/³=n = −²±.n− j/e∓i j .2k−1/³=n:

By substituting this and Þ = −a into (3.4),

u.k/j = 1

2i

(
² j
(
² j ei j .2k−1/³=n − ²− j e−i j .2k−1/³=n

)
+² j+n

(
²n− j e−i j .2k−1/³=n − ²−n+ j ei j .2k−1/³=n

))
= 1

2i
.²2n − 1/e−i j .2k−1/³=n:

By dropping the constant factor .²2n − 1/=2i , we obtain (4.17). Next suppose a = c.
By (4.19), ² = 1 implies cos n� = −1 and sin n� = 0. The former implies � =
.2k − 1/³=n =∈ ³Z so that k �= .n + 1/=2, the latter implies either one of the u1 or un

may be zero. If un = 0, then by (3.1) an eigenvector must be of the form u.k/j = sin j� .
If u1 = 0, then an eigenvector must be of the form u.k/j = sin. j − 1/� . Hence the
linear combination

u.k/j = k1 sin j� + k2 sin. j − 1/� = c1 cos j� + c2 sin j�

is an eigenvector of An corresponding to ½k . After substituting � = .2k − 1/³=n, we
have (4.18) for a = c and k �= .n + 1/=2.

For a = c and k = .n + 1/=2, then � = ³ , which implies ! = 0, and we already
have ²̃n = ²̃ = −1 from (4.21), hence we may apply either (3.6) or (3.7) to obtain

u j = .−1/ jn; j = 1; : : : ; n;

which is of the form u.n+1/=2
j in (4.18). Hence (4.18) is valid for a = c and k = 1; : : : ; n.

The proof is complete.

Now we may follow the same arguments to show the following: Suppose Þ = a
and þ = c in the matrix An , then the eigenvalues and the corresponding eigenvectors
of An are given by

½k = b + .a + c/ cos
2k³

n
+ i.a − c/ sin

2k³

n
; k = 1; 2; : : : ; n

and

u.k/j = e−i
2 jk³

n ; j = 1; 2; : : : ; n (4.22)
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respectively. If a = c, an alternative formula for the eigenvectors is also given by [2]

u.k/j = c1 cos
2 jk³

n
+ c2 sin

2 jk³

n
; j = 1; 2; : : : ; n;

where c1 and c2 are two independent constants not both equal to 0: In particular, if we
take c1 = 1 and c2 = −i , we have (4.22) as its special case.

5. Necessary conditions for the inverse

The method used in the previous sections may also be used to find the inverse of
the matrix An under the condition ac �= 0. Let the (unique) inverse of An , if it exists,
be denoted by

Gn = (
g.1/ | g.2/ | · · · | g.n/

) =

⎛⎜⎜⎝
g.1/1 g.2/1 · · · g.n/1

g.1/2 g.2/2 · · · g.n/2

· · · · · · · · · · · ·
g.1/n g.2/n · · · g.n/n

⎞⎟⎟⎠
n×n

: (5.1)

Then AnGn = In. We may view the numbers g.k/1 ; g.k/2 ; : : : ; g.k/n respectively as the
first, second, . . . , and the n-th term of an infinite (complex) sequence g.k/ = {g.k/j } j∈N.
Since AnGn = In can be expanded as

ag.k/0 + bg.k/1 + cg.k/2 = h̄k
1 − Þg.k/n ;

ag.k/1 + bg.k/2 + cg.k/3 = h̄k
2;

ag.k/2 + bg.k/3 + cg.k/4 = h̄k
3;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ag.k/n−1 + bg.k/n + cg.k/n+1 = h̄k
n − þg.k/1 ;

with g.k/0 = g.k/n+1 = 0, we have

ag.k/j−1 + bg.k/j + cg.k/j+1 = h̄k
j + f .k/j ; j = 1; 2; : : :

where

f .k/j =

⎧⎪⎨⎪⎩
−Þg.k/n j = 1;

−þg.k/1 j = n;

0 otherwise:

Since c �= 0, we may obtain

g.k/ = .cg.k/1 + h̄k + f .k//h̄

ah̄2 + bh̄ + c
: (5.2)
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Let �± = (−b ± √
¾
)
=2a be the two roots of az2 + bz + c = 0, where ¾ = b2 − 4ac.

As in Section 2, there are two cases to be considered.
Case I. Suppose ¾ �= 0 so that �+ and �− are two different numbers. Since �+�− =

c=a �= 0 , we may write �± = e±i�=² for some � in the strip {z ∈ C|0 ≤ Re z < 2³},
where ² = √

a=c and

cos� = −b=2²c: (5.3)

We also have sin � = √
¾=.2i²c/ �= 0.

By the method of partial fractions, we may write g.k/ in the form

g.k/ = 1√
¾

(
1

�− − h̄
− 1

�+ − h̄

) (
cg.k/1 + h̄k + f .k/

)
h̄;

which gives the j -th term of g.k/:

g.k/j = 2i√
¾

{
cg.k/1 ²

j sin j� − Þg.k/n ²
j−1 sin. j − 1/�

+ H. j − k/² j−k sin. j − k/� − H. j − n/þg.k/1 ²
j−n sin. j − n/�

}
(5.4)

for j ≥ 1. In particular,

√
¾

2i
g.k/n = cg.k/1 ²

n sin n� − Þg.k/n ²
n−1 sin.n − 1/� + ²n−k sin.n − k/�

and
0 = cg.k/1 ²

n+1 sin.n + 1/� − Þg.k/n ²
n sin n�

− þg.k/1 ² sin � + ²n+1−k sin.n + 1 − k/�:

If the inverse exists, then g.k/1 and g.k/n form a unique solution pair and hence

1=
∣∣∣∣ c²n sin n� −(√¾=2i + Þ²n−1 sin.n − 1/�

)
c²n+1 sin.n + 1/� − þ² sin � −Þ²n sin n�

∣∣∣∣ �= 0;

or

1= (²n.ac sin.n+1/�−Þþ sin.n−1/�/−.Þc²2n +aþ/ sin�
)

sin � �= 0: (5.5)

Furthermore, if 1 �= 0, then we have

g.k/1 = 11=1; g.k/n = 1n=1; (5.6)

where

11 = −Þ²2n−k sin.k − 1/� sin� − a²n−k sin.n + 1 − k/� sin� and (5.7)

1n = −c²2n+1−k sin k� sin � − þ²n+1−k sin.n − k/� sin�: (5.8)
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Case II. Suppose ¾ = 0 so that �± are two equal roots. In this case b2 = 4ac.
Furthermore, from (5.2), we have

g.k/ = .cg.k/1 + h̄k + f .k//h̄

c.1 − 2.−b=2c/h̄ + .−bh̄=2c/2/

= 1

²c

²h̄

.1 − ²h̄/2
.cg.k/1 + h̄k + f .k// = 1

²c
{ j² j} ∗ .cg.k/1 + h̄k + f .k//;

where ² = −b=2c. The j -th term of g.k/ is now

g.k/j = 1

²c

{
cg.k/1 j² j − Þg.k/n . j − 1/² j−1

+ H. j − k/. j − k/² j−k − H. j − n/þg.k/1 . j − n/² j−n
}
: (5.9)

In particular, g.k/n = (
cg.k/1 n²n − Þg.k/n .n − 1/²n−1 + .n − k/²n−k

)
=²c and

0 = 1

²c

(
cg.k/1 .n + 1/²n+1 − Þg.k/n n²n + .n + 1 − k/²n+1−k − þg.k/1 ²

)
:

If the inverse exists, then g.k/1 and g.k/n form a unique solution pair and hence we must
have

1 = −Þc²2n + ²n
(
ac.n + 1/− Þþ.n − 1/

)− aþ �= 0; (5.10)

and

g.k/1 = 11=1; g.k/n = 1n=1; (5.11)

where

11 = −²2n−kÞ.k − 1/− ²n−ka.n + 1 − k/ and (5.12)

1n = −²2n+1−kck − ²n+1−kþ.n − k/: (5.13)

THEOREM 5.1. Let the inverse of the matrix An be denoted by

Gn = (
g.1/ | · · · | g.n/

)
:

If b2 − 4ac �= 0, then the necessary and sufficient condition for the inverse to exist
is that (5.5) holds for some � ∈ {z ∈ C | 0 ≤ Re z < 2³} that satisfies (5.3).
Furthermore, if the inverse exists, then g.k/j , 2 ≤ j ≤ n − 1, are given by (5.4), while

g.k/1 and g.k/n are given by (5.6). If b2 − 4ac = 0, then the necessary and sufficient
condition for the inverse to exist is that (5.10) holds. Furthermore, if the inverse exists,
then g.k/j , 2 ≤ j ≤ n − 1, are given by (5.9), while g.k/1 and g.k/n are given by (5.11).
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We remark that sufficient conditions for the existence of the inverse of An are added
in the above result. This is valid since the above arguments can be reversed. We remark
also that since cos z is 2³ -periodic, the restriction � ∈ {z ∈ C | 0 ≤ Re z < 2³} can
be relaxed to � ∈ C. Furthermore, since if b2 �= 4ac, then cos� �= ±1 and � =∈ ³Z
automatically (cf. Theorem 2.1).

6. Inverses of some special Toeplitz matrices

We may now apply Theorem 5.1 for finding the inverses for several special Toeplitz
matrices. For motivation, consider the case where Þ = þ = 0 in An . Let g.k/ be the
k-th column in the inverse Gn of An. If b2 = 4ac, then by substituting Þ = þ = 0
into (5.10) to (5.12), we have 1 = ²nac.n + 1/ �= 0 and 11 = −²n−ka.n + 1 − k/.
Substituting these into (5.9), we obtain

g.k/j = 1

²c

(
cg.k/1 j² j + H. j − k/² j−k. j − k/

)
= −² j−k

²c.n + 1/
×
{

j .n + 1 − k/; j < k;

k.n + 1 − j/; j ≥ k:

After finding g.k/, we may directly reverse the arguments leading to Theorem 5.1 and
conclude that Gn = (

g.1/ | g.2/ | · · · | g.n/
)
.

Now let us suppose that b2 �= 4ac. Suppose also that the inverse Gn of An exists
and is of the form (5.1). Then substituting Þ = þ = 0 into (5.5)–(5.7), in view of
Theorem 5.1, we necessarily have cos� = −b=2²c, � ∈ C,

1 = ²nac sin.n + 1/� sin � �= 0 and 11 = −a²n−k sin.n + 1 − k/� sin�:

Substituting these into (5.4), we have

g.k/j = 1

²c sin �

(−² j−k sin j� sin.n + 1 − k/�

sin.n + 1/�
+ H. j − k/² j−k sin. j − k/�

)
= −² j−k

²c sin � sin.n + 1/�
×
{

sin j� sin.n + 1 − k/�; j < k;

sin k� sin.n + 1 − j/�; j ≥ k:

Once we have found g.k/j , then if sin.n + 1/� �= 0, we may reverse the arguments
leading to Theorem 5.1 and conclude that

(
g.1/ | g.2/ | · · · | g.n/

)
is our desired inverse.

On the other hand, if sin.n + 1/� = 0, then 1 = 0 and by Theorem 5.1, the inverse
of An does not exist.
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6.1. The case where α = ±a and β = 0

THEOREM 6.1. Suppose Þ = a and þ = 0 in the matrix An.

(i) Suppose b2 �= 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos� = −b=2²c for some � ∈ C and sin.n + 1/� − ²n sin � �= 0. Furthermore, if
it exists, then

g.k/j = −² j−k

²c sin�.sin.n + 1/� − ²n sin�/

×
{

sin j� sin.n + 1 − k/� + ²n sin.k − j/� sin �; j < k;

sin k� sin.n + 1 − j/�; j ≥ k:
(6.1)

(ii) Suppose b2 = 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, n + 1 − ²n �= 0 and, if it exists,

g.k/j = −² j−k

²c .n + 1 − ²n/
×
{

j .n + 1 − k/+ ²n.k − j/; j < k;

k.n + 1 − j/; j ≥ k:
(6.2)

PROOF. Suppose the inverse of An exists and is of the form (5.1). If b2 �= 4ac, then
substituting Þ = a and þ = 0 into (5.5)–(5.8), we necessarily have cos� = −b=2²c,
� ∈ C,

1 = ac²n .sin.n + 1/� − ²n sin�/ sin� �= 0;

11 = −a²n−k .²n sin.k − 1/� + sin.n + 1 − k/�/ sin� and

1n = −c²2n+1−k sin k� sin �:

Substituting these into (5.4), we obtain

g.k/j = ² j−k

²c sin �

(
²n sin. j − k/� sin� − sin.n + 1 − k/� sin j�

sin.n + 1/� − ²n sin�

+ H. j − k/ sin. j − k/�

)
;

which is equivalent to (6.1).
Once we have found g.k/j , then if sin.n +1/�−²n sin� �= 0, we may verify that Gn

is the inverse of An . On the other hand, if sin.n + 1/�−²n sin� = 0, then the inverse
does not exist.

If b2 = 4ac, then by substituting Þ = a; þ = 0 into (5.10) to (5.13), we necessarily
have 1 = ac²n.n + 1 − ²n/ �= 0, 11 = −a²n−k.²n.k − 1/ + .n + 1 − k// and
1n = −²2n+1−kck. Substituting these into (5.9), we obtain

g.k/j = ² j−k

²c

{
²n. j − k/− j .n + 1 − k/

n + 1 − ²n
+ H. j − k/. j − k/

}
;
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which is equivalent to (6.2). Once we have found g.k/j , then if n + 1 − ²n �= 0, we
may verify that Gn is the inverse of An. On the other hand, if n + 1 − ²n = 0, then
the inverse does not exist. The proof is complete.

Suppose Þ = −a and þ = 0 in the matrix An . We may follow the same arguments
to show the following. (i) Suppose b2 �= 4ac, then the inverse Gn of An given by (5.1)
exists if, and only if, cos� = −b=2²c for some � ∈ C and sin.n +1/�+²n sin� �= 0.
Furthermore, if it exists, then

g.k/j = −² j−k

²c sin� .sin.n + 1/� + ²n sin �/

×
{

sin j� sin.n + 1 − k/� − ²n sin.k − j/� sin �; j < k;

sin k� sin.n + 1 − j/�; j ≥ k:
(6.3)

(ii) Suppose b2 = 4ac, then the inverse Gn of An given by (5.1) exists if, and only if,
n + 1 + ²n �= 0 and, if it exists,

g.k/j = −² j−k

²c .n + 1 + ²n/
×
{

j .n + 1 − k/− ²n.k − j/; j < k;

k.n + 1 − j/; j ≥ k:

As we have seen, the derivation of the explicit formulas from Theorem 5.1 are
straightforward. Theoretically, we can obtain formulas for arbitrary Þ and þ, though
in most cases those formulas may be complicated in form. But at least we can obtain
elegant formulas for some special combinations of Þ and þ. Some of the results
are presented below without proof for comparison and quick reference. The proof is
simple and may be obtained in a way similar to that of Theorem 6.1.

6.2. The case where α = 0 and β = ±c

THEOREM 6.2. Suppose Þ = 0 and þ = c in the matrix An.

(i) Suppose b2 �= 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos� = −b=2²c for some � ∈ C and ²n sin.n + 1/� − sin � �= 0. Furthermore, if
it exists, then

g.k/j = −² j−k

²c sin � .sin.n + 1/� − ²−n sin �/

×
{

sin j� sin.n + 1 − k/�; j < k;

sin k� sin.n + 1 − j/� + ²−n sin. j − k/� sin �; j ≥ k:

(ii) Suppose b2 = 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, ²n.n + 1/− 1 �= 0 and, if it exists,

g.k/j = −² j−k

²c .n + 1 − ²−n/
×
{

j .n + 1 − k/; j < k;

k.n + 1 − j/+ ²−n. j − k/; j ≥ k:
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Suppose Þ = 0 and þ = −c in the matrix An.

(i) Suppose b2 �= 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos� = −b=2²c for some � ∈ C and ²n sin.n + 1/� + sin � �= 0. Furthermore, if
it exists, then

g.k/j = −² j−k

²c sin � .sin.n + 1/� + ²−n sin �/

×
{

sin j� sin.n + 1 − k/�; j < k;

sin k� sin.n + 1 − j/� − ²−n sin. j − k/� sin �; j ≥ k:

(ii) Suppose b2 = 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, ²n.n + 1/+ 1 �= 0 and, if it exists,

g.k/j = −² j−k

²c .n + 1 + ²−n/
×
{

j .n + 1 − k/; j < k;

k.n + 1 − j/− ²−n. j − k/; j ≥ k:

6.3. The case where α = ±a, β = ±c

THEOREM 6.3. Suppose Þ = a and þ = c in the matrix An.

(i) Suppose b2 �= 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos� = −b=2²c for some � ∈ C and ²2n − 2²n cos n� + 1 �= 0. Furthermore, if
it exists, then

g.k/j = ² j−k

²c sin � .²n − 2 cos n� + ²−n/

×
{
²n sin.k − j/� + sin.n + j − k/�; j < k;

²−n sin. j − k/� + sin.n + k − j/�; j ≥ k:

In particular, when a = c,

g.k/j = sin.|k − j |�/+ sin.n − |k − j |/�
2a sin �.1 − cos n�/

:

(ii) If b2 = 4ac and ²n �= 1, then the inverse Gn given by (5.1) exists and

g.k/j = ² j−k

²c .²n − 2 + ²−n/
×
{
²n.k − j/+ .n + j − k/; j < k;

²−n. j − k/+ .n + k − j/; j ≥ k:

In particular, when b = 2a = 2c and n is odd, then g.k/j = .−1/ j−k.n − 2|k − j |/=4a:
If b = 2a = 2c and n is even, or b = −2a = −2c, then ²n = 1 and the matrix An is
singular.
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Suppose Þ = −a and þ = −c in the matrix An.

(i) Suppose b2 �= 4ac. Then the inverse Gn of An given by (5.1) exists if, and only
if, cos� = −b=2²c for some � ∈ C and ²2n + 2²n cos n� + 1 �= 0. Furthermore, if
it exists, then

g.k/j = ² j−k

²c sin � .²n + 2 cos n� + ²−n/

×
{
²n sin.k − j/� − sin.n + j − k/�; j < k;

²−n sin. j − k/� − sin.n + k − j/�; j ≥ k:

In particular, when a = c,

g.k/j = sin.|k − j |�/− sin.n − |k − j |/�
2a sin �.1 + cos n�/

:

(ii) If b2 = 4ac and ²n �= −1, then the inverse Gn of An exists and

g.k/j = ² j−k

²c .²n + 2 + ²−n/
×
{
²n.k − j/− .n + j − k/; j < k;

²−n. j − k/− .n + k − j/; j ≥ k:

In particular, if b = −2a = −2c, then

g.k/j = .2|k − j | − n/=4a: (6.4)

If b = 2a = 2c and n is even, then

g.k/j = .−1/ j−k.n − 2|k − j |/=4a: (6.5)

If b = 2a = 2c and n is odd, then ²n = −1 and the matrix An is singular.

7. Examples

We give two applications of our explicit formulas.

EXAMPLE 1. In the synchronisation problems of artificial neural networks [11], we
encounter the tridiagonal Toeplitz matrix with a = c = 1, b = −2 with the corners
Þ = þ = −1. Theorem 4.3 gives the eigenvalues and eigenvectors for such matrices.
As a numerical example, consider the following matrix:

A4 =

⎛⎜⎜⎝
−2 1 0 −1
1 −2 1 0
0 1 −2 1

−1 0 1 −2

⎞⎟⎟⎠ : (7.1)
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By Theorem 4.3, we have

½k = −2 + 2 cos
.2k − 1/³

4
; k = 1; 2; 3; 4;

which gives ½1 = ½4 = −2 + √
2 and ½2 = ½3 = −2 − √

2. Since a = c, the
eigenvectors may be obtained by either (4.17) or (4.18). By (4.17), we have

u.1/ =
(√

2

2
− i

√
2

2
;−i;−

√
2

2
− i

√
2

2
;−1

)†

:

By (4.18), if we take c1 = 1 and c2 = 0, then u.1/ = .
√

2=2; 0;−√
2=2;−1/†; if we

take c1 = 0 and c2 = 1, then u.1/ = .
√

2=2; 1;
√

2=2; 0/†. It can be easily checked
that they are the correct eigenvectors corresponding to ½1.

We remark that our theorem is also applicable when b = 2. An inspection of (4.16)
to (4.18) reveals that only ½k depends on b. Thus the eigenvalues of the matrix

B4 =

⎛⎜⎜⎝
2 1 0 −1
1 2 1 0
0 1 2 1

−1 0 1 2

⎞⎟⎟⎠ (7.2)

are given by ½1 = ½4 = 2 + √
2 and ½2 = ½3 = 2 − √

2, with the corresponding
eigenvectors unchanged.

The inverses of (7.1) and (7.2) may be obtained by (6.4) and (6.5) in Theorem 6.3
as

A−1
4 = 1

2

⎛⎜⎜⎝
−2 −1 0 1
−1 −2 −1 0
0 −1 −2 −1
1 0 −1 −2

⎞⎟⎟⎠ and B−1
4 = 1

2

⎛⎜⎜⎝
2 −1 0 1

−1 2 −1 0
0 −1 2 −1
1 0 −1 2

⎞⎟⎟⎠
respectively.

EXAMPLE 2. Consider the following three-point boundary value problem [12] of
the form {

12uk−1 + uk = f .uk/; k = 1; 2; : : : ; n;

u0 = Þul; un+1 = 0:
(7.3)

In matrix form, this may be written as

Anu = F.u/;
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where u = .u1; : : : ; un/
†, F.u/ = . f .u1/; : : : ; f .un//

† and

An =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · Þ · · · 0 0
1 −1 1 · · · 0 · · · 0 0
0 1 −1 · · · 0 · · · 0 0
:::

:::
:::

:::
:::

:::
:::

:::

0 0 0 · · · 0 · · · −1 1
0 0 0 · · · 0 · · · 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
n×n

:

A necessary condition for the system (7.3) to be solvable is that An is invertible. In
the case where l = n and Þ = ±1, Theorem 6.1 offers some help. As a numerical
example for l = n = 6 and Þ = −1, since ² = 1,

� = cos−1 1

2
= ³

3
and

(
sin

³

3

)(
sin

7³

3
+ sin

³

3

)
= 3

2
�= 0;

we see that the inverse exists and is given by (6.3) as

g.k/j = −2

3
×

⎧⎪⎨⎪⎩
sin

j³

3
sin

.7 − k/³

3
− sin

.k − j/³

3
sin

³

3
j < k;

sin
k³

3
sin

.7 − j/³

3
j ≥ k;

which yields⎛⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 −1
1 −1 1 0 0 0
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 1 −1 1
0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠

−1

= 1

2

⎛⎜⎜⎜⎜⎜⎜⎝

0 2 2 0 −2 −2
1 1 2 1 −1 −2
1 1 0 1 1 0
0 0 0 0 2 2

−1 −1 0 1 1 2
−1 −1 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ :
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