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Abstract

The problem of surface water wave scattering by two thin nearly vertical barriers submerged
in deep water from the same depth below the mean free surface and extending infinitely
downwards is investigated here assuming linear theory, where configurations of the two
barriers are described by the same shape function. By employing a simplified perturbational
analysis together with appropriate applications of Green’s integral theorem, first-order
corrections to the reflection and transmission coefficients are obtained. As in the case of
a single nearly vertical barrier, the first-order correction to the transmission coefficient is
found to vanish identically, while the correction for the reflection coefficient is obtained
in terms of a number of definite integrals involving the shape function describing the two
barriers. The result for a single barrier is recovered when two barriers are merged into a
single barrier.

2000 Mathematics subject classification: primary 76B07; secondary 76B15.
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1. Introduction

Explicit solutions to water wave scattering problems involving a thin vertical plane
barrier of different geometrical configurations for the case of normal incidence of a sur-
face wave train in deep water have been obtained in the literature of linearised theory of
water waves by employing various mathematical techniques (see, for example, Ursell
[18], Williams [19], Evans [1], Porter [16]). Explicit solutions have also been obtained
for two thin vertical barriers partially immersed to the same depth below the mean
free surface or submerged from the same depth and extending infinitely downwards
in deep water (see, for example, Levine and Rodemich [6], Jarvis [4]). The works

1Physics and Applied Mathematics Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata 700 108,
India; e-mail: biren@isical.ac.in.
c© Australian Mathematical Society 2006, Serial-fee code 1446-8735/06

107

http://www.austms.org.au/Publ/ANZIAM/V48P1/2383.html
mailto:biren@isical.ac.in


108 B. N. Mandal and Soumen De [2]

of Levine and Rodemich [6] and Jarvis [4] employ the Schwartz-Christoffel transfor-
mation of complex variable theory. Evans and Morris [3] reinvestigated Levine and
Rodemich’s problem [6] of two equal surface-piercing barriers and obtained approxi-
mate expressions for the reflection and transmission coefficients which are simpler to
compute numerically than Levine and Rodemich’s explicit results [6] involving defi-
nite integrals whose integrands are complicated functions of elliptic integrals. For two
unequal surface-piercing barriers in finite depth water, McIver [12] used the method
of matched eigenfunction expansions to obtain very accurate numerical estimates for
the reflection and transmission coefficients. A substantial amount of research relating
to water wave scattering problems involving thin vertical barriers has been carried
out during the last six decades (see Mandal and Chakrabarti [8]). Problems involving
thin curved barriers or inclined straight plane barriers have also been studied mostly
by using hypersingular integral equation formulations (see, for example, Parsons and
Martin [14] and [15], Midya et al. [13], Kanoria and Mandal [5], Mandal and Gayen
(Chowdhury) [9]) which essentially involve somewhat heavy numerical computations
in obtaining numerical estimates for the reflection and transmission coefficients. A
thin plate in the form of a circular arc symmetric about the vertical through its cen-
tre was investigated by McIver and Urka [11] by two methods, one based on the
method of matched series expansions and the other based on Schwinger variational
approximation.

If the thin barrier differs slightly from the vertical position and in general is of a
curved nature described by a shape function, the corresponding scattering problem
has no explicit solution. An integral equation formulation of the problem is always
possible, whose explicit solution is almost impossible to obtain. For the case of a nearly
vertical surface-piercing thin barrier, Shaw [17] employed a perturbational approach
to obtain first-order corrections to the reflection and transmission coefficients R1; T1

in terms of some definite integrals involving the shape function, which are however
somewhat difficult to evaluate. He used a physical argument to prove that T1 vanishes
identically and then used this result to simplify R1. Soon afterwards Mandal and
Chakrabarti [7] devised a simplified perturbation method employed for the governing
partial differential equation, the boundary and other conditions, describing the original
problem. This procedure reduced to first order, and the original problem became two
problems involving a vertical barrier. The solution of the first problem is well known
in the literature. Without solving the second problem, the first-order corrections R1; T1

were obtained by simple applications of Green’s integral theorem. That T1 vanishes
identically was shown in a straightforward manner, and the result for R1 in the form
obtained by Shaw [17] for the partially immersed barrier was also obtained without
much effort. The complementary problem of a nearly vertical barrier submerged in
deep water and extending infinitely downwards was also investigated by Mandal and
Chakrabarti [7] by the same procedure. The case of a nearly vertical thin plate was
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considered by Mandal and Kundu [10] employing Shaw’s [17] method as well as the
method employed by Mandal and Chakrabarti [7].

In the present paper we consider the problem of water wave scattering by two nearly
thin vertical barriers submerged in deep water from the same depth below the mean
free surface and extending infinitely downwards, the two barriers being described by
the same shape function. As mentioned earlier, the corresponding problem of two thin
vertical barriers was investigated by Jarvis [4] wherein the potential function describing
the motion in water was obtained in closed form in principle and the reflection and
transmission coefficients were obtained in terms of some definite integrals. The
problem of two nearly vertical barriers is investigated here by employing the aforesaid
simplified perturbation analysis used by Mandal and Chakrabarti [7] and Mandal and
Kundu [10] for the case of single nearly vertical barriers. The first-order corrections
R1; T1 to the reflection and transmission coefficients are obtained by appropriate use of
Green’s integral theorem. As in the case of a single barrier, T1 vanishes here identically
while R1 is obtained in terms of definite integrals involving the shape function. The
known results for a single submerged nearly vertical barrier are recovered when the
two barriers are merged to a single barrier by making the distance between the two
submerged edges of the barriers tend to zero.

By using the complementarity theorem that the transmission coefficient remains
unaltered if the scattering body is reversed but the incident field is left unchanged,
the first-order correction T1 to the transmission coefficient can be shown to vanish
identically. This result holds for any number of barriers.

2. Statement of the problem

We consider the two-dimensional problem of water wave scattering, assuming
linear theory, by two fixed nearly vertical barriers submerged in deep water from
the same depth below the mean free surface whose position is given by y = 0, the
y-axis being chosen vertically downwards into the fluid region, and the x-axis taken
along the direction of an incoming train of surface waves. The co-ordinate system is
nondimensionalised with respect to depth of the upper edges of the barriers.

Let the configurations of the barriers be described by x = ±a + žc.y/, y ≥ 1,
where ž is a small nondimensional number signifying the nearness of the nearly
vertical barriers and c.y/ is the shape function defined for y ≥ 1 satisfying c.1/ = 0
and is a bounded and continuous function of y. Assuming the motion in the fluid
to be irrotational and simple harmonic in time t with angular frequency ¦ , it can be
described by a velocity potential Re{�.x; y/e−i¦ t}.

Then �.x; y/ satisfies the Laplace equation

∇2� = 0 in the fluid region; (2.1)
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the linearised free surface condition

k� + �y = 0 on y = 0; (2.2)

with k = ¦ 2=g, g being the acceleration due to gravity, the barrier conditions

@�

@n
= 0 on x = ±a + žc.y/; y ≥ 1; (2.3)

where n denotes the normal to the surface of the curved barriers, the edge conditions

r 1=2∇� is bounded as r → 0; (2.4)

where r is the distance from the points .±a; 1/, the deep water conditions

�;∇� → 0 as y → ∞; (2.5)

and finally, the infinity requirements given by

�.x; y/ ∼
{

T� inc.x; y/ as x → ∞;

�inc.x; y/+ R� inc.−x; y/ as x → −∞:
(2.6)

In the condition (2.6), R and T respectively denote the (complex) reflection and
transmission coefficients to be determined and

�inc.x; y/ = e−ky+ikx (2.7)

denotes the incident wave potential propagating from the direction of x = −∞ .

3. Method of solution

For nearly vertical barriers, the parameter ž can be assumed to be very small. The
boundary conditions (2.3) on the nearly vertical barriers can be expressed as

@�.±a ± 0; y/

@x
− ž

d

dy

{
c.y/

@�.±a ± 0; y/

@y

}
+ O.ž2/ = 0 for y > 1; (3.1)

where ±0 denote values on two sides of each barrier. The forms of the approximate
boundary conditions (3.1) suggest that �, R and T have the following perturbational
expansions, in terms of the small parameter ž:

�.x; y; ž/ = �0.x; y/+ ž�1.x; y/+ o.ž2/;

R.ž/ = R0 + žR1 + o.ž2/;

T .ž/ = T0 + žT1 + o.ž2/:

(3.2)
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Substituting the expansions (3.2) into the basic partial differential equation (2.1),
the free surface condition (2.2), the approximate boundary conditions (3.1) and the
condition (2.4)–(2.6), we find, after equating the coefficients of identical powers of ž
on both sides of the results, that �0 and �1 satisfy the following two problems P1 and P2

respectively.

PROBLEM P1. The function �0 satisfies

(i) ∇2�0 = 0 in y > 0, −∞ < x < ∞;
(ii) k�0 + �0y = 0 on y = 0;

(iii) �0x = 0 on x = ±a, y > 1;
(iv) r 1=2∇�0 is bounded as r = {

.x ± a/2 + .y − 1/2
}1=2 → 0;

(v) �0;∇�0 → 0 as y → ∞;

(vi) �0.x; y/ ∼
{

T0e−ky+ikx as x → ∞;

e−ky+ikx + R0e−ky−ikx as x → −∞:

PROBLEM P2. The function �1 satisfies

(i) ∇2�1 = in y > 0, −∞ < x < ∞;
(ii) k�1 + �1y = 0 on y = 0;

(iii)
@�1.±a ± 0; y/

@x
= d

dy

{
c.y/

@�0.±a ± 0; y/

@y

}
, y > 1;

(iv) r 1=2∇�1 is bounded as r = {
.x ± a/2 + .y − 1/2

}1=2 → 0;
(v) �1;∇�1 → 0 as y → ∞;

(vi) �1.x; y/ ∼
{

T1e−ky+ikx as x → ∞;

R1e−ky−ikx as x → −∞:

Problem P1 corresponds to water wave scattering by two thin vertical barriers
submerged from the same depth below the mean free surface of a deep water. Its
explicit solution was obtained by Jarvis [4] by using complex variable theory. His
results are reproduced in Appendix A in an equivalent form for the purpose of their
use in obtaining the first-order corrections R1 and T1 to the reflection and transmission
coefficients appearing in Problem P2.

Without solving Problem P2 fully, R1 and T1 can be obtained by employing Evans’s
[2] idea. To find R1, we apply Green’s integral theorem to the functions �0.x; y/ and
�1.x; y/ in the region bounded by the lines

y = 0 and y = Y; x ∈ [−X; X ];
x = X and x = −X; y ∈ [0; Y ];
x = a ± 0 and x = −a ± 0; y ∈ [1; Y ];
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and circles of small radius Ž with centres at .±a; 1/ and ultimately make X , Y tend to
infinity and Ž tend to zero. Using arguments similar to Evans [2], we obtain

i R1 =
∫ ∞

1

{
�0.a+; y/

@�1.a+; y/

@x
− �0.a−; y/

@�1.a−; y/

@x

}
dy

+
∫ ∞

1

{
�0.−a+; y/

@�1.−a+; y/

@x
− �0.−a−; y/

@�1.−a−; y/

@x

}
dy; (3.3)

where a− and a+ stand for a −0 and a +0 to shorten the notation. Using condition (iii)
of P2 in (3.3), integrating by parts and using c.1/ = 0, we find that

i R1 =
∫ ∞

1

c.y/

[
d

dy
{�0.a−; y/+ �0.−a+; y/} d

dy
{�0.a−; y/− �0.−a+; y/}

− d

dy
{�0.a+; y/+ �0.−a−; y/} d

dy
{�0.a+; y/− �0.−a−; y/}

]
dy: (3.4)

Using the expressions for �0.±a ± 0; y/ given in (A.5), the relation (3.4) produces

i R1

4
=

∫ ∞

1

c.y/
[
A

{
k P2.y/e

−ky − ¾2.−y/W .¾2.−y//
} − Hke−ky

]
× [

B
{
k Q2.y/e

−ky − W .¾2.−y//
} − Gke−ky

]
dy

−
∫ ∞

1

c.y/
[
A

{
k P1.y/e

−ky + ¾1.−y/W .¾1.−y//
} + Hke−ky

]
× [

B
{
k Q1.y/e

−ky + W .¾1.−y//
} + Gke−ky

]
dy; (3.5)

where the constants G and H are given by

G = B M1 + D sin ka; H = AL1 + C cos ka:

The functions Pn.y/ and Qn.y/, n = 1; 2, and the various constants are given
in Appendix A. The integrals appearing in (3.5) can be evaluated numerically, once
the form of c.y/ is known.

To determine T1, we next use Green’s integral theorem for the functions  0.x; y/
.= �0.−x; y// and �1.x; y/ in the region mentioned above and we find, on using
condition (iii) of P2, and integrating by parts, that T1 ≡ 0, since c.1/ = 0.

This holds good irrespective of the shape of the barriers. Thus the first-order
correction to the transmission coefficient vanishes identically for the two nearly vertical
barriers also, as was the case for a single nearly vertical barrier. It is rather obvious
to observe that the above idea of using Green’s theorem for the functions  ̂0.x; y/
.= �̂0.−x; y// and �̂1.x; y/ in a suitably designed region, gives rise to the conclusion
that T̂1 ≡ 0, where the notation �̂0, �̂1, T̂1 has obvious meanings which correspond to
the problem of scattering by an arbitrary number n (say), of nearly vertical barriers
represented by x = a j + žc.y/, y ∈ .d;∞/ with c.d/ = 0, j = 1; 2; : : : ; n.
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4. Conclusion

A simplified perturbational analysis together with appropriate use of Green’s in-
tegral theorem is employed to obtain first-order corrections to the reflection and
transmission coefficients for two nearly vertical barriers completely submerged in
deep water. The first-order correction to the transmission coefficient is found to be
identically zero as was the case for a single barrier. The first-order correction to
the reflection coefficient is obtained in terms of definite integrals involving the shape
function describing the barriers. If the two barriers are made to assume the shape of
a single barrier, the results for first-order correction to the reflection coefficient for a
single barrier are recovered.

In fact, this last result involving the transmission coefficient holds good for an
arbitrary number of nearly vertical barriers, that is, T̂1 ≡ 0, for an arbitrary number
of barriers. That such a result is in fact valid can be expected because of the comple-
mentarity theorem stated (without proof) by Shaw [17]. The analysis of the present
paper has thus established the complementarity theorem of Shaw [17] in a somewhat
constructive manner, as explained above.
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Appendix A.

To reproduce the results of Jarvis [4], we introduce a second complex unit j which
does not interact with the complex unit i , and is used to denote the complex variable
z = x + j y. Then �0.x; y/ is given by

�0.x;−y/ = Re j w.z/; (A.1)

where

w.z/ = e− jkz

∫ z

j∞
{A�.u/+ B} f .�.u//e jkudu + .C + j D/e− jkz; (A.2)

� and z being related by

z = 2a

³

[
.Þ2 − 1/�

.1 − � 2/1=2
− j log

{
.1 − � 2/1=2 + j�

}]
; (A.3)
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where Þ is a real number satisfying

Þ.Þ2 − 1/1=2 + log
{
Þ + .Þ2 − 1/1=2

} = ³

2a
(A.4)

and A; B;C; D are real constants with respect to j .
It may be noted that relation (A.3) denotes a mapping of the whole complex z-plane

cut from ±a ± j to ±a ± j∞ into the complex � -plane cut from ±1 to ±∞, and that
a branch of .1 − � 2/1=2 is chosen which is real and positive when � = 0. The cuts in
the z-plane are mapped into those in the � -plane and the x-axis is mapped onto the
section −1 ≤ Re j � ≤ 1 of the real axis in the � -plane. Also the points z = ±a ± j
in the z-plane correspond to the points � = ±Þ ± j0 in the � -plane.

The constants A; B;C; D (real with respect to j ) are given by

A = .Leika − I cosec ka/−1; B = .Meika + i J sec ka/−1;

C = −AI cosec ka; D = B J sec ka;

where

.I; J / = Re j

∫ 1

−1

.�; 1/ f .� /e−kv dv

with � = �.a + jv/, −1 ≤ v ≤ 1, and

.L ;M/ = e− jka

∫
0

.�; 1/ f .� /e jkz dz;

where 0 is a loop around the cut z = a + jv; .v > 1/ in the z-plane. It may be noted
that L , M are real constants.

The reflection and transmission coefficients R0; T0 for the problem of vertical
barriers are given by

R0 = −i L A + M B cos ka; T0 = .L cos ka − I sin ka/A − M B cos ka;

for which the energy identity |R0|2 + |T0|2 = 1 is satisfied.
Explicit expressions for �0 on the two sides of the lines x = ±a; y > 1 can be

obtained from (A.1) and (A.2), and are given by

�0.a + 0; y/ = −e−ky
[
AP1.y/+ B Q1.y/− C cos ka

− D sin ka − AL1 − B M1

]
;

�0.−a + 0; y/ = −e−ky
[
AP2.y/− B Q2.y/− C cos ka

+ D sin ka − AL1 + B M1

]
:

(A.5)

Here �0.a − 0; y/ is obtained from �0.a + 0; y/ with P1.y/ replaced by P2.y/ and
Q1.y/ replaced by Q2.y/, while �0.−a − 0; y/ is obtained from �0.−a + 0; y/ with
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P2.y/ replaced by P1.y/ and Q2.y/ replaced by Q1.y/. The functions Pn.y/; Qn.y/,
n = 1; 2, and the constants L1;M1 appearing in (A.5) are given by

.Pn.y/; Qn.y// =
∫ −y

−1

.¾n.v/; 1/W .¾n.v//e
−kv dv; n = 1; 2;

.L1;M1/ =
∫ ∞

1

.¾1.v/; 1/W .¾1.v//e
−kv dv;

(A.6)

where W .¾/ = .¾ 2 − 1/1=2=.¾ 2 − Þ2/, ¾1.v/.> Þ/ and ¾2.v/.1 < ¾2.v/ < Þ/ being
the two real roots of

.Þ2 − 1/¾.¾ 2 − 1/−1=2 + log
{
¾ + .¾ 2 − 1/1=2

} = ³v

2a
; v > 1: (A.7)

Appendix B.

Approximation as a → 0. We first note from (A.4) that for small a,

Þ ≈
( ³

2a

)1=2

;

so that Þ → ∞ as a → 0.
For small values of a, that is, large values of Þ, the real root ¾1.v/; .v > 1/, of

(A.7) can be approximated as

¾1.v/ ≈ 1

2
e1+Þ2.v−1/; v > 1 (B.1)

and the other real root ¾2.v/, v > 1, can be approximated as

¾2.v/ ≈ v

.v2 − 1/1=2
; v > 1: (B.2)

Using (B.1) and (B.2) it can be shown that for small values of a, .v > 1/

W .¾1/ ≈ 2

e1+Þ2.v−1/
; ¾1W .¾1/ ≈ 1;

W .¾2/ ≈ −1

Þ2.v2 − 1/1=2
; ¾2W .¾2/ ≈ −v

Þ2.v2 − 1/
;

also M ≈ K0.k/=Þ2, J ≈ ³ I0.k/=Þ2, L ≈ e−k=k + U=Þ2, I ≈ V=Þ2, where I0.k/
and K0.k/ are modified Bessel functions and

U =
∫ ∞

1

ye−ky

y2 − 1
dy; V =

∫ 1

−1

ye−ky

y2 − 1
dy:
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Again for small values of a,

A ≈ ³k

³e−k − 2V
; B ≈ Þ2

K0.k/+ i³ I0.k/
;

C ≈ −2V

³e−k − 2V
; D ≈ ³ I0.k/

K0.k/+ i³ I0.k/
;

also

P1.y/ ≈ 1

k
.ek − eky/; Q1.y/ ≈ 2

e.Þ2 − k/

[
1

eÞ2.y−1/−ky
− 1

e2Þ2−k

]
;

P2.y/ ≈ 1

Þ2

∫ −y

−1

ve−kv

v2 − 1
dv; Q2.y/ ≈ −1

Þ2

∫ −y

−1

e−kv

.v2 − 1/1=2
dv;

H ≈ 1 and G ≈ 1

K0.k/+ i³ I0.k/

³ 2k I0.k/

2Þ2
:

Using these expressions in (3.5), and noting that the second integral contributes nothing
as a → 0 and using the contribution of the first integral as a → 0, we obtain

i R1

4k
.K0.k/+ i³ I0.k// ≈ k

∫ ∞

1

c.y/e−2ky

(∫ y

1

ekv

.v2 − 1/1=2
dv

)
dy

−
∫ ∞

1

c.y/
e−ky

.y2 − 1/1=2
dy:

This result coincides with the result obtained by Shaw [17] and Mandal and Chakra-
barti [7] for a single completely submerged nearly vertical barrier.
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