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Abstract

We study the existence of extremal solutions for an infinite system of first-order discontinu-
ous functional differential equations in the Banach space of the bounded furgiidvis.
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1. Introduction

The study of functional differential equations covers, among others, ordinary differ-
ential equations, integro-differential equations and equations with maxima. Moreover
these types of equations appear when we use the reduction of order method for «
suitable scalanth-order ordinary differential equation?,[4], which can obviously
be treated as a first-order system of finite equations. Following this idea, one can
consider differential functional systems with infinitely many equations, the number
of which is not necessarily countable. Such systems have been studied by severs
different authors, se€Jand the references therein.

In this paper we study the solvability of an infinite system of functional differential
equations, with nonlinear functional boundary value conditions, in the Banach space
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of the bounded functions, (M), whereM is an arbitrary index set

u (t) =g,(t,ut),u) foraa.tel :=[t,tu], veM,
u,(tp) = B,(u(tp), u), v e M.

Our main result extends Theorem 3.1 8f {o infinite systems and it also improves
[6] and Theorem 1.1 ofl]]. The ideas contained in the proof of our main result are
related to those of7].

2. Definitions and preliminaries

We say that a partially ordered spbge} X is alattice if sup{x;, X2} and inf{x1, X,}
existforallxs, x, € X. Alattice X iscompletavhen each nonempty subsétc X has
its supremum and infimum iX. In particular, every complete lattice has a maximum
and a minimum.

In a posetX we define for each, b € X, with a < b, the interval

[a,b] :={xe X:a<x<Dh}
The following result is the well-known Tarski fixed point theorem (SEg)[

THEOREMZ2.1. Every nondecreasing mappi: X — X on a complete lattic&
has a minimal and a maximal fixed poirt,and x* respectively. Moreover,

X, =min{xe X:Gx<x} and x*=max{x e X:x < Gx}.

Let M be an arbitrary index set. An element= (x,),.w of RM is denoted by
X 1= (X,, X") wherex” e RM\"! If x, y € RM we define the partial ordering

x <y ifandonlyif x, <y, forallve M.

We consider the Banach space

lo(M) = {x = (X,)vem € RM 1 |IX]| := sup|x,| < —I—oo},
veM
and for the interval = [to, t;] we defineC(l, |, (M)) as the Banach space of all
continuous functions : | — |, (M) with the norm|ju|lo = sug|lu(t)| : t € |}, and
we define the partial ordering, < v if and only if u(t) < v(t) forallt € I.
The following fixed point theorem is essentially Theorem 4&jf(cee also Re-
mark 6.3 in B]).
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THEOREM2.2. Leta,b € RM, witha < b, and f := (f,),cw : [@, b] — RM be
a function such thaff (a) < aandb < f(b). Suppose thaf satisfies the following
properties for eachv € M and for eachx € [a, b]:

(i) The functionf,(-, x*) is u.s.c. on the right and l.s.c. on the left gm, b,],
that is,
limsup f,(y, x") < f,(X,, x") < liminf f,(y, x").
Y=

y=X,
(i) Thefunctionf is quasimonotone, thatig, (x,, -) isnondecreasing o@”, b"].
Then the functiorf has a minimal fixed poink, € [a, b], and a maximal fixed point,
x* € [a, b], and moreover they satisfy the properties
X, = min{x € [a,b] : f(x) <X}, (2.1)
X*=max{x € [a,b]: x < f(X)}. (2.2)
REMARK 1. Theorem2.2 extends to quasimonotone maps defined in arbitrary

product spaces some earlier fixed point theorems by Hu and Schi®idt]][ for
gquasimonotone maps definedRA and sequence spaces, respectively.

To end this section we introduce the classical concept of a lower solution of the
scalar initial value problem

u'(t) = h(t,u(t)), fora.etelt,ti]; u(tp) = A,

with h a Caratodory function, and a functiom € AC([to, t1]), that is, the set of
the absolutely continuous functions on the intefglt; ], that satisfies the following
inequalities:

o' (t) < h(t,a(t)), fora.etelty,ti]; a(tp) < A.

The concept of an upper solution is given by reversing the previous inequalities.
A solution of such a problem will be a function that is both a lower and an upper
solution.

3. Main result

In this section we study the problem

u (t) =g,(t,u(t),u) foraa.tel :=[t,ti], ve M,

(3.1)
u,(to) = B,(u(tp),u), veM,

assuming thag := (g,)vem : | X Ioc(M) x C(l,1,,(M)) — (M) and B :=
(B))vem : loo(M) x C(I, 1o (M)) — 1 (M) satisfy for eachr € M the following list
of hypotheses which we will denote loyy):
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(g0) For allu = (u,,u’) € C(,I(M)) and allz € R the functiont —
o.(t, z, u”(t), u) is Lebesgue measurable.

(gl) Fora.at € | and for allx = (x,,X") € Io(M) andu € C(l,1(M)) the
functiong, (t, x,, -, U) is nondecreasing and

limsupg, (t, y, x", u) < gu(t, x,, X", u) < liminf g,(t, y, x", u).
y—=xf

y=>X,

(g2) Fora.at € | and for allx € 1,(M) the functiong, (t, X, -) is nondecreasing.
(93) Thereexisp, q,r € L1 (I) such thatfora.a. € | and forallx € |..(M) and
u e C(l,1,(M)) we havellg(t, x, W[ < p® X[ + g®)[[ullo +r (t).
(94) liplle+ N9l < 1.
(BO) Foreachx €I, (M) the operatoB, (X, -) is nondecreasing.
(B1) Forallx = (x,, X") € l(M) andu € C(I, 1,(M)) the functionB, (x,, -, U)
is nondecreasing and
limsupB,(y, X", u) < B,(X,, X", u) < Iign ixqf B, (y, X", u).

Yy—=X,
(B2) There exist, b € 1,(M), with a < b, such that for alu € C(I, | (M))
a<B(a,u) and B(b,u) <h.

DEFINITION 1. We say thatu = (u,),em € C(l, L(M)) is a solution of Prob-
lem (3.1) if it satisfiesu, € AC(l) forallv € M and

u (t) =g,(t,ut),u), foraa.tel, veM,

(3.2)
u,(to) = B,(u(ty), u), ve M.

Now we are ready to present our main result.

THEOREM 3.1. Assume the list of hypothesgs) is satisfied. Then Proble(3.1)
has a minimal and a maximal solution in the set

Y ={ueC(,Lo(M)):a=<u(y <b}.

PrROOF. We prove the existence of the maximal solutiorYisince the existence of
the minimal solution is proved by dual arguments.
For eachu € C(l, |, (M)) we define the operator

N (u) := the maximal fixed point iia, b] of function B(, u).

OperatorN is well defined by Hypothese81), (B2) and Theoren?.2. Moreover,
from (BO) and @.2) it follows easily thatN is nondecreasing.
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Now, we define

. maxjial, Ibll} + il
1—dple+ gl

C:{w:l—>[R:we[—R,R], lw(s) — w(t)] <

h(t) = RIp®) + q®]+r ),

t
/ h(r)dr

andX =[],y C. Clearly X c C(l,1(M)) and we consider for eache M the
operatorG, : X — C defined for eachh = (v,, v*) € X as the maximal solution of
the scalar initial value problem

Vt,se I}

{z/(t) =g'(t,z(t)), foraa.tel, 3:3)

Z(t)) = N,(v),
where the scalar functiogy : | x R — R is defined for alkt,z) e | x R as
9,(t, 2 =gu(t, Z v" (1), v).
CLAaM 1. G, : X — C is well defined.

For eachv € M andv = (v,, v*) € X we consider the functions
B(t) = (1+ R)eﬁ;<[p<s>+q<s>]R+r<s)>ds _1

anda(t) = —g(t) forallt € I. Itis easy to verify thag(t) > R > —R > «a(t)
forallt € | and thate and 8 are lower and upper solutions, respectively, a3
Moreover, by Hypotheseg(), (91) and @3) the functiong? satisfies Conditions 1-3
of [10, Theorem 2.4] and thus there exists the maximal solugrof (3.3) in [«, 8],
which moreover satisfies

z=max{z € [, B]: Z(t) < gi(t, 2(1) a.e.l, z(to)) < N,(v)}. (3.4)

Furthermore it is easy to check that any solutioof Problem 8.3) satisfies that
|zl < Rand therefore € [«, 8]. Thusz* is the maximal solution of3.3) (not only

CLam 2. X is a complete lattice.

SinceX = [],.y C it is enough to prove tha€ is a complete lattice. Given a
nonempty subseY c C it is easy to prove that.(t) := inf{w() : w € Y} and
w*(t) ;= sugw(®t) : w € Y} forallt € |, are the infimum and the supremum™of
in C, respectively.

CLAM 3. G := (G,),em : X = X is nondecreasing.
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By using Hypotheseg)(), (g2), the fact thalN is nondecreasing and proper8/4),
it is easy to prove thak, : X — C is nondecreasing for all € M.

By Claims2 and3, the Tarski fixed point theorem ensures t@alhas the maximal
fixed point,u* € X, which satisfies

u*=maxu e X :u < Gu}. (3.5)

CLAIM 4. The maximal fixed point @, u*, is the maximal solution i of (3.1).

Clearly,u* is a solution inY of (3.1). Letu be another solution il of (3.1). Then
itis easy to verify thati € X andu < Gu. Therefore from8.5) it follows thatu < u*
and thuau* is the maximal solution of Problen3 (1). O

COROLLARY 3.2. Assume Hypothesés0)—(g4), (B0), (B1) and

(B2) lim sup—|| B, W
lIx[—o0 Il

Then(3.1) has a minimal and a maximal solution.

< 1, uniformly atu € C(1, I,.(M)).

PrOOF Let
i 1B, wll
imsup———— =
lIxll—o0 I

< 1

By choosing in the definition of lim sup the value©ot= (1 — ¢)/2 > 0, we have
that there exist& > 0 such that for all € C(l,1,(M)) and alld > 0, it holds that

c+
2

Therefore, by takingl > K (1 — ¢)/2, we arrive at the fact that = (a,),w and
b= (b)), defined as

1
IB(X, w)] < ||| +d forall x e RM such that||x| > K.

2d 2d
av_—m and b“—ﬁ;
satisfy the properties imposed in Conditids®].
Thus Theoren3.1ensures the existence of the extremal solutisnandx*, in the
setY ={ue C(l,L(M)):a < u(ty) < b}
Moreover, ifu is any solution of Problem3(1), in particular,u(ty) = B(u(tp), u).
If Ju(to)]l > K then, from the previous arguments, we have that

1
luto) | = IBUty), wll < % lutto)] + d

and then|lu(ty)|| < 2d/(1 — c). Thereforea < u(ty) < b and we have that € Y
and thusx, < u < x*. Thenx, andx* are the extremal solutions. O
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REMARK 2. If we define lower and upper solutiong,and 8, for (3.1) as in b,
page 47] in the case of one equation, and we assume Hypothéseg?), (BO), (B1)
and

(B) There exist$h € L1 (1) such that for alli € [e, B]
lg(t, x,w| < h@) fora.a.t €l andalla(t) < x < B(t),

we deduce from7, Theorem 4.1] the existence of extremal solutions in the order
interval determined by the lower and the upper solutions.

REMARK 3. The example given inl} Section 5], which is a modification of the
well-known example of Dieudor@ shows that Theore® 1is not true, in the case
M = N, when we replacé, (N) by ¢y(N), the set of the sequences that converge to
zero.
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