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Abstract

We study the existence of extremal solutions for an infinite system of first-order discontinu-
ous functional differential equations in the Banach space of the bounded functionsl∞.M/.
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1. Introduction

The study of functional differential equations covers, among others, ordinary differ-
ential equations, integro-differential equations and equations with maxima. Moreover
these types of equations appear when we use the reduction of order method for a
suitable scalarnth-order ordinary differential equation, [2, 4], which can obviously
be treated as a first-order system of finite equations. Following this idea, one can
consider differential functional systems with infinitely many equations, the number
of which is not necessarily countable. Such systems have been studied by several
different authors, see [7] and the references therein.

In this paper we study the solvability of an infinite system of functional differential
equations, with nonlinear functional boundary value conditions, in the Banach space
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of the bounded functionsl∞.M/, whereM is an arbitrary index set{
u′
¹.t/ = g¹.t; u.t/; u/ for a.a.t ∈ I := [t0; t1], ¹ ∈ M ,

u¹.t0/ = B¹.u.t0/; u/; ¹ ∈ M .

Our main result extends Theorem 3.1 of [3] to infinite systems and it also improves
[6] and Theorem 1.1 of [1]. The ideas contained in the proof of our main result are
related to those of [7].

2. Definitions and preliminaries

We say that a partially ordered set (poset) X is alattice if sup{x1; x2} and inf{x1; x2}
exist for allx1; x2 ∈ X. A latticeX iscompletewhen each nonempty subsetY ⊂ X has
its supremum and infimum inX. In particular, every complete lattice has a maximum
and a minimum.

In a posetX we define for eacha; b ∈ X, with a ≤ b, the interval

[a; b] := {x ∈ X : a ≤ x ≤ b}:

The following result is the well-known Tarski fixed point theorem (see [12]).

THEOREM2.1. Every nondecreasing mappingG : X → X on a complete latticeX
has a minimal and a maximal fixed point,x∗ andx∗ respectively. Moreover,

x∗ = min{x ∈ X : Gx ≤ x} and x∗ = max{x ∈ X : x ≤ Gx}:

Let M be an arbitrary index set. An elementx := .x¹/¹∈M of RM is denoted by
x := .x¹; x¹/ wherex¹ ∈ RM\{¹}. If x; y ∈ RM we define the partial ordering

x ≤ y if and only if x¹ ≤ y¹ for all ¹ ∈ M .

We consider the Banach space

l∞.M/ =
{

x := .x¹/¹∈M ∈ RM : ‖x‖ := sup
¹∈M

|x¹ | < +∞
}
;

and for the intervalI = [t0; t1] we defineC.I ; l∞.M// as the Banach space of all
continuous functionsu : I → l∞.M/ with the norm‖u‖0 = sup{‖u.t/‖ : t ∈ I }, and
we define the partial ordering,u ≤ v if and only if u.t/ ≤ v.t/ for all t ∈ I .

The following fixed point theorem is essentially Theorem 4 of [8] (see also Re-
mark 6.3 in [8]).
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THEOREM 2.2. Let a; b ∈ RM , with a ≤ b, and f := . f¹/¹∈M : [a; b] → RM be
a function such thatf .a/ ≤ a andb ≤ f .b/. Suppose thatf satisfies the following
properties for each¹ ∈ M and for eachx ∈ [a; b]:

(i) The function f¹.·; x¹/ is u.s.c. on the right and l.s.c. on the left on[a¹; b¹],
that is,

lim sup
y→x−

¹

f¹.y; x¹/ ≤ f¹.x¹; x¹/ ≤ lim inf
y→x+

¹

f¹.y; x¹/:

(ii) The functionf is quasimonotone, that is,f¹.x¹; ·/ is nondecreasing on[a¹ ; b¹].
Then the functionf has a minimal fixed point,x∗ ∈ [a; b], and a maximal fixed point,
x∗ ∈ [a; b], and moreover they satisfy the properties

x∗ = min{x ∈ [a; b] : f .x/ ≤ x}; (2.1)

x∗ = max{x ∈ [a; b] : x ≤ f .x/}: (2.2)

REMARK 1. Theorem2.2 extends to quasimonotone maps defined in arbitrary
product spaces some earlier fixed point theorems by Hu and Schmidt, [9, 11], for
quasimonotone maps defined inRn and sequence spaces, respectively.

To end this section we introduce the classical concept of a lower solution of the
scalar initial value problem

u′.t/ = h.t; u.t//; for a.e.t ∈ [t0; t1]; u.t0/ = A;

with h a Carath́eodory function, and a functionÞ ∈ AC.[t0; t1]/, that is, the set of
the absolutely continuous functions on the interval[t0; t1], that satisfies the following
inequalities:

Þ′.t/ ≤ h.t; Þ.t//; for a.e.t ∈ [t0; t1]; Þ.t0/ ≤ A:

The concept of an upper solution is given by reversing the previous inequalities.
A solution of such a problem will be a function that is both a lower and an upper
solution.

3. Main result

In this section we study the problem{
u′
¹.t/ = g¹.t; u.t/; u/ for a.a. t ∈ I := [t0; t1]; ¹ ∈ M;

u¹.t0/ = B¹.u.t0/; u/; ¹ ∈ M;
(3.1)

assuming thatg := .g¹/¹∈M : I × l∞.M/ × C.I ; l∞.M// → l∞.M/ and B :=
.B¹/¹∈M : l∞.M/× C.I ; l∞.M// → l∞.M/ satisfy for each¹ ∈ M the following list
of hypotheses which we will denote by.A /:
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(g0) For all u = .u¹; u¹/ ∈ C.I ; l∞.M// and all z ∈ R the function t →
g¹.t; z; u¹.t/; u/ is Lebesgue measurable.

(g1) For a.a.t ∈ I and for all x = .x¹; x¹/ ∈ l∞.M/ andu ∈ C.I ; l∞.M// the
functiong¹.t; x¹; ·; u/ is nondecreasing and

lim sup
y→x−

¹

g¹.t; y; x¹; u/ ≤ g¹.t; x¹; x¹; u/ ≤ lim inf
y→x+

¹

g¹.t; y; x¹ ; u/:

(g2) For a.a.t ∈ I and for allx ∈ l∞.M/ the functiong¹.t; x; ·/ is nondecreasing.
(g3) There existp;q; r ∈ L1

+.I / such that for a.a.t ∈ I and for allx ∈ l∞.M/ and
u ∈ C.I ; l∞.M// we have‖g.t; x; u/‖ ≤ p.t/‖x‖ + q.t/‖u‖0 + r .t/:

(g4) ‖p‖L1 + ‖q‖L1 < 1.

(B0) For eachx ∈ l∞.M/ the operatorB¹.x; ·/ is nondecreasing.
(B1) For allx = .x¹; x¹/ ∈ l∞.M/ andu ∈ C.I ; l∞.M// the functionB¹.x¹; ·; u/

is nondecreasing and

lim sup
y→x−

¹

B¹.y; x¹; u/ ≤ B¹.x¹; x¹; u/ ≤ lim inf
y→x+

¹

B¹.y; x¹; u/:

(B2) There exista; b ∈ l∞.M/, with a ≤ b, such that for allu ∈ C.I ; l∞.M//

a ≤ B.a; u/ and B.b; u/ ≤ b:

DEFINITION 1. We say thatu = .u¹/¹∈M ∈ C.I ; L∞.M// is a solution of Prob-
lem (3.1) if it satisfiesu¹ ∈ AC.I / for all ¹ ∈ M and{

u′
¹.t/ = g¹.t; u.t/; u/; for a.a. t ∈ I ; ¹ ∈ M;

u¹.t0/ = B¹.u.t0/; u/; ¹ ∈ M:
(3.2)

Now we are ready to present our main result.

THEOREM3.1. Assume the list of hypotheses.A / is satisfied. Then Problem(3.1)
has a minimal and a maximal solution in the set

Y = {u ∈ C.I ; L∞.M// : a ≤ u.t0/ ≤ b}:

PROOF. We prove the existence of the maximal solution inY since the existence of
the minimal solution is proved by dual arguments.

For eachu ∈ C.I ; l∞.M// we define the operator

N.u/ := the maximal fixed point in[a; b] of function B.·; u/:

OperatorN is well defined by Hypotheses (B1), (B2) and Theorem2.2. Moreover,
from (B0) and (2.2) it follows easily thatN is nondecreasing.
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Now, we define

R := max{‖a‖; ‖b‖} + ‖r ‖L1

1 − .‖p‖L1 + ‖q‖L1/
; h.t/ = R[p.t/+ q.t/] + r .t/;

C =
{
w : I → R : w ∈ [−R; R]; |w.s/−w.t/| ≤

∣∣∣∣
∫ t

s

h.r / dr

∣∣∣∣ ∀ t; s ∈ I

}

and X = ∏
¹∈M C. Clearly X ⊂ C.I ; l∞.M// and we consider for each¹ ∈ M the

operatorG¹ : X → C defined for eachv = .v¹; v
¹/ ∈ X as the maximal solution of

the scalar initial value problem{
z′.t/ = gv¹ .t; z.t//; for a.a. t ∈ I ;

z.t0/ = N¹.v/;
(3.3)

where the scalar functiongv¹ : I × R → R is defined for all.t; z/ ∈ I ×R as

gv¹ .t; z/ = g¹.t; z; v¹.t/; v/:

CLAIM 1. G¹ : X → C is well defined.

For each¹ ∈ M andv = .v¹; v
¹/ ∈ X we consider the functions

þ.t/ = .1 + R/e
∫ t

t0
.[p.s/+q.s/]R+r .s//ds − 1

andÞ.t/ = −þ.t/ for all t ∈ I . It is easy to verify thatþ.t/ ≥ R ≥ −R ≥ Þ.t/
for all t ∈ I and thatÞ andþ are lower and upper solutions, respectively, for (3.3).
Moreover, by Hypotheses (g0), (g1) and (g3) the functiongv¹ satisfies Conditions 1–3
of [10, Theorem 2.4] and thus there exists the maximal solution,z∗, of (3.3) in [Þ; þ],
which moreover satisfies

z∗ = max
{
z ∈ [Þ; þ] : z′.t/ ≤ gv¹ .t; z.t// a.e.I ; z.t0/ ≤ N¹.v/

}
: (3.4)

Furthermore it is easy to check that any solutionz of Problem (3.3) satisfies that
‖z‖ ≤ R and thereforez ∈ [Þ; þ]. Thusz∗ is the maximal solution of (3.3) (not only
in [Þ; þ]).

CLAIM 2. X is a complete lattice.

Since X = ∏
¹∈M C it is enough to prove thatC is a complete lattice. Given a

nonempty subsetY ⊂ C it is easy to prove thatw∗.t/ := inf{w.t/ : w ∈ Y} and
w∗.t/ := sup{w.t/ : w ∈ Y} for all t ∈ I , are the infimum and the supremum ofY
in C, respectively.

CLAIM 3. G := .G¹/¹∈M : X → X is nondecreasing.
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By using Hypotheses (g1), (g2), the fact thatN is nondecreasing and property (3.4),
it is easy to prove thatG¹ : X → C is nondecreasing for all¹ ∈ M .

By Claims2 and3, the Tarski fixed point theorem ensures thatG has the maximal
fixed point,u∗ ∈ X, which satisfies

u∗ = max{u ∈ X : u ≤ Gu}: (3.5)

CLAIM 4. The maximal fixed point ofG, u∗, is the maximal solution inY of (3.1).

Clearly,u∗ is a solution inY of (3.1). Let u be another solution inY of (3.1). Then
it is easy to verify thatu ∈ X andu ≤ Gu. Therefore from (3.5) it follows thatu ≤ u∗

and thusu∗ is the maximal solution of Problem (3.1).

COROLLARY 3.2. Assume Hypotheses(g0)–(g4), (B0), (B1) and

.B2/ lim sup
‖x‖→∞

‖B.x; u/‖
‖x‖ < 1, uniformly atu ∈ C.I ; l∞.M//.

Then(3.1) has a minimal and a maximal solution.

PROOF. Let

lim sup
‖x‖→∞

‖B.x; u/‖
‖x‖ = c < 1:

By choosing in the definition of lim sup the value ofž = .1 − c/=2 > 0, we have
that there existsK > 0 such that for allu ∈ C.I ; l∞.M// and alld > 0, it holds that

‖B.x; u/‖ < c + 1

2
‖x‖ + d for all x ∈ RM such that‖x‖ > K :

Therefore, by takingd > K .1 − c/=2; we arrive at the fact thata = .a¹/¹∈M and
b = .b¹/¹∈M defined as

a¹ = − 2d

1 − c
and b¹ = 2d

1 − c

satisfy the properties imposed in Condition (B2).
Thus Theorem3.1ensures the existence of the extremal solutions,x∗ andx∗, in the

setY = {u ∈ C.I ; L∞.M// : a ≤ u.t0/ ≤ b}.
Moreover, ifu is any solution of Problem (3.1), in particular,u.t0/ = B.u.t0/; u/.

If ‖u.t0/‖ > K then, from the previous arguments, we have that

‖u.t0/‖ = ‖B.u.t0/; u/‖ ≤ c + 1

2
‖u.t0/‖ + d

and then‖u.t0/‖ ≤ 2d=.1 − c/. Therefore,a ≤ u.t0/ ≤ b and we have thatu ∈ Y
and thusx∗ ≤ u ≤ x∗. Thenx∗ andx∗ are the extremal solutions.
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REMARK 2. If we define lower and upper solutions,Þ andþ, for (3.1) as in [5,
page 47] in the case of one equation, and we assume Hypotheses (g0)–(g2), (B0), (B1)
and

.SB/ There existsh ∈ L1
+.I / such that for allu ∈ [Þ; þ]

‖g.t; x; u/‖ ≤ h.t/ for a.a.t ∈ I and allÞ.t/ ≤ x ≤ þ.t/,

we deduce from [7, Theorem 4.1] the existence of extremal solutions in the order
interval determined by the lower and the upper solutions.

REMARK 3. The example given in [1, Section 5], which is a modification of the
well-known example of Dieudonné, shows that Theorem3.1 is not true, in the case
M = N, when we replacel∞.N/ by c0.N/, the set of the sequences that converge to
zero.
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