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Abstract

In this paper we study a variational inequality in which the principal operator is a generalised
Laplacian with fast growth at infinity and slow growth at 0. By defining appropriate sub-
and super-solutions, we show the existence of solutions and extremal solutions of this
inequality above the subsolutions or between the sub- and super-solutions.
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Keywords and phrases: sub-supersolution, sandpile problem, variational inequality, ex-
tremal solution.

1. Introduction

In this paper, we study a variational inequality in which the principal operator is a
generalised Laplacian (�-Laplacian) with fast growth at infinity and slow growth at
0 and where the lower order term is nonlinear. An example of such a variational
inequality is the following:

∫
�

8.|∇v|/ dx −
∫
�

8.|∇u|/ dx ≥
∫
�

f .x; u/.v − u/ dx; ∀ v ∈ W1
0 L8;

u ∈ W1
0 L8;

(1.1)

where8 is the Young function given by

8.t/ = e|t |p−|t |−p

.8.0/ = 0/; (1.2)

for p ≥ 1. Here,� is a bounded open set inRN (N ≥ 1) with Lipschitz boundary
@�, W1

0 L8 is the first-order Orlicz-Sobolev space of functions vanishing on@� (see,
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for example, Section2.1 for more details), andf : � × R → R is a Carath́eodory
function with a certain growth condition to be specified later.

Note that for8 given in (1.2) we have

8.t/ = o.tq/ as t → 0+

and

tq = o.8.t// as t → ∞;

for any powertq .q > 0/. Inequality (1.1) is the weak (variational) form of the
nonlinear degenerate elliptic boundary value problem

− div

(
�.|∇u|/

|∇u| ∇u

)
= f .x; u/ in �;

u = 0 on @�;
(1.3)

where� = 8′. Problem (1.3) and the variational inequality (1.1) are related to
a sandpile problem studied recently by Aronssonet al. [2], Evanset al. [15] and
Prigozhin [21, 20]. In these works, the (dynamic) problem is formulated as a parabolic
equation that contains thep-Laplacian with largep:{

ut −1pu = f in RN × .0;∞/;

u = g on RN × {t = 0}; (1.4)

and also their limits whenp → ∞. The limit problem is in fact equivalent to the
following variational inequality:{

f − ut ∈ @ I K .u/ for t > 0;

u = g when t = 0:
(1.5)

Here,1pu = div.|∇u|p−2∇u/ and @ I K .u/ is the subdifferential of the indicator
function I K of the convex setK = {v : |∇v| ≤ 1 a.e.}: The motivation of (1.4)
and (1.5) is the consideration of fast/slow diffusion operators such that within the
region{|∇u| < 1 − Ž} (Ž > 0, small), the diffusion coefficient|∇u|p−2 is very small,
whereas within{|∇u| < 1+ Ž}, |∇u|p−2 is very large. The limit variational inequality
(1.5) is also closely related to the elastic-plastic torsion problem (see, for example,
[9, 8] or [22]). In the variational form,1p is the derivative of the functional

I p.u/ = 1

p

∫
�

|∇u|p dx (1.6)

with the integrand|∇u|p being very small in{|∇u| < 1 − Ž} and very large in
{|∇u| < 1 + Ž}. BecauseI p is convex, the equation in (1.4) is (in the weak form)
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equivalent to the variational inequality∫
�

ut.v − u/ dx + I p.v/− I p.u/ ≥
∫
�

f .v − u/ dx; (1.7)

(for all v in a certain space of admissible functions). The limit inclusion in (1.5) is
equivalent to the inequality∫

�

ut.v − u/ dx + I K .v/− I K .u/ ≥
∫
�

f .v − u/ dx: (1.8)

The functionalI K in (1.8) and (1.5) can be written formally as an integral functional
similar to (1.6):

I K .u/ =
∫
�

Q.|∇u|/ dx;

whereQ : R → R ∪ {∞} is the maximal graph:

Q.t/ =
{

0 for t ∈ [−1; 1];
∞ for |t | > 1:

Note that the functionsQp given byQp.t/ = |t |p=p, t ∈ R, have limit Q (pointwise)
as p → ∞. When f andu are independent oft , the stationary inequality associated
with (1.5) is f ∈ @ I K .u/, which is not always solvable.

We propose here to study an intermediate problem between thep-Laplacian prob-
lems (1.7) and their limit variational inequality (1.8). We consider the inequality∫

�

ut.v − u/ dx +
∫
�

8.|∇v|/ dx −
∫
�

8.|∇u|/ dx ≥
∫
�

f .v − u/ dx; (1.9)

for all v in some appropriate function space (to be defined later). Here,8 is a convex
function such that, for everyp ≥ 1,

Qp.t/ = o.8.t// and 8.t/ = o.Q.t// for large t; (1.10)

and

Q.t/ = o.8.t// and 8.t/ = o.Qp.t// for small t: (1.11)

Thus, the function8 plays an intermediate role betweenall functionsQp and their
limit Q. An example of Young functions that satisfy (1.10) and (1.11) is

8.t/ =
{

e|t |−1=|t |; t 6= 0;

0; t = 0;
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or, more generally, the function given in (1.2) above. In what follows, we consider
the case where8 is given by (1.2); however, the arguments can be adapted in a
straightforward manner to problems with8 satisfying (1.10) and (1.11).

Furthermore, we propose to investigate in this paper the stationary inequality asso-
ciated with (1.9), that is, the variational inequality∫

�

8.|∇v|/ dx −
∫
�

8.|∇u|/ dx ≥
∫
�

f .v − u/ dx;

that is, the inequality (1.1) above. The evolutionary problem will be investigated in a
future project.

We are concerned here with the existence and properties of solutions of the vari-
ational inequality (1.1). In the case where the lower order term is linear, that is,
f = f .x/ does not depend onu, (1.1) has a unique solution, as can be proved by
classical existence theory for variational inequalities. In the general case wheref also
depends onu, the problem is no longer coercive and thus may not have solutions. We
study (1.1) in that general case by a sub-supersolution approach. This approach, when
applicable, usually gives useful information not only on the existence of solutions of
the problem but also on the structure of the solution sets, such as their compactness,
directedness, or the existence of extremal solutions. The method was developed re-
cently in [17, 16] for variational inequalities and has been extended to other types of
inequalities such as variational-hemivariational inequalities or systems of variational
inequalities in first-order Sobolev spacesW1;p (see, for example, [3, 4, 6, 5, 7, 18] and
the references therein). However, this technique has not been extended so far to apply
to equations or inequalities in nonreflexive Banach spaces such as Orlicz-Sobolev
spaces. Another point is that, in most previous works so far, the potential functionals
for the principal operators are smooth or at least Lipschitz continuous. In our problem
here, the principal functional is not differentiable and even not defined on the whole
associated function space. Therefore, a new sub-supersolution approach is needed for
the present problem. The sub- and super-solution approach for variational inequalities
where the potentials of their principal operators are nonsmooth do not appear to have
been studied. Also, since our functionals here do not satisfy12 conditions, working
in nonreflexive Orlicz-Sobolev spaces also requires new arguments and techniques.
In this paper, we shall define the appropriate concepts of sub- and super-solutions for
(1.1). Next, we prove the existence of solutions and study some properties of solutions
of (1.1), between sub- and super-solutions.

The paper is organised as follows. In the second section, after a short review of
the basic properties of Orlicz-Sobolev spaces, we define sub- and super-solutions of
the inequalitity (1.1). Existence and enclosure properties of solutions of (1.1) above
subsolutions and between the sub- and super-solutions are established in Section3.
Section4 is devoted to the existence of extremal solutions, that is, of the smallest and
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greatest solutions of (1.1), between the sub- and super-solutions.

2. Sub- and super-solutions

First, let us recall some basic definitions and notation concerning Orlicz-Sobolev
spaces.

2.1. Preliminaries on Orlicz-Sobolev spaces Let8 be a Young function (orN-
function). We denote bȳ8 the Hölder conjugate function of8, which is defined by
8̄.t/ = sup{ts −8.s/ : s ∈ R}; and by8∗ the Sobolev conjugate of8 (in RN), with

.8∗/−1.t/ =
∫ t

0

8−1.s/

s.N+1/=N
ds;

provided that ∫ ∞

1

8−1.s/

s.N+1/=N
ds = ∞; (2.1)

(we refer to [1], [13] or [14] for the properties of Young functions). The Orlicz class
L̃8 := L̃8.�/ is the set of all (equivalence classes of) measurable functionsu defined
on� such that

∫
�
8.|u.x/|/ dx < ∞: The Orlicz spaceL8 := L8.�/ is the linear

hull of L̃8, that is, the set of all measurable functionsu on� such that∫
�

8

( |u.x/|
k

)
dx < ∞; for some k > 0:

ThenL8 is a Banach space when equipped with the (Luxemburg) norm

‖u‖8 = ‖u‖L8 = inf

{
k > 0 :

∫
�

8

( |u|
k

)
dx ≤ 1

}
:

It is clear thatL∞.�/ ⊂ L8 ⊂ L1.�/. The closure ofL∞.�/ in L8 is denoted
by E8, which is a separable Banach space. The first-order Orlicz-Sobolev space
W1L8 := W1L8.�/ is the set of allu ∈ L8 such that the distributional derivatives
@i u = @u=@xi , i = 1; : : : ; N, are also inL8. We note thatW1L8 is a Banach space
with respect to the norm

‖u‖1;8 = ‖u‖W1L8 = ‖u‖8 +
N∑

i =1

‖@i u‖8:

The Orlicz-Sobolev spaceW1E8 is defined similarly. It is known (see, for example,
[13, 14]) that L8 is the dual space ofE8̄, that is, L8 = .E8̄/

∗ and L 8̄ = .E8/
∗.
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The spacesW1L8 andW1E8 can be identified with closed subspaces of the products∏N
i =0 L8 and

∏N
i =0 E8, respectively. It is the case that

N∏
i =0

L8 =
(

N∏
i =0

E8̄

)∗

and if we denote by− = ¦
(∏

L8;
∏

E8̄

)
the weak* topology in

∏
L8 and also

the restriction of− to the closed subspaceW1L8; thenW1L8 is closed under weak*
convergence of

∏
L8: Since

∏
E8̄ is separable, we have the following properties of

W1L8, which shall be used frequently in what follows (see, for example, [11]).
If {un} is a bounded sequence inW1L8 (with respect to‖ · ‖1;8), then{un} has a

subsequence which converges with respect to the topology− to someu ∈ W1L8; that
is, a bounded set inW1L8 is relatively sequentially compact with respect to the weak*
topology− .

We denote byW1
0 L8 the closure ofC∞

0 .�/ with respect to the weak* topology− .
By a Poincaŕe inequality for Orlicz-Sobolev spaces (see [11]), we know that onW1

0 L8

the norm‖ · ‖W1L8 is equivalent to the norm‖ · ‖W1
0 L8 given by‖u‖W1

0 L8 = ‖|∇u|‖L8 .
We define an ordering onL8 and thus onW1L8 andW1

0 L8 in a natural way as follows.
For u; v ∈ L8, u ≤ v ⇐⇒ u.x/ ≤ v.x/ for almost allx ∈ �. It is clear that “≤” is
a partial ordering among functions inL8.

A Young function81 is said to grow essentially more slowly than another Young
function82 (at infinity) (see, for example, [1, 13, 14]), abbreviated by81 � 82, if

lim
t→∞

81.t/

82.kt/
= 0; for all k > 0:

We have the following embeddings, similar to those among Sobolev spaces:

• The embeddingW1
0 L8 ,→ L8∗ is continuous.

• If 9 � 8∗, then the embeddingW1L8 ,→ L9 is compact. In particular, since
8 � 8∗ (see, for example, [11]), the embeddingW1L8 ,→ L8 is compact.

Moreover, in the case ∫ ∞

1

8−1.s/

s.N+1/=N
ds< ∞

in (2.1) (which is the case we study in this paper), it is shown thatW1L8 is continuously
embedded inL∞.�/ (see [1, 11]).

A Young function8 is said to satisfy a12 condition (at infinity) if there existK > 0
andt0 ≥ 0 such that8.2t/ ≤ K8.t/ for all t ≥ t0. Properties of the Orlicz spaceL8

and of the Orlicz-Sobolev spacesW1L8 andW1
0 L8 when8 and/or8̄ satisfies a12

condition are presented in detail in the references [1, 13, 14, 11].
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2.2. Definitions of sub- and super-solutions In what follows we assume that8 is
given by (1.2). All results here are extended in a straightforward manner to the case
where8 satisfies (1.10)–(1.11). Let us denote

J.u/ =
∫
�

8.|∇u|/ dx; u ∈ W1L8;

and let D.J/ = {u ∈ W1L8 : J.u/ < ∞} = {u ∈ W1L8 : |∇u| ∈ L̃8} be the
effective domain ofJ.

We are now ready to define sub- and super-solutions for (1.1).

DEFINITION 2.1. (a) A functionu ∈ W1L8 is a subsolution of (1.1) if


(i) u ≤ 0 on @�;
(ii) f .·; u/ ∈ L1.�/;

(iii)
∫
�
8.|∇u|/ dx < ∞ (that is,|∇u| ∈ L̃8);

(2.2)

and for allv ∈ u ∧ [W1
0 L8 ∩ D.J/]∫

�

8.|∇v|/ dx −
∫
�

8.|∇u|/ dx ≥
∫
�

f .x; u/.v − u/ dx: (2.3)

(b) A function ū ∈ W1L8 is a supersolution of (1.1) if


(i) ū ≥ 0 on @�;
(ii) f .·; ū/ ∈ L1.�/;

(iii)
∫
�
8.|∇ū|/ dx < ∞ (that is,|∇ū| ∈ L̃8);

(2.4)

and for allv ∈ ū ∨ [W1
0 L8 ∩ D.J/]∫

�

8.|∇v|/ dx −
∫
�

8.|∇ū|/ dx ≥
∫
�

f .x; ū/.v − ū/dx: (2.5)

In these definitions, we use the following notation:

u ∨ v = max{u; v}; A ∗ B = {a ∗ b : a ∈ A; b ∈ B};
u ∧ v = min{u; v}; u ∗ A = {u} ∗ A;

whereu; v ∈ W1L8, A; B ⊂ W1L8, and∗ ∈ {∨;∧}.
Let us illustrate Definition2.1 by simple examples of constant sub- and super-

solutions. Leta ∈ R, a ≤ 0. Thenu ≡ a is a subsolution of (1.1) if f .x; a/ is in
L1.�/ and f .x; a/ ≥ 0 for a.e.x ∈ �. In fact, by the conditions in (2.2), Definition2.1
is trivial. Moreover, for anyv ∈ u ∧ [W1

0 L8 ∩ D.J/], we havev − u ≤ 0 and thus∫
�

8.|∇v|/ dx −
∫
�

8.|∇u|/ dx =
∫
�

8.|∇v|/ dx ≥ 0 ≥
∫
�

f .x; u/.v − u/ dx;

that is,u also satisfies (2.3) in Definition 2.1. Similarly, if b ≥ 0 is a number such
that f .·; b/ ∈ L1.�/ and f .x; b/ ≤ 0 for a.e.x ∈ �, thenū ≡ b is a supersolution
of (1.1).
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3. Existence of solutions above subsolutions
or between sub- and super-solutions

First, let us prove the following lattice property of Orlicz-Sobolev spacesW1L8

andW1
0 L8, which extends that of first-order Sobolev spaces.

LEMMA 3.1. W1L8 andW1
0 L8 are closed under the operations∨ and∧, that is, if

u; v ∈ W1L8 (respectivelyW1
0 L8), thenu ∨ v; u ∧ v ∈ W1L8 (respectivelyW1

0 L8).

PROOF. Assumeu; v ∈ W1L8. We haveu; v ∈ W1;1.�/ and from Stampacchia’s
theorem (see, for example, [10] or [12]),

∇.u ∨ v/ =
{

∇u in {x ∈ � : u.x/ ≥ v.x/};
∇v in {x ∈ � : u.x/ < v.x/}: (3.1)

There exists" > 0 such that"u; "v; |∇."u/|; |∇."v/| ∈ L̃8. Because

".u ∨ v/ =
{
"u in {x ∈ � : u.x/ ≥ v.x/};
"v in {x ∈ � : u.x/ < v.x/};

we have ∫
�

8.".u ∨ v// dx ≤
∫
�

8."u/ dx +
∫
�

8."v/ dx < ∞:

This proves thatu ∨ v ∈ L8. Similarly, by using (3.1) on∇."u ∨ "v/ = ∇.".u ∨ v//,
one obtains∫

�

8."|∇.u ∨ v/|/ dx ≤
∫
�

8.|∇."u/|/ dx +
∫
�

8.|∇."v/|/ dx < ∞:

Hence|∇.u∨v/| ∈ L8, that is,∇.u∨v/ ∈ .L8/
N. We have shown thatu∨v ∈ W1L8.

Analogous arguments hold foru ∧ v.

We assume thatu1; : : : ; uk are subsolutions of (1.1) (in the sense of Definition2.1)
and put

u = max{ui : 1 ≤ i ≤ k} (3.2)

and

u0 = min{ui : 1 ≤ i ≤ k}: (3.3)

From Lemma3.1, u andu0 are inW1L8. Assume thatf has the following growth
condition aboveu0:

| f .x; u/| ≤ a.x/+9 ′.|u|/; (3.4)
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for a.e.x ∈ �, all u ∈ [u0.x/;∞/, wherea ∈ L1.�/ and9 is a Young function such
that

9 � 8 (at infinity): (3.5)

Under these conditions, we have the following existence and comparison results
for (1.1).

THEOREM 3.2. Assumeu1; : : : ; uk are subsolutions of(1.1) and that F has the
growth condition(3.4). Then there exists a solutionu of (1.1) such thatu ≥ u.

In the proof of Theorem3.2, we need the following estimate.

LEMMA 3.3. For anyd > 0, there existsC > 0 such that∫
�

8.|∇u|/ dx − d
∫
�

|u|2 dx ≥ 1

2

∫
�

8.|∇u|/ dx − C; ∀ u ∈ W1
0 L8: (3.6)

PROOF. From [11, Lemma 5.7], there are positive constantsD1; D2 such that∫
�

8.D1u/ dx ≤ D2

∫
�

8.|∇u|/ dx; ∀ u ∈ W1
0 L8:

This implies that∫
�

8.|∇u|/ dx − d
∫
�

|u|2 dx

≥ 1

2

∫
�

8.|∇u|/ dx + 1

2D2

(∫
�

8.D1u/ dx − 2d D2

∫
�

|u|2 dx

)
:

Sincet2 � 8.t/, there is a constantD3 > 0 such that8.D1u/ ≥ 2d D2|u|2 − D3, for
all u ∈ R. This shows that∫

�

8.|∇u|/ dx − d
∫
�

|u|2 dx ≥ 1

2

∫
�

8.|∇u|/ dx − D3

2D2
|�|; (3.7)

implying (3.6).

We are now ready to prove Theorem3.2.

PROOF OFTHEOREM3.2. For x ∈ �, t ∈ R, put

b.x; t/ = −[u.x/− t]+ =
{

0 if t ≥ u.x/;

t − u.x/ if t < u.x/:
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Because of the continuous (in fact, compact) embedding

W1L8 ,→ L∞.�/; (3.8)

we have

|b.x; t/| ≤ |t | + ‖u‖L∞.�/ ≤ |t | + C‖u‖W1L8; (3.9)

for a.e.x ∈ �, all t ∈ R. Here and in what follows,C denotes a generic positive
constant.

This estimate shows that the operatorB given by

〈B.u/; �〉 =
∫
�

b.x; u/� dx; (3.10)

is well defined and continuous fromL∞.�/ into its dual and thus fromW1L8 into its
dual. Foru ∈ L8, let us putT.u/ = u ∨ u andTj .u/ = u ∨ u j for j ∈ {1; : : : ; k}. It
follows from (3.8) and Lemma3.1that

T.u/; Tj .u/ ∈ W1L8.,→ L∞.�//; ∀ u ∈ W1L8:

Also, if u ∈ L8 thenT.u/; Tj .u/ ∈ L8. It can be easily verified thatT andTj are
continuous mappings fromW1L8 into itself and also fromL8 into itself. Because
T.u/; Tj .u/ ≥ u0 a.e. on�, we have from (3.4) that

| f .·; T.u//| ≤ a + 9 ′.|T.u/|/;
for all u ∈ L8. Therefore, the mappingu 7→ f .·; T.u// is continuous and bounded
from L8 into L 8̄.= .L8/

∗/ and also fromW1L8 into .W1L8/
∗. Similar properties

hold for the mappingu 7→ f .·; Tj .u//, 1 ≤ j ≤ k. Let us define

〈0.u/; �〉 =
∫
�

[
f .·; T.u//+

k∑
j =1

∣∣ f .·; Tj .u//− f .·; T.u//
∣∣]� dx; (3.11)

for all u; � ∈ W1L8. The above arguments show that0 is bounded and continuous
from L8 to L 8̄. Because the embeddingW1L8 ,→ L8 is compact,0 is completely
continuous fromW1L8 with the weak∗ topology to.W1L8/

∗. Similarly, since the em-
beddingW1L8 ,→ L∞.�/ is compact, the operatorB defined in (3.10) is completely
continuous fromW1L8 (again with respect to the weak∗ topology) into.W1L8/

∗. Let
us consider the variational inequality{

J.v/− J.u/+ 〈þB.u/− 0.u/; v − u〉 ≥ 0; ∀v ∈ W1
0 L8;

u ∈ W1
0 L8;

(3.12)
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with some fixedþ > 0. From the above arguments, we see thatþB −0 is completely
continuous fromW1L8 (with respect to the weak∗ topology) to.W1L8/

∗. Let us
prove thatJ.·/+ 〈.þB − 0/.·/; ·〉 is coercive in the following sense:

lim
‖u‖W1

0 L8
→∞;u∈W1

0 L8

J.u/+ 〈þB.u/− 0.u/; u〉
‖u‖ = ∞; (3.13)

(where‖u‖W1
0 L8 = ‖ |∇u| ‖L8).

In fact, for j ∈ {1; : : : ; k}, u ∈ W1
0 L8, we have

∫
�

| f .·; Tj .u//||u| dx

≤
∫

{x∈�:u.x/≥u0.x/}
| f .·; u/||u| dx +

∫
{x∈�:u.x/<u.x/}

| f .·; u j /||u| dx

≤
∫
�

a.x/|u| dx +
∫
�

9 ′.|u|/|u| dx +
∫
�

| f .·; u j /||u| dx

≤ ‖u‖L∞.�/.‖a‖L1.�/ + ‖ f .·; u j /‖L1.�//+
∫
�

9 ′.|u|/|u| dx: (3.14)

Note that since9 ′ is nondecreasing and9 is even, we have for allu ∈ R,

9.2u/ = 9.2|u|/ =
∫ 2|u|

0

9 ′.s/ ds ≥
∫ 2|u|

|u|
9 ′.s/ ds ≥ 9 ′.|u|/|u|.= 9 ′.u/u/:

For ";C > 0, it follows from (3.5) and the convexity of9 that there existsD =
D"C > 0 such that

9 ′.|u|/|u| ≤ 9.2u/ ≤ "8.Cu/+ D"C; ∀ u ∈ R: (3.15)

Hence ∫
�

9 ′.|u|/|u| dx ≤ "

∫
�

8.Cu/ dx + D"C|�|: (3.16)

Combining (3.14)–(3.16) with (1.2), one gets, for anyj ∈ {1; : : : ; k} andu ∈ W1
0 L8,

∫
�

| f .·; Tj .u//||u| dx ≤ ‖u‖L∞.�/
(‖a‖L1.�/ + ‖ f .·; uj /‖L1.�/

)
+ "D2

∫
�

8.|∇u|/ dx + D"D1|�|: (3.17)

We have a similar estimate to (3.17) in which
∫
�

| f .·; Tj .u//||u| dx is replaced by
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�

| f .·; T.u//||u| dx. Therefore, one obtains the following estimate:

|〈0.u/; u〉|

≤ C

[
.k + 1/‖a‖L1.�/ + .k + 1/‖ f .·; u/‖L1.�/ +

k∑
j =1

‖ f .·; u j /‖L1.�/

]
‖u‖W1

0 L8

+ ".k + 1/D2

∫
�

8.|∇u|/ dx + .k + 1/D"D1|�|; ∀u ∈ W1
0 L8: (3.18)

On the other hand, for allu ∈ W1L8,

|〈B.u/; u〉| ≤
∫
�

|u − u||u| dx ≤ 3

2

∫
�

|u|2 dx + 1

2

∫
�

|u|2 dx: (3.19)

Choosing" > 0 sufficiently small in (3.18) and using (3.19), one gets (as above,C
denotes a generic constant),

J.u/+ 〈þB.u/− 0.u/; u〉
≥
∫
�

8.|∇u|/ dx − C‖u‖W1
0 L8 − ".k + 1/D2

∫
�

8.|∇u|/ dx

− 3þ

2

∫
�

|u|2 dx − C

≥ 1

2

∫
�

8.|∇u|/ dx − C

(
‖u‖W1

0 L8 +
∫
�

|u|2 dx + 1

)
: (3.20)

From (3.6) of Lemma3.3, (3.7) and (3.20), we obtain for allu ∈ W1
0 L8,

J.u/+ 〈þB.u/− 0.u/; u〉 ≥ 1

4

∫
�

8.|∇u|/ dx − C.‖u‖W1
0 L8 + 1/; (3.21)

for someC > 0 independent ofu. Because

lim
‖u‖W1

0 L8
→∞

1

‖u‖W1
0 L8

∫
�

8.|∇u|/ dx = ∞; (3.22)

(see, for example, [11]), (3.21) immediately implies (3.13).
It follows from the above arguments and classical existence theory for variational

inequalities (see, for example, [12] and [19]) that the inequality (3.12) has a solution
u. Let us verify that for allj ∈ {1; : : : ; k}

u ≥ u j : (3.23)

Let q ∈ {1; : : : ; k}. Substitutingv = uq ∧ u ∈ uq ∧ [W1
0 L8 ∩ D.J/] in (2.3) (with uq

instead ofu) yields

J.uq ∧ u/− J.uq/ ≥ −
∫
�

f .x; uq/.uq − u/+ dx: (3.24)
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On the other hand, lettingv = uq ∨ u in (3.12), we obtain

J.uq ∨ u/− J.u/+ 〈þB.u/− 0.u/; .uq − u/+〉 ≥ 0: (3.25)

Adding (3.24) to (3.25) and using the fact that for allv;w ∈ W1L8

J.v ∧w/+ J.v ∨ w/ =
∫
�

8.|∇.v ∧w/|/ dx +
∫
�

8.|∇.v ∨w/|/ dx

=
∫
�

8.|∇v|/ dx +
∫
�

8.|∇w|/ dx

= J.v/+ J.w/;

which is a direct consequence of Stampacchia’s theorem (see, for example, [12] or
[10]), we have

〈þB.u/− 0.u/; .uq − u/+〉 +
∫
�

f .x; uq/.uq − u/+ dx ≥ 0:

It follows from (3.11) that

− 〈0.u/; .uq − u/+〉 +
∫
�

f .x; uq/.uq − u/+ dx

=
∫
�

{
[ f .·; uq/− f .·; T.u//] −

k∑
j =1

| f .·; Tj .u//− f .·; T.u//|
}
.uq − u/+ dx

=
∫

{x∈�:uq>u.x/}

{
[ f .·; uq/− f .·; T.u//]−

k∑
j =1

| f .·; Tj .u//− f .·; T.u//|
}
.uq −u/ dx

≤ 0:

Hence

0 ≤ 〈þB.u/; .uq − u/+〉 = þ

∫
{x∈�:uq.x/>u.x/}

b.·; u/.uq − u/ dx

= −þ
∫

{x∈�:uq.x/>u.x/}
.u − u/.uq − u/ dx ≤ 0;

and thus

0 =
∫

{x∈�:uq.x/>u.x/}
.u − u/.uq − u/ dx ≥

∫
{x∈�:uq.x/>u.x/}

.uq − u/2 dx ≥ 0:

Consequently,uq − u = 0 a.e. in{x ∈ � : uq.x/ > u.x/} and this set must have
measure 0. We have shown thatu ≥ uq a.e. in�. Since this holds for allq ∈
{1; : : : ; k}, one obtainsu ≥ u.
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From the definitions ofB and0, we have

B.u/ = 0 and 〈0.u/; �〉 =
∫
�

f .·; u/� dx:

Therefore the variational inequality (3.12) reduces to our original inequality (1.1), that
is, u is a solution of (1.1).

By using similar arguments, one can show the following existence result for solu-
tions lying between the subsolutions and the supersolutions when both exist. In this
case, we need only a more relaxed growth condition on the lower term between the
sub- and super-solutions. In fact, we have the following existence theorem.

THEOREM3.4. Assume(1.1) has subsolutionsui , i = 1; : : : ; k, and supersolutions
ū j , j = 1; : : : ;m. Let u be as in(3.2) and ū = min{ū j : 1 ≤ j ≤ m}. Suppose
furthermore thatu ≤ ū a.e. in� and that f has the growth condition(3.4) for a.e.
x ∈ �, all u ∈ [u0.x/; ū0.x/], whereū0.x/ = max{ū j : 1 ≤ j ≤ m}.

Then(1.1) has a solutionu betweenu andū.

4. Existence of extremal solutions

In this section, we show a further property of the solution set of the inequality (1.1),
namely, we prove that under the assumptions of Theorems3.2 or 3.4, there exist
greatest and/or smallest solutions of (1.1) between the sub- and super-solutions. First,
let us show the following result about the existence of greatest solutions above a
subsolution.

THEOREM 4.1. Under the assumptions of Theorem3.2, there exists a greatest
solutionu∗ aboveu, that is,u∗ is a solution of(1.1), u∗ ≥ u, and ifu is any solution
of (1.1) such thatu ≥ u thenu ≤ u∗.

PROOF. Let S be the set of solutions of (1.1) aboveu:

S := {u ∈ W1
0 L8 : u is a solution of (1.1) andu ≥ u a.e. in�}: (4.1)

In the first step, we show thatS is bounded inW1
0 L8. In fact, assumeu ∈ S. Letting

v = 0 in (1.1) yields∫
�

8.|∇u|/ dx ≤
∫
�

f .x; u/u dx

≤
∫
�

a|u| dx +
∫
�

9 ′.|u|/|u| dx

≤ ‖a‖L8̄‖u‖L9 +
∫
�

9.2|u|/ dx; (4.2)
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(since9 is a Young function, we have 0≤ 9 ′.|u|/|u| ≤ 9.2|u|/, for all u ∈ R).
Again, from [11, Lemma 5.7], there are constantsC; k > 0 such that∫

�

8.|∇u|/ dx ≥ 1

C

∫
�

8.k|u|/ dx; for all u ∈ W1
0 L8:

From (3.5), there existsM > 0 such that

9.2|s|/
8.k|s|/ <

1

2C
; for all s ∈ R; |s| ≥ M:

As a consequence, one obtains∫
�

8.|∇u|/ dx

≤ ‖a‖L9̄‖u‖L9 +
∫

{x∈�:|u.x/|<M}

9.2M/ dx + 1

2C

∫
{x∈�:|u.x/|≥M}

8.k|u|/ dx

≤ ‖a‖L9̄‖u‖L9 + |�|9.2M/+ 1

2C

∫
�

8.k|u|/ dx

≤ ‖a‖L9̄‖u‖L9 + |�|9.2M/+ 1

2

∫
�

8.|∇u|/ dx:

Therefore

1

2

∫
�

8.|∇u|/ dx ≤ ‖a‖L9̄‖u‖L9 + |�|9.2M/: (4.3)

On the other hand, because8̄ satisfies a12 condition, we have from (3.22) a positive
numberR0 such that ∫

�

8.|∇u|/ dx ≥ 3‖a‖L9̄ ¼
−1‖u‖W1

0 L8 ; (4.4)

for all u ∈ W1
0 L8, ‖u‖W1

0 L8 ≥ R0. Here¼ is the best embedding constant for the
embeddingW1

0 L8 ,→ L9, that is,

¼ = inf{‖u‖W1
0 L8 : u ∈ W1

0 L8; ‖u‖L9 = 1}:
In particular,

¼‖u‖L9 ≤ ‖u‖W1
0 L8; for all u ∈ W1

0 L8: (4.5)

If ‖u‖L9 ≥ R0=¼, then from (4.3)–(4.5), it follows that 1
2‖a‖L9̄‖u‖L9 ≤ |�|9.2M/;

that is,‖u‖L9 ≤ 2|�|9.2M/‖a‖−1
L9̄

. We have shown that ifu ∈ S then

‖u‖L9 ≤ max{R0¼
−1; 2|�|9.2M/‖a‖−1

L9̄
}:
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This estimate, together with (4.3) and (4.4), shows that the set{‖u‖W1
0 L8 : u ∈ S} is

bounded, that is,S is bounded inW1
0 L8. From the boundedness ofS in W1

0 L8, we
can chooseM > 0 such that

∫
�
8.u=M/ dx ≤ 1, for all u ∈ S.

Next, we show thatS has a maximal element with respect to the ordering≤ in
W1

0 L8, which is a maximal solution of (1.1). In view of Zorn’s lemma, we only need
to check that every nonempty chainC in S has an upper bound. SupposeC 6= ∅ is a
chain inS. Let u0 ∈ C and putC0 = {u ∈ C : u ≥ u0}. To prove thatC has an upper
bound inS, one only has to show thatC0 has an upper bound inS. Let

Þ0 := sup

{∫
�

8
( u

M

)
dx : u ∈ C0

}
.≤ 1/:

By consideringC0 − u0 instead ofC0, one can assume without loss of generality that
u ≥ 0 a.e. in�, for everyu ∈ C0. There are two cases:

(i) there is au ∈ C0 such that
∫
�
8.u=M/ dx = Þ0, and

(ii) for all u ∈ C0, we have
∫
�
8.u=M/ dx < Þ0.

If (i) holds thenu is an upper bound ofC0. In fact, for anyv ∈ C0, eitheru ≤ v or
v ≤ u. In the first case, we have from the monotonicity of8 that

Þ0 =
∫
�

8
( u

M

)
dx ≤

∫
�

8
( v

M

)
dx ≤ Þ0:

Thus
∫
�
8.u=M/ dx = ∫

�
8.v=M/ dx. Because 0≤ u ≤ v and8 is strictly

increasing on[0;∞/, this occurs only ifu = v. Henceu ≥ v, for all v ∈ C0, that is,
u is an upper bound ofC0.

Assume now that case (ii) holds. In this case, from the definition ofÞ0, we can
construct inductively a sequence{un} in C0 such that

Þ0 >

∫
�

8
(u1

M

)
dx > Þ0 − 1;

and

Þ0 >

∫
�

8
(un

M

)
dx > max

{∫
�

8
(un−1

M

)
dx; Þ0 − 1

n

}
; ∀ n > 1: (4.6)

We note thatun ≥ un−1 (for all n > 1). In fact, if this does not hold thenun−1 ≥ un

(becauseC is a chain) and as above, one must have∫
�

8
(un−1

M

)
dx ≥

∫
�

8
(un

M

)
dx;

which contradicts (4.6). Consequently,{un} is an increasing sequence inL8 and thus

un → u a.e. in�; (4.7)
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whereu = sup{un : n ∈ N}. On the other hand, from the boundedness of{un} in
W1

0 L8 and the compact embeddingW1
0 L8 ,→ L8, by passing to a subsequence if

necessary, we can assume thatun *
∗ ũ in W1

0 L8, and un → ũ in L8, and thus
in L1.�/. Comparing to (4.7) and by passing again to a subsequence if necessary, we
haveu = ũ, which implies thatun *

∗ u in W1
0 L8, and therefore

un → u in L8: (4.8)

Next, let us prove thatu is an upper bound ofC0. Let v ∈ C0. If v ≤ un for somen,
thenv ≤ u. Assume otherwise thatv 6≤ un for all n. Again, sinceC0 is a chain, we
must haveun ≤ v for all n. Using again the above arguments, we get∫

�

8
(un

M

)
dx ≤

∫
�

8
( v

M

)
dx; for all n ∈ N: (4.9)

Letting n → ∞ in this inequality and using (4.6), one obtainsÞ0 ≤ ∫
�
8.v=M/ dx:

Becausev ∈ C0, this contradicts our assumption onÞ0. Henceu is an upper bound of
C0.

In this last step, let us prove thatu belongs toS. Sinceun ≥ u for all n ∈ N due to
{un} ⊂ S, we haveu ≥ u. Becauseun ∈ S, we have, for anyv ∈ W1

0 L8,∫
�

8.|∇v|/ dx −
∫
�

8.|∇un|/ dx ≥
∫
�

f .x; un/.v − un/ dx: (4.10)

It follows from (4.7) and (4.8) that∫
�

f .x; un/.v − un/ dx
n→∞−−→

∫
�

f .x; u/.v − u/ dx: (4.11)

From the lower semicontinuity ofJ with respect to the weak* topology inW1
0 L8, we

have ∫
�

8.|∇u|/ dx ≤ lim inf
n→∞

∫
�

8.|∇un|/ dx: (4.12)

Combining (4.10)–(4.12), one sees thatu is a solution of (1.1). Henceu ∈ S andu is
therefore an upper bound ofC in S.

We have shown that every nonempty chain inS has an upper bound. By Zorn’s
lemma,S has a maximal elementu∗. Let us verify thatu∗ is in fact the greatest
element ofS. Assume otherwise that there existsv ∈ S such that

v 6≤ u∗: (4.13)

Becausev ≥ u and f has the growth condition (3.4)–(3.5), v satisfies (2.2) (ii). Also,
sincev is a solution of (1.1), it clearly satisfies (2.2) (i) and (2.2) (iii). This means that
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v is a subsolution of (1.1). Similarly, u∗ is a subsolution of (1.1). Let ũ = max{v; u∗}.
Note that the growth condition (3.4) also holds forv; u∗, andũ in our present case.
From Theorem3.2, (1.1) has a solutionw such thatw ≥ ũ.≥ u∗ ≥ u/. Hencew ∈ S.
Becausew ≥ u∗ andu∗ is a maximal element ofS, one must havew = u∗. Thus
u∗ = w ≥ ũ ≥ v. This contradicts (4.13) and shows thatu∗ is in fact the greatest
element ofS. Our proof is complete.

By employing analogous arguments, one can show the existence of solutions and
extremal solutions of (1.1) between the sub- and the super-solutions. In fact, we have
the following result.

THEOREM4.2. Under the assumptions of Theorem3.4, there exist a smallest solu-
tion u∗ and a greatest solutionu∗ betweenu andū, that is,u∗; u∗ are solutions of(1.1)
satisfyingu ≤ u∗ ≤ u∗ ≤ ū, and if u is any solution of(1.1) such thatu ≤ u ≤ ū,
thenu∗ ≤ u ≤ u∗.
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