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SUB-SUPERSOLUTIONS IN A VARIATIONAL INEQUALITY
RELATED TO A SANDPILE PROBLEM
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Abstract

Inthis paper we study a variational inequality in which the principal operator is a generalised
Laplacian with fast growth at infinity and slow growth at 0. By defining appropriate sub-
and super-solutions, we show the existence of solutions and extremal solutions of this
inequality above the subsolutions or between the sub- and super-solutions.
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1. Introduction

In this paper, we study a variational inequality in which the principal operator is a
generalised Laplaciam(Laplacian) with fast growth at infinity and slow growth at

0 and where the lower order term is nonlinear. An example of such a variational
inequality is the following:

/¢(|Vv|)dx—/d>(|Vu|)dxz/ fox,wy(w—uydx, VYveWjle,
Q Q Q
ue Wile,

(1.1)

where® is the Young function given by
o) =1 (@ (0) = 0), (1.2)

for p > 1. Here,Q is a bounded open set RN (N > 1) with Lipschitz boundary
982, W)L is the first-order Orlicz-Sobolev space of functions vanishingQr(see,
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for example, Sectio.1for more details), and : 2 x R — R is a Caratkodory
function with a certain growth condition to be specified later.
Note that for® given in (L.2) we have

d(t) = o(tY) ast — 0"
and
t9=o0(®P(t)) ast — oo,

for any powert? (q > 0). Inequality (L.1) is the weak (variational) form of the
nonlinear degenerate elliptic boundary value problem

{—div (‘MVL']I)Vu) = f(x,u) in Q,

[Vu
u=2~0 on 9%,

(1.3)

where¢ = @'. Problem {.3) and the variational inequalityl(1) are related to

a sandpile problem studied recently by Aronssirel. [2], Evanset al [15] and
Prigozhin P1, 20]. Inthese works, the (dynamic) problem is formulated as a parabolic
equation that contains theLaplacian with largep:

(1.4)

ur— Apu= f in RN x (0, 00),
u=g on RN x {t =0},

and also their limits whep — oo. The limit problem is in fact equivalent to the
following variational inequality:
{f—u[ealK(u) for t > 0, (1.5)

u=g whent = 0.

Here, Apu = div(|Vu|P~2Vu) and 3l (u) is the subdifferential of the indicator
function I« of the convex seK = {v : |Vv| < 1a.e}. The motivation of {.4)

and (L.5) is the consideration of fast/slow diffusion operators such that within the
region{|Vu| < 1 — 8} (§ > 0, small), the diffusion coefficien&u|P-2 is very small,
whereas withir{|Vu| < 1+ 8}, |Vu|P~2is very large. The limit variational inequality
(1.5 is also closely related to the elastic-plastic torsion problem (see, for example,
[9, 8] or [22]). In the variational form A, is the derivative of the functional

lo(u) = E/ [VulP dx (1.6)
P Ja

with the integrand/Vu|P being very small in{|Vu| < 1 — §} and very large in
{IVu| < 1+ é}. Becausd is convex, the equation irl(4) is (in the weak form)



[3] Sub-supersolutions 181

equivalent to the variational inequality

/ut(v—u)dx+lp(v)—lp(u)2/ f(v—u)dx, 1.7)
Q Q

(for all v in a certain space of admissible functions). The limit inclusionlif)(is
equivalent to the inequality

/u[(v—u)dx+IK(v)—IK(u)z/ f(v—u)dx (1.8)
Q Q

The functionallk in (1.8) and (L.5) can be written formally as an integral functional
similar to (L.6):

I (U) = / Q(vul) dx,
Q

whereQ : R — R U {oo} is the maximal graph:

0 fortel[-11],
t =
QM { for |t] > 1.

Note that the function®, given by Q,(t) = [t|P/p, t € R, have limitQ (pointwise)
asp — oo. Whenf andu are independent df the stationary inequality associated
with (1.5) is f € 3l (u), which is not always solvable.

We propose here to study an intermediate problem betweep-tiaplacian prob-
lems (L.7) and their limit variational inequalityl(8). We consider the inequality

/ut(v—u)dx+/<I>(|Vv|)dx—/d>(|Vu|)dxz/ f(v—u)dx, (1.9)
Q Q Q Q

for all v in some appropriate function space (to be defined later). Herga convex
function such that, for everp > 1,

Qp(t) =0o(P(t)) and P(t) =0(Q(t)) forlarget, (1.10)
and
Q) =o(®(t)) and P(t) =0(Q,(t)) forsmall t. (1.11)

Thus, the function® plays an intermediate role betwealh functionsQ, and their
limit Q. An example of Young functions that satisf. {0 and (L.11) is

eti-1t ¢ £,
(1) = ?
0, t=0,
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or, more generally, the function given if.) above. In what follows, we consider
the case wher@ is given by (..2); however, the arguments can be adapted in a
straightforward manner to problems widhsatisfying (.10 and (L.11).

Furthermore, we propose to investigate in this paper the stationary inequality asso-
ciated with (.9), that is, the variational inequality

/®(|Vv|)dx—/d>(|Vu|)dxz/ f (v —u)dx,
Q Q Q

that is, the inequalityl(.1) above. The evolutionary problem will be investigated in a
future project.

We are concerned here with the existence and properties of solutions of the vari-
ational inequality {.1). In the case where the lower order term is linear, that is,

f = f(x) does not depend om, (1.1) has a unique solution, as can be proved by
classical existence theory for variational inequalities. In the general case Whise
depends om, the problem is no longer coercive and thus may not have solutions. We
study (L.1) in that general case by a sub-supersolution approach. This approach, wher
applicable, usually gives useful information not only on the existence of solutions of
the problem but also on the structure of the solution sets, such as their compactnes:s
directedness, or the existence of extremal solutions. The method was developed re
cently in [17, 16] for variational inequalities and has been extended to other types of
inequalities such as variational-hemivariational inequalities or systems of variational
inequalities in first-order Sobolev spad#d P (see, for example3] 4, 6, 5, 7, 18] and

the references therein). However, this technique has not been extended so far to appl
to equations or inequalities in nonreflexive Banach spaces such as Orlicz-Sobolev
spaces. Another point is that, in most previous works so far, the potential functionals
for the principal operators are smooth or at least Lipschitz continuous. In our problem
here, the principal functional is not differentiable and even not defined on the whole
associated function space. Therefore, a new sub-supersolution approach is needed f
the present problem. The sub- and super-solution approach for variational inequalities
where the potentials of their principal operators are nonsmooth do not appear to have
been studied. Also, since our functionals here do not safisfgonditions, working

in nonreflexive Orlicz-Sobolev spaces also requires new arguments and techniques
In this paper, we shall define the appropriate concepts of sub- and super-solutions fo
(1.1). Next, we prove the existence of solutions and study some properties of solutions
of (1.1), between sub- and super-solutions.

The paper is organised as follows. In the second section, after a short review of
the basic properties of Orlicz-Sobolev spaces, we define sub- and super-solutions o
the inequalitity (.1). Existence and enclosure properties of solutionslLdf) @above
subsolutions and between the sub- and super-solutions are established in Section
Sectiord is devoted to the existence of extremal solutions, that is, of the smallest and
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greatest solutions ofi(1), between the sub- and super-solutions.

2. Sub- and super-solutions

First, let us recall some basic definitions and notation concerning Orlicz-Sobolev
spaces.

2.1. Preliminaries on Orlicz-Sobolev spacesLet ® be a Young function (oN-
function). We denote byp the Holder conjugate function ob, which is defined by
d(t) = supts — ®(s) : s € R}, and byd* the Sobolev conjugate @ (in RN), with

o t cb—l(s)
(@) L(t) =/0 ST ds,

)

(we refer to [L], [13] or [14] for the properties of Young functions). The Orlicz class
Lo := Lo(S) is the set of all (equivalence classes of) measurable funatidesined
on Q such thatf,, ®(Ju(x)|)dx < oo. The Orlicz spacé., := L4(2) is the linear
hull of L4, that is, the set of all measurable functiansen 2 such that

/d)('u(kX”) dx < oo, forsomek > 0.
Q

ThenL, is a Banach space when equipped with the (Luxemburg) norm

||u||q>=||u||Lq,=inf{k>o:/q>(' l)dx<1}
a k

It is clear thatL>*(R2) C Le C LY(Q). The closure ofL>*() in L is denoted

by Es, which is a separable Banach space. The first-order Orlicz-Sobolev space
W1ILe 1= WIL4(R) is the set of alu € L, such that the distributional derivatives
du=0u/dx,i =1,...,N, are also inL,. We note thatV'L, is a Banach space
with respect to the norm

provided that

N

1Ulls.0 = lUllwee, = ullo + > 3Ulo.

i=1

The Orlicz-Sobolev spadd/*E,, is defined similarly. It is known (see, for example,
[13, 14]) that L+ is the dual space OE;, that is,Ls = (Eg)* andLg = (Eo)*.
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The spacedViL, andW!E, can be identified with closed subspaces of the products
1Y, Lo and]]", Es, respectively. It is the case that

i)

i=0

and if we denote by = o ([]Le, [] Es) the weak* topology in[] L, and also
the restriction ofr to the closed subspat¥'L ., thenWL, is closed under weak*
convergence of | Ls. Since[] E; is separable, we have the following properties of
WL, which shall be used frequently in what follows (see, for examplg) [

If {u,} is a bounded sequence WL (with respect to| - |l1.+), then{u,} has a
subsequence which converges with respect to the topaldggomeu € WL, that
is, a bounded set WL, is relatively sequentially compact with respect to the weak*
topologyr~.

We denote by L the closure of£5°(€2) with respect to the weak* topology.
By a Poincag inequality for Orlicz-Sobolev spaces (séé]), we know that onWV; L
the norm|| - [lw:L, is equivalent to the norm - [z, given by|[ullw, = IIVUlllL,-
We define an ordering dng, and thus oW*L , andW; L ¢ in a natural way as follows.
Foru,v e Lo, U <v < u(Xx) < v(x) for almost allx € Q. Itis clear that <" is
a partial ordering among functions in.

A Young function®; is said to grow essentially more slowly than another Young
function @, (at infinity) (see, for example 1] 13, 14]), abbreviated byb; <« ®,, if

O(t)

lim =0, forall k>0.
t—oo P, (Kt)

We have the following embeddings, similar to those among Sobolev spaces:

e The embeddin§ViLs < Lg- is continuous.
o If ¥ « &* then the embedding/*Ls, — L, is compact. In particular, since
& « O~ (see, for example 1[1]), the embeddingV'L, < Lo is compact.

o0 cD—l
/ ids<oo
1

S(N+D/N

Moreover, in the case

in (2.1) (whichis the case we study in this paper), itis shown¥at ,, is continuously
embedded i (2) (see [, 11]).

A Young function® is said to satisfy &, condition (at infinity) if there exisK > 0
andty > 0 such thatb (2t) < K®(t) forallt > t,. Properties of the Orlicz spads,
and of the Orlicz-Sobolev spac¥g'L, andW;Le when® and/or® satisfies aA,
condition are presented in detail in the referende4 B, 14, 11].
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2.2. Definitions of sub- and super-solutions In what follows we assume thdt is
given by (.2). All results here are extended in a straightforward manner to the case
where® satisfies {.10—(1.11). Let us denote

J(u):/d>(|Vu|)dx, ue Wi,
Q

and letD(J) = {u € WiLy : J(U) < oo} = {u € WL, : [Vu| € Ly} be the
effective domain ofl.
We are now ready to define sub- and super-solutionslfdy.(

DEFINITION 2.1. (a) A functionu € WL, is a subsolution of{.1) if

(i) u<O0 onag,
{ (i) f(,wel'(Q), (2.2)
(i) [, ®(Vu)dx < oo (thatis,|Vul € Ls),

and forallv € u A [WiLe N D(J)]

/cbqwndx—/cb(wm)dxz/ F(x, U)(v — ) dx. (2.3)
Q Q Q

(b) A functiont € WL is a supersolution ofl(1) if
(i) G=0 ona,
() f(,0 € LY(Q), (2.4)
(i) [, ®(va)dx <oo (thatis,|Vi| € Ly),

and for allv € GV [WyLe N D(J)]

/ O(|Vu|)dx — / o(|va)) dx > / f(x, 0)(v — )dx. (2.5)
Q Q Q
In these definitions, we use the following notation:
uvVv v = maxu, v}, AxB={axb:ac A be B},
uA v =min{u, v}, usx A= {u}x A,
whereu, v e WLy, A, B € WllLy, andx € {Vv, Al.
Let us illustrate Definitior2.1 by simple examples of constant sub- and super-
solutions. Leta € R, a < 0. Thenu = a is a subsolution ofX.1) if f(x,a) isin

LY(Q)andf (x,a) > Ofora.ex € Q. Infact, by the conditions ir?( 2), Definition2.1
is trivial. Moreover, for anyw € u A [WiLe N D(J)], we havev — u < 0 and thus

/CD(IVvI)dX—/@(IVHI)dX=/<I>(IVvl)dXZOZ/ f(x, W —wdx,
Q Q Q Q

that is,u also satisfies4.3) in Definition 2.1 Similarly, if b > 0 is a number such
that f (-, b) € LY(Q2) and f (x, b) < 0 for a.e.x € Q, thenl = b is a supersolution
of (1.1).
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3. Existence of solutions above subsolutions
or between sub- and super-solutions

First, let us prove the following lattice property of Orlicz-Sobolev spatés
andW; L, which extends that of first-order Sobolev spaces.

LEMMA 3.1. WL, andW, L, are closed under the operationsand A, that is, if
u, v € W'L4 (respectivelyWjLs), thenu v v, u A v € WLg (respectivelyWyL o).

PrROOF. Assumeu, v € WLy, We haveu, v € W1(2) and from Stampacchia’s
theorem (see, for example, (] or [12)]),

Vv v) = Vu in {xe€Q:uXx) >uvx)}, (3.1)
Ve in {xeQ:ux) < vx). '

There exists > 0 such thatu, ev, |V(eU)|, |V(ev)| € Lo. Because

EwVU):{euin{er:ua)zvun,

gv in {XxeQ:uXx) <vX)},

we have

/ d(e(uvv))dx < /

Q Q

d>(su)dx+/d>(sv)dx<oo.

Q
This proves thati vV v € L. Similarly, by using8.1) onV(su Vv ev) = V(e(UV v)),
one obtains

/<I>(8|V(u\/v)|)dX§/<I>(|V(8u)|)dx+/<I>(|V(8v)|)dx<oo.
Q Q Q

HenceV(uvv)| € Lo, thatis,V(uvv) € (Ls)N. We have shown thatvv € WL .

Analogous arguments hold fora v. O
We assume that,, ..., u, are subsolutions ofi(1) (in the sense of Definitiof.1)
and put
u=maxy, :1<i <k} (3.2)
and
U, =min{y, : 1 <i <Kk}. (3.3)

From Lemma3.1, u andy, are inW*L,. Assume thatf has the following growth
condition aboveu,:

| f(x,u)] <ax)+ ¥'(ul), (3.4)



[9] Sub-supersolutions 187

fora.e.x € @, allu € [u,(x), o0), wherea € L*(2) andW is a Young function such
that

U « @ (atinfinity). (3.5)

Under these conditions, we have the following existence and comparison results
for (1.1).

THEOREM 3.2. Assumeyu,, ..., u, are subsolutions of1.1) and thatF has the
growth condition(3.4). Then there exists a solutianof (1.1) such thatu > u.

In the proof of Theoren3.2, we need the following estimate.

LEMMA 3.3. For anyd > 0, there exist< > 0 such that
1
/ o(|Vul) dx — d/ lul?dx > 5/ d(|Vu)dx—C, YueW;Ls,. (3.6)
Q Q Q
PrOOFE. From [L1, Lemma 5.7], there are positive constabBts D, such that

/CD(Dlu)dx5 D2/ o(|Vu))dx, YueW;Ls.
Q

Q

This implies that

fCI>(|Vu|)dX—d/ lul2dx
Q Q

1 1
> —/ & (|Vu)) dx + — (/ & (Dyu)dx — 2d D2/ |u|2dx>.
2 Q 2D2 Q Q

Sincet? « ®(t), there is a constarid; > 0 such thatb(D,u) > 2d D,|u|? — D, for
all u € R. This shows that

1 D
/¢(|Vu|)dx—d/ luf2dx > —/ O(VU|) dX — —=|Q, (3.7)
Q Q 2 Q 2D2

implying (3.6). O

We are now ready to prove Theoreh?.

PROOF OFTHEOREM3.2 Forx € ,t € R, put

b(x,t) = —[u(x) — t]r = {0 if t>u(x),

t—ux) if t <u(x).
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Because of the continuous (in fact, compact) embedding

WLy < L®(Q), (3.8)
we have
Ib(x, )| < [t + [[UllLe) < [t| + Cllullwir,, (3.9

fora.e.x € @, allt € R. Here and in what followsC denotes a generic positive
constant.
This estimate shows that the operaBgiven by

(B(u), ¢) = / b(x, u)¢ dx, (3.10)
Q

is well defined and continuous froht () into its dual and thus frordV:L , into its
dual. Foru € Lo, letus putT (u) =uvuandTj(u) =uvuy,forje{l... Kk} It
follows from (3.8) and LemmaB.1 that

T), Tj(u) € WiLo(— L¥(R)), Yue WlL,.

Also, if u € Ly thenT (u), Tj(u) € Lo. It can be easily verified thall andT; are
continuous mappings frov'L,, into itself and also frorlL,, into itself. Because
T(w, T;(u) > u, a.e. onQ2, we have from§.4) that

[T, T <a+ ¥ (Tw),

forall u € L. Therefore, the mapping — f (-, T(u)) is continuous and bounded
from Ly into L (= (Le)*) and also fromW?!L, into (W*Ly)*. Similar properties
hold for the mapping! — f (-, Tj(u)), 1 < j < k. Let us define

k
<r<u>,¢>=/ [f(-,T<u>>+Z|f<-,Tj(u)>— f(-,T(u>>|}¢dx, (3.11)
Q

j=1

for all u, ¢ € W'L,. The above arguments show thais bounded and continuous
from Lo to Lg. Because the embeddiMyiL, < Lo is compactI” is completely
continuous from\V!L , with the weak topology to(WL )*. Similarly, since the em-
beddingWL, < L>() is compact, the operatd® defined in 8.10) is completely
continuous from\/L, (again with respect to the weatopology) into(W*Ls)*. Let
us consider the variational inequality

B . o 1
{J(v) J(u) + (BBW) —T'(W,v—u) =0, Yve WgLo, (3.12)

ue WL,
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with some fixeds > 0. From the above arguments, we see giat- I' is completely
continuous fromW!L,, (with respect to the weaktopology) to (W'L4)*. Let us
prove thatd(-) + (8B — I')(-), -) is coercive in the following sense:

JW) + (BBU) —T'(u), u)

lim — o0, (3.13)
IUlly3e, —o0ueMGLo flull
(where|uflwzL, = I VUl [lL,)-
In fact, forj € {1,...,k},u € WyLs, we have

flf(nTj(U))IIUIdX
Q

sf |f<-,u>||u|dx+f 1. up)ljul dx
{XeQ:u(x)=Uy(x)} {xeQuu(x)<u(x)}

s/a(x)|u|dx+/w/<|u|>|u|dx+/ £, up)ljul dx
Q Q Q

< ullL=@ (lallLxe + | f(-,Qj)||L1<sz>)+/ W'(juhlufdx. (3.14)
Q

Note that sincel’ is nondecreasing andl is even, we have for all € R,

2\u|

2|u|
W (2u) = W(2u|) =f lI/(S)dszf V'(s)ds > W'(Ju)|ul(= ¥ (u)u).
0 |

ul

Fore, C > 0, it follows from (3.5 and the convexity of that there existD =
D.c > 0 such that

W (uphlul < ¥(2u) <e®(Cu)+ D,c, VYueR. (3.15)
Hence
/\ll’(|u|)|u|dx5s/ ®(Cu)dx + D.c|2|. (3.16)
Q Q

Combining @.14—(3.16) with (1.2), one gets, for any € {1, ..., k} andu € W}L,

/ [T ) uldx < Julliso (1@l + 1 G lew)
Q

+5D2/ ®(IVul) dX + D,p, |9 (3.17)
Q

We have a similar estimate t8.07 in which [, | f (-, T;(u))||u| dx is replaced by
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Jo | f ¢, T(u)||uldx. Therefore, one obtains the following estimate:

([ (u), w)

k
<C |:(k + Dlallie + K+ DIFC Wlie + Z £, H,-)||L1(Q>:| ullwz,

=1

+e(k+ 1)D2/ ®(|Vul) dx + (k+ 1) D,p, ||, Yu € W}Lo. (3.18)
Q
On the other hand, for all € WL,
3 1
[(B(u), u)| sflg—UIIUIdxs —/ IU|2dx+—f|g|2dX- (3.19)

Choosinge > 0 sufficiently small in 8.18 and using 8.19, one gets (as abov€,
denotes a generic constant),

J(u) + (BB(U) — I'(u), u)

2/¢(|VU|)dX—C||U||w01Lq,—8(k+1)D2/CD(|VU|)dX
Q Q
38 5
—7/;2|U| dx—-C

> }/ d(|Vu))dx—C (||u||W01L® +/ lul?dx + 1). (3.20)
2 Q Q
From 3.6) of Lemma3.3, (3.7) and @.20), we obtain for allu € W} L,
1
J) + (BB(U) —T'(w), u) > 4_1/ o(Vu)dx — C(llullwzL, + 1), (3.21)

Q

for someC > 0 independent ofi. Because

/(D(|Vu|)dx: 00, (3.22)
Q

Il =00 [[U][wiL,

(see, for example 1[1]), (3.21) immediately implies §.13).
It follows from the above arguments and classical existence theory for variational
inequalities (see, for examplel, 4] and [19)]) that the inequality .12 has a solution
u. Let us verify that for allj € {1, ..., k}
uz>u. (3.23)

Letq e {1,..., k}. Substitutingy = u, AU € U, A [WyLe N D(I)]in (2.3) (with u,
instead ofu) yields

JUg AW = J(Uy) = —f fx, Uy Uy —whdx. (3.24)
Q
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On the other hand, letting= u, v uin (3.12, we obtain

J(U, V) = J(U) + (BB(U) = T'(u), (u, —w)*) > 0. (3.25)
Adding (3.24) to (3.25 and using the fact that for all, w € W'Lq

J(v/\w)—I—J(v\/w):/<I>(|V(v/\w)|)dx—i—/<I>(|V(v\/w)|)dx
Q Q

=/<I>(|Vv|)dX+/<I>(|Vw|)dX
Q Q
=JWw) + J(w),

which is a direct consequence of Stampacchia’s theorem (see, for exaifjler [
[10]), we have

(BBW) — T(W), (U, — W) + / f(x, U (U, — W) dx > 0.
Q
It follows from (3.11) that
— (T, (U, — W) + / (%, U (U, — W* dx
Q

k

= / {[fc,gq) —FG Tl = YOG Tw) - f T(u>>|} (Ug — " dx
Q

=1

k
= / {[f(-,gq)—f(-,T<u>>]—Z|f<-,T,-(u)>—f(-,T<u>)|}(gq—u)dx
j=1

{er:gq>u(x)}

<0.
Hence
0= (BBW), (U —w)") =8 b(-, u)(u, — u)dx
{xe:uq (x)>u(x)}
=—p (U—u(u, —wdx =0,
{er:gq(x)>u(x)}
and thus

02/ (g—U)(gq—U)dxz/ (u, —w?dx > 0.
{xeQ:uy ()>u(x)} {xeQ:U, () >U(x)}

Consequentlyy, —u = 0 a.e. in{x € 2 : U,(X) > u(x)} and this set must have
measure 0. We have shown that> u, a.e. inQ. Since this holds for alf e
{1,...,k}, one obtainsi > u.
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From the definitions oB andI'", we have
B(uy=0 and (I'(u), ¢) = / f(,updx
Q

Therefore the variational inequalitg.(L2 reduces to our original inequality (1), that
is, u is a solution of {.1). O

By using similar arguments, one can show the following existence result for solu-
tions lying between the subsolutions and the supersolutions when both exist. In this
case, we need only a more relaxed growth condition on the lower term between the
sub- and super-solutions. In fact, we have the following existence theorem.

THEOREM3.4. Assumé1.1) has subsolutions;,i =1, ..., k, and supersolutions
aj, j =1,...,m. Letube asin(3.2 andi = min{t; : 1 < j < m}. Suppose
furthermore thatu < G a.e. inQ2 and that f has the growth conditio3.4) for a.e.
x € @, allu € [uy(X), Ug(X)], wherelig(X) = max{i; : 1 < j < mj}.

Then(1.1) has a solutioru betweeru anda.

4. Existence of extremal solutions

In this section, we show a further property of the solution set of the inequality; (
namely, we prove that under the assumptions of Theorgé@®r 3.4, there exist
greatest and/or smallest solutions dflj between the sub- and super-solutions. First,
let us show the following result about the existence of greatest solutions above a
subsolution.

THEOREM 4.1. Under the assumptions of Theoreh®, there exists a greatest
solutionu* aboveu, that is,u* is a solution of(1.1), u* > u, and ifu is any solution
of (1.1) such thatu > u thenu < u*.

PROOF. LetS be the set of solutions of (1) aboveu:
S :={ue WjLe : U is asolution of {.1) andu > u a.e. inQ}. (4.1)

In the first step, we show th&t is bounded inV; L. In fact, assume € S. Letting
v =01in (1.2) yields

/¢(|Vu|)dx5/ f(x, wudx
Q Q

§/a|u|dx—|—/\ll’(|u|)|u|dx
Q Q

< llall; ulle, +/ W (2Ju)) dx, (4.2)
Q
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(sinceV is a Young function, we have & W’'(Ju|)|u] < ¥(2|u]), for all u € R).
Again, from [11, Lemma 5.7], there are constafisk > 0 such that

1
/¢(|Vu|)dxz —/ o (klu)dx, forall ue W;Le.
Q C Q

From @.5), there existsVl > 0 such that

ws) _ 1
o(Kjs)  2C’

forall se R, |s| > M.

As a consequence, one obtains
/ ®(|Vul)dx
Q

1
< Jlalle, lulle, + / M) dx + 5 / (kluf) dx

(XEQIU00I<M) (XEQUC0|=M)
< ||a||Lw||u||Lw+|Q|W<2M)+%/§2d><k|u|>dx
< ||a||Lw||u||Lu,+|9|w<2M>+%L¢<|Vu|>dx.
Therefore

1
5/ P(IVup) dx < Jlall, ulle, + 121V (2M). (4.3)
Q

On the other hand, becausesatisfies a\, condition, we have from322) a positive
numberR, such that

/CD(IVUI)O'XE 3llalle, 1t ullwg, (4.4)
Q

forall u € WyLe, ullwiL, = Ro. Hereu is the best embedding constant for the
embeddingNViLe < Ly, thatis,

p = inf{|lullws, : U € WyLe, lullL, = 1}.
In particular,
pllullL, < lullw,, forall ueWyLe. (4.5)

If Jull., = Ro/u, then from 4.3)—(4.5), it follows that%||a||L@ lullL, < IL2¥(2M),
thatis,||ul., < 2|Q|\I/(2M)||a||[;. We have shown that if € S then

lulle, < max{Rou ™, 21Q1W(2M)ljal ;).
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This estimate, together withd (3) and ¢@.4), shows that the séf|ullw;., : U € S} is
bounded, that is$ is bounded ifW;L 4. From the boundedness &fin WLg, we
can choosé/ > 0 such thag[Q dUu/M)dx < 1,forallu e S

Next, we show thatS has a maximal element with respect to the ordernm
WL, which is a maximal solution ofl(1). In view of Zorn's lemma, we only need
to check that every nonempty chainn S has an upper bound. Suppadse: ¢ is a
chain inS. Letuy € C and putCy = {u € C : u > ug}. To prove that has an upper
bound inS, one only has to show th&} has an upper bound ifi. Let

op 1= Supi‘/Q ) (%) dx:ue Co} (=1.

By considering’y — Uy instead ofCy, one can assume without loss of generality that
u > 0 a.e. inQ, for everyu € Cy. There are two cases:

(i) thereis au € Co such that/, ®(u/M) dx = ao, and
(i) forall u e Co, we havef, ®(u/M)dx < ag.

If (i) holds thenu is an upper bound af,. In fact, for anyv € Co, eitheru < v or
v < u. In the first case, we have from the monotonicitydothat

a0=/9<1><%)dx5/9<1><%) dx < ap.

Thus [, ®(u/M)dx = [, ®(v/M)dx. Because O< u < v and @ is strictly
increasing or0, co), this occurs only ifu = v. Henceu > v, for all v € Cy, that is,
u is an upper bound af,.

Assume now that case (ii) holds. In this case, from the definitiom,pfve can
construct inductively a sequenge,} in Cy such that

a0>/9d>(%) dX > ap — 1,
and

a0>/§2¢(%) dX>maX{/S;CI>(u;\71) dx,ao—%}, vn> 1 (4.6)

We note thau, > u,_; (for all n > 1). In fact, if this does not hold them,_; > u,
(becausé is a chain) and as above, one must have

[o () oc= [ () e

which contradicts4.6). Consequently{u,} is an increasing sequencelig and thus

u, — u a.e.in<, 4.7)
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whereu = supu, : N € N}. On the other hand, from the boundedness$uaf in
W;Le and the compact embeddiMyiLs <— Lo, by passing to a subsequence if
necessary, we can assume tbat—* 0 in WjLs, andu, — @ in Le, and thus

in L1(2). Comparing to4.7) and by passing again to a subsequence if necessary, we

haveu = @, which implies that, —* uin Wy L4, and therefore
U, — U in L. (4.8)

Next, let us prove that is an upper bound df,. Letv € Co. If v < u, for somen,
thenv < u. Assume otherwise that £ u, for all n. Again, sinceC, is a chain, we
must haveu,, < v for all n. Using again the above arguments, we get

L¢(%)dxg£¢(ﬁ)dx forall ne N. (4.9)

Lettingn — oo in this inequality and using/(€), one obtainsy, < [, ®(v/M) dx.
Because € Cy, this contradicts our assumption en Henceu is an upper bound of
Co.

In this last step, let us prove thabelongs taS. Sinceu, > u for all n € N due to
{u)} C S, we haveu > u. Becausel, € S, we have, for any € W;L,

/ ®d(|Vu|)dx — / ®(|Vuy|)dx > / f (X, uy) (v —u,) dx. (4.10)
Q Q Q
It follows from (4.7) and @.8) that
/ f (X, Up)(v — Uy) dx =5 / f(x, u)(v — u)dx. (4.11)
Q Q

From the lower semicontinuity of with respect to the weak* topology M/ L, we
have

/<I>(|Vu|)dx5Iiminf/d>(|Vun|)dx. (4.12)
Q n—oo Jg

Combining ¢.10—(4.12), one sees thatis a solution of {.1). Henceu € S andu is
therefore an upper bound 6fin S.

We have shown that every nonempty chairSithas an upper bound. By Zorn’s
lemma, S has a maximal element*. Let us verify thatu* is in fact the greatest
element ofS. Assume otherwise that there existe S such that

v £ U (4.13)

Because» > u andf has the growth conditior8(4)—(3.5), v satisfies 2.2) (ii). Also,
sincev is a solution of {.1), it clearly satisfies4.2) (i) and @.2) (iii). This means that
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v is a subsolution of1(.1). Similarly, u* is a subsolution ofi{.1). Letd = maxv, u*}.
Note that the growth conditior3(4) also holds forv, u*, andl in our present case.
From Theoren3.2, (1.1) has a solutionv such thato > G(> u* > u). Hencew € S.
Becausav > u* andu* is a maximal element of, one must havev = u*. Thus
u* = w > 0 > v. This contradicts4.13 and shows thati* is in fact the greatest
element ofS. Our proof is complete. O

By employing analogous arguments, one can show the existence of solutions anc
extremal solutions ofl(. 1) between the sub- and the super-solutions. In fact, we have
the following result.

THEOREM4.2. Under the assumptions of Theor@m, there exist a smallest solu-
tionu, and a greatest solution* betweeru andd, that is,u,, u* are solutions of{1.1)
satisfyingu < u, < u* < 0, and ifu is any solution of(1.1) such thatu < u < 0,

<
thenu, < u < u*.
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