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ON THE STABILITY OF SOLUTIONS FOR THE p(x)-LAPLACIAN
EQUATION AND SOME APPLICATIONS TO OPTIMISATION
PROBLEMS WITH STATE CONSTRAINTS

ELZBIETA GALEWSKA™! and MAREK GALEWSKH!

(Received 25 January, 2006)

Abstract

We consider the stability of solutions for a family of Dirichlet problems withq)-growth
conditions. We apply the results obtained to show continuous dependence on a functional
parameter and the existence of an optimal solution in a control problem with state constraints
governed by the(x)-Laplacian equation.
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1. Introduction

We shall show the stability of solutions to the following family of Dirichlet problems:

—div (|VU)|PY72Vu(x)) = FAx ux),  ue Wy P?(Q),

(1.1)
uX)|ae =0,

wherek =0, 1, ...,2 c RNisaboundedregiom, q € C(Q), 1/p(X)+1/q(x) = 1

forx e Qandw, " () denotes the generalised Orlicz-Sobolev space 456g [Let

p~ = infyeq P(X) > N > 2andp* = sup, p(x). HereF*andF¥ are CaratBodory

functions with F¥ being convex with respect to on a certain interval in whichFX

satisfies some general growth conditions. The existence of a solution is obtained by &

variational method from7]. We modify some growth assumptions and considerably

simplify the proof of the main existence theorem which is now obtained as a direct

consequence of a respective variational principle. Later we consider the stability of
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solutions for a family of problem typel(1). The stability result is further applied
to show that solutions to equations liké.1) depend continuously on a functional
parameter. By stability we mean conditions under which from a sequi@ngg ,
being a solution toX(.1) one may choose a subsequence converging stronmﬁ’ﬁﬁ)‘)

to a certaind which is a solution to the problem

—div (V) [PY72Vax)) = F2(x, G(x))
u(X)‘BQ =0,

where alsai, = U up to a subsequence.

Further we consider an optimisation problem with state governed by a fpicg«d
Laplacian equation. It is shown that under some mild assumptions on the objective
functional there exists an optimal solution to a certain control problem with state
constraints.

Variational problems witlip, q)-growth conditions are important in applications in
elastic mechanics and electro-rheological fluid dynamics (seelf] and references
therein) and have been studied in the last few years 3s8Epr existence results in the
supercritical case which are based on the application of a Palais-Smale condition and
mountain pass geometry. Such an approach requires that the growth of a nonlinearity
is somehow restricted which need not be the case in the present paper. It also does nc
allow one to prove that solutions are stable in the sense defined above.

To the best knowledge of the authors, neither the stability of solutions nor their
continuous dependence on parameters for variational problemsp@ithLaplacian
equations have been considered so far.

The question of stability of solutions in the case when the solution itself may not
be unique, as is the case in the present paper, is rarely considered in the literature. Th
first one to state this properly was Walczak12[13]. Later Idczak ] developed the
methods from12, 13] to consider abstract sublinear Dirichlet problems. In the second
author’s work p], stability of solutions for abstract superlinear Dirichlet problems is
considered. We use the ideas applied in the sources mentioned in order to prove tha
the family (L.1) is stable in the sense mentioned above. Once the stability is proved
we are in a position to take up the question of the existence of optimal solutions to the
following control problem:

minJA(u,§)=/ fo(X, u(x), §(x)) dx, (1.2)
Q

where the dynamics of the system are described by

—div (IVU)[PY72Vu(x)) = Fu(X, u(x), £(x)), U e WyP¥ (),

1.3
u(x)|,, = 0. (13)
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The assumptions oR andF, will guarantee that the solution ta.@) exists for all¢
from a certain set of functions and that the systém3)(is stable. This together with
some mild assumptions ofg provides the optimal solutions to problefn2)—(1.3).

2. Assumptions and the existence of solutions

Now we state the growth condition df and modify the relevant existence results
from [7]. In what follows, we denote b€ the best Sobolev constant, that is,

1, p(x)
[Ullpoy < CslIVUllpxy forall ue Wy "™ (Q).

SinceW, "™ () is continuously embedded inity;” (), see B], we denote byC,
andC, the following (best Sobolev) constants

IVUll,- < CilVUllpe  forall ue Wy P (Q), (2.1)
max|u(x)| < Ce[| Vull,-  forall ue WP (Q). (2.2)
Xe

Let vol(2) < (1/p~ + 1/g7)~L In the existence and the stability results the
following assumptions will be made.

(F1) There exist positive numbeds, d;, d, ... such thatd, < d, for k € N and,
forallk=0,1,2, ..., FX(-, 2dy) € L*(Q), Csesse sup, |FX(x, £dy)| > 1 and

C,C,Csesse SUpFX(x, £do)| < dx. (2.3)
XeQ

(F2) There exists a positive numbersuch that for alk = 0,1,2,... and| =
[—d,d]: FX(, £d) € L®(Q), F¥x,u) : @ x | — R are Carathodory functions
and convex iru for a.e.x € Q, Ff(x,u) : € x | — R are CaratBodory functions,
andFX(x, u) := 4+oo for (x,u) € Q x (R — ).

(F3) Forallk =0,1,2,..., FXx,0) # 0 a.e. on@, x — F¥(x,0) andx
(F¥*(x, 0) are integrable o2, where(F*)* denotes the Fenchel-Young conjugate
of the convex and I.s.c. functioR® : Q@ x R — R, see P).

Also a functionald, : W, "* () — R given by the formula

1

J(u) = / ——|Vux)|P® dx — / FX(x, u(x)) dx
a P(X) Q

and the fact thatl(.1) is the Euler-Lagrange equation for this functional, sgewill

be used in our considerations. However, under the growth conditbBsassumed

in (F1) the functionald, is not well defined on the whole spaé "™ (2). We shalll
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construct a subset &, **, denoted byX,, on which the integraf,, F¥(x, u(x)) dx
is finite and the functionaly is bounded from below.
Foranyk =0, 1, 2, ..., we consider a seX, such that for alu € X the relation

—div (IVAx)[PY72Va(x)) = Fx, ux), e Wy P?(Q),
03|, = 0.

impliest € X,.
The setsXy may be constructed as follows, comparg [

d
X = U e WEP(Q), [[VUl[Looig) < =——, U(X) € [—dy, d] a.e .
C.C,

SinceXy is now weakly compact, by convexity arguments we may now prove that for
eachk there exists a constant such that

/ [FEOG u))| dx < . (2.4)
Q
From [7] the following Variational Principle follows.

THEOREM 2.1. Assumeg(F1)—(F3) hold. Assume that for evely = 0,1, 2, ...
there existal, € X, such that—oco < J(uy) = infycx, J(U) < co. Then

—div (]VUu ) [P 72V (x)) = FX(X, uk(x)),
U(X) |, = 0.

REMARK 1. We observe that if a solutiom, to (1.1) exists, it necessarily satisfies
—div (VU [PP72Vue (1) € L¥(R).

Now we prove the existence theorem since its idea is quite different from the
approach of 7].

THEOREM 2.2. Assumg(F1)—(F3) hold. For everyk = 0,1, 2, ..., there exists
Ux € X, such that

— div (VU |P¥2Vue(x)) = RS X)), ue®)|,, =0 (2.5)
J(u) = ulg)]:k J(u) (2.6)

andu, = lim,_, -, Uy, where{up}>°, is a minimising sequence for a the restriction of
a functional J, to the setX,.
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Proor We fixk =0, 1, 2. ... We first show thatl, is bounded from below o¥X,.
From @2.4) it follows that

Jk(u)=/i|Vu(x)|p(X)dx—/ FX(x, u(x)) dx > const
o P(X) Q

Now we may find a minimising sequenfg}:° , for the restriction of a functional

to the setX,. Due to the properties of the s&i this sequence may be assumed
to be weakly convergent iW()l”"X)(Q) and therefore, up to a subsequence, strongly
convergent irL P (€2) sinceW; ** () is embedded intdV, ® (). Thus a sequence
{up}ee, contains a subsequence convergent a.e. We denote this subsequrj¢g by
and its limit byu,. We observe thai, € X,. Indeed, we must show that

ok
||Vuk||LP(X)(Q) = Ea (27)
and
Uk(X) € [—dk, di] a.e. (2.8)

We infer that|| Vug || Lsw o, < di/C1C, for all n and

lim inf ||VUE||LP(X)(Q) > ||Vuk||_p(x)(g).
n—o0

Thus @.7) holds. By the definition of the sequenfag}> ;, we also getup(x)| < d.
Since{uy}? ; is convergent almost everywhere, we gegj.
We may now observe thak is weakly lower semicontinuous 0Xy. Indeed,

1
WEP®(Q 9xr—>/—Vux PO dx e R,
b T(RQ) Qp(x)| (X)]

being convex and lower semicontinuous is weakly lower semicontinugjusSjnce
the limit lim,_. [, FX(X, uf(x)) dx = [, FX(X, u(x)) dx exists we get

liminf Jk(urk]) > Je(uy).
ThusJ(uy) = infycx, Jk(u). Therefore 2.6) holds.
From Theoren?.1it follows that 2.5) is also satisfied. O

3. Stability of solutions

We recall that

XO = {U € Wg’p(X)(Q) : ||Vu||LP(X)(Q) < u(x) e [—do, do] a.e.}

do
C,C,’
and observe thaX, c Xpforallk =1,2,....
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THEOREM 3.1. AssumgF1)—(F3) hold. Let us assume that for amye X, there
exists a subsequend& }>°, such thatlim;_. ., FX(x, G(x)) = FJ(x, 4(x)) weakly
in LP®(Q). For eachk = 0,1, 2,... there exists a solution, to problem(1.1).
There exists a subsequer(cg, ]2, of the sequencgu, )i, andd € W, such that
U, — @, strongly inW, "> (), u,, = 0 and

—div (]Vax)[P¥7?Va(x)) = F2(x, G(x)), u(x)]m =0.

PrOOF By Theorem2.2 it follows that for eachk = 0,1, 2, 3,... there exists
u, € W, "™ () such that

— div (|VU()[PY72VU(x)) = B X)), )|, , = 0.

Due to the fact thaiX, C X, it follows that the sequencgvuy};>; is bounded in
LP® (). Hence there exists a weakly convergent subsequendg i’ (22) and this
subsequence may be assumed to be strongly convergértt {€2). We denote its
limit by 4. Due to the growth assumptions we get

2d
esse supFX(x, G(x)) — Fox, a(x))| < o 3.1
se lb L (X, U(x)) o (X, a( ))‘ = C.CCs (3.1)

Let {ki}*°, be such a subsequence that lim F) (x, G(x)) = F2(x, G(x)) weakly in
LP® (). We denote all the resulting subsequences by the sub&digptsimplicity.
Moreover, by 8.1) and Remarkl we infer that{— div |Vuc(-)[P®2Vu(-)}32, is
weakly convergentih P (2), up to a subsequence, to a certain function L P® ().
Thus

/ (= div VU (0 PY 72V Uy — div [VA(X) PP 72V, ug(X) — T(x)) — O.
Q

Hence and by the fact that thgx)-Laplacian has théS) . property, seed], it follows
that

lim / VU (x) — vax)|™ dx = o.
—> 00 Q

Indeed, it suffices to repeat the reasoning from the proo8,0f heorem 3.1]. Thus
{Vu ), is strongly convergent i, " ().

We show thaty, = U, possibly up to a subsequence which we denot@uR)f® ;.
Indeed, by 2.2—(2.3) and by the mean value theorem it follows that the functipn
fork = 0,1, 2, ... has a continuous extension® Due to the construction of the
setX, and by the mean value theorem it follows that functions from a seqyegige,
are uniformly bounded and equicontinuous.
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We will next prove that
—div|Vax)[P¥72Va(x) = F(x, G(X)).
By the convexity ofF we get for anyu € W, " (Q)
/Q(Fl'j(x, U(X)) — FX(X, U(X)), Ux(x) — ux))dx > 0.
Hence again by Theoregh2
fg(— div [ VU ()] P¥ VU (x) — FX(X, U(X)), Ux(x) — u(x))dx > 0.

Sinceu, — U strongly inLP® () andFX(-, u(-)) — F2(-, u(-)) weakly inLP®(Q)
we easily get that

L(—FJ‘(X’U(X))’ U(X) — u(x))dx — L(—Ff(x,U(X)), G(x) — u(x))dx.
Moreover
fg(— div [Vu(x)[P% 7% Vu(x), —u(x))dx
:/Q<|Vuk(x)|p(x’ZVuk(x),—Vu(x))dx
- /Q<|Vl](x)|p(x)ZVD(X),—Vu(x))dx
=/Q<— div [Va(x)|P¥ 72 Vi(x), —u(x))dx.
Indeed, for anyf € C5°(£2) we get
/Q(d(x), f(x))dx:JLToA(— div [Vuc ()] ¥ 7% Vu(x), f(x))dx
:I(|me/g(|VUK(x)|p<X)Zka(x),Vf(x))dx
=/Q<|Vl](x)|p(x>‘2VU(x),Vf(x))dx,

so by the Euler-Lagrange Lemma for multiple integrdlg][we infer that

d(x) = — div |VT(X)|P®~2va(x).
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We further observe that
/ (= div VU () P72 Vu(x), ue(x)) dx
Q
:/ |Vuk(x)|p(x)dx—>/|Vl](x)|p(x)dx
Q Q
:/<— div |Va(x)|P¥2Va(x), G(x)) dx.
Q
Hence

/ (= div [Va)[PY72Va(x) — F(X, u(x)), a(x) — u(x))dx > 0 (3.2)
Q

for anyu € W, P ().

Now we apply the Minty “trick”, that is, we consider the poinist tu, where
ue W, P(Q),ux) € | a.e. and > 0 such thati(x) + tu(x) € | a.e. By 8.2 we
obtain

/ (= div[Vax)[PY 72 Vi) — F (X, G(x) + tu(x)), u(x))dx < 0.
Q

Since the function maps tb — F°(-, TG(-) + tu(-)) and is convex it follows that
its derivativet — [, (F2(x, G(x) + tu(x)), u(x))dx is continuous for sufficiently
smallt. Hence

Ozlting/(— div [Va(x)| P72 Va(x) — F(x, G(X) + tu(x)), u(x))dx
—YJa

=/(— div [Va(x)|P¥ 72 Vi) — FJ(x, G(x)), u(x))dx
Q

for anyu e W, ¥ (). Since— div|Va(-)[P¥-2Va() — FO(-, G(-)) € LP¥(Q) we
obtain that— div [VT(x)|P®~2vVa(x) = FJ(x, (X)) a.e. O

The above theorem provides a sufficient condition for the family of problems given
by (1.1) to be stable. It asserts that the problem

— div|VuX)|P*7?Vu(x) = F2(x, u(x)), ux|,, =0 (3.3)

has a solutioru understood as a limit of a sequence of solutions to the fartild) (
fork =1, 2,.... Now problem 8.3) has yet another solutias® which minimiseslJ,
over X,. We shall consider the question of whetlieis a minimiser ofJ, over X,.
To assure this we have to make one additional assumption.
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PROPOSITION3.2. AssumégF1)—F3) hold. Let us assume that for anye X, there
exists a subsequend& }>°, such thatlim;_. ., FX(x, G(x)) = FJ(x, 4(x)) weakly
in LP®(Q). For eachk = 1,2,... there exists a solutiom, to problem(1.1).
There exists a subsequer(cg, ]2, of the sequencgu, )i, andd € W, such that
u, — @, strongly inW, "> (Q) andu,, = a, and

—div (IVOx)|P¥7?Vax)) = F)(x, G(x)),  dx)|,, =0.

Let moreover for all € X,

F (X, u(x)) — FO(x,u(x)) a.e. (3.4)
Thend € X,
lim (3, (i) = Jo(ui,)) =0, (3.5)
IiLn inf (J,(ug) — Jo(u®) <0 (3.6)
and
3o(@ = inf Jo(). (3.7)

PrROOF. The first part follows by Theorer®.1. We choose a sequenfa }>° , as
in the proof of Theoren3.L Itis evident thati € Xo and lim,_, o, Jo(Ux,) > Jo(T).
To prove B.5) it suffices to demonstrate that

n—o0

lim / (F*(x, Uk, (X)) — FO(x, U, (X)) dx = 0.
Q

We have

lim (/ (F(x, Uy, (X)) — F(x, G(x))) dx
Q

+f (F(x, t(x)) — FO(x, t(x))) dx
Q
- / (FO(x, u, () = FO(x, u(x)))dx) =0
Q

Now by (3.4) it follows that

lim (/ (F*(x, t(x)) — FO(x, U(X)))dx> =0
Q

n—o0

and since? is continuous anduy, }°°, uniformly convergent we obtain

lim (/ (FO(x, G(x)) — F°(x, ukn(x)))dx>.
Q

n—o0
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Now by convexity we get the following estimation:
/Q (F*(x, G(x)) — F* (X, U (X)) dX
< max{/ |F (X, U ) (G(X) — Ui, (X)) dx,/ |Ff (x, 0)(T(X) — U, (X)) dx} .
2 2
We observe that by the construction of the Xgt

/ | R (X, U, () (G0 — Uy, (X)) | dx
Q

< CchCs/ | (@) — Uy, )| dx

1 p(Xx)
- C1C2CS VOI(Q) (_ + _> / ‘(U(X) - ukn(X))’ dx — 0.

Analogously
f |Fi(x, GO0 @) — Uy, ()| dx — 0.
Q

So we haved.5).
To prove (3.6) we observe that sinag, is a minimiser forJy_ it follows that

Ik, (Ux,) — Jo(u®) < J, (U®) — Jo(u°)

= / (Fkn(x’ UO(X)) o FO(X, UO(X))) dX
Q

Now by (3.4) we obtain that/,, (F* (x, u°(x)) — F°(x, u°(x))) dx — 0. Hence we
establish 8.6).

We now prove 8.7). By Theorem2.2 it follows that there existsl® € X, and a
sequencéu®}> , such that? — u® in Wy "*(Q), liminf . Jo(u®) > Jo(u® and
Jo(u®) = mfuex0 Jo(u). We suppose thalo(uo) < Jo(0). Then there exists > 0
(fixed) such thatly(u®) < Jy(0) — &. We observe that

I, (Ux,) — JoU®) > I, (U) — Jo(0) + ¢

—/ p(l)(IVukn(X)lp(X) IVax)|**) dx
—/ (F(x, Uy, (X)) — FO(x, G(x))) dx + & — &.
Q

Thus liminf,_ « (J,(Uk,) — Jo(u®) > &. Thus we have obtained a contradiction with
(3.6) andi is a minimiser ofJ, over X,. O
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4. The continuous dependence on parameters

Now we shall apply stability results to investigate a continuous dependence on
parameters for the Dirichlet problem

—div (]VU()[P¥72Vu(x)) = Fu(X, u(x), (X)), u(x)\m =0, 4.1)
where¢ : Q@ — R™is a functional parameter from a set
Ly ={&:Q — R™: & is measurable§(x) € M a.e}

andM c R™is a given bounded set.

We assume that the following assumptions hold.
(Fpl) There exist numberd; > d > 0 such thatF,(-, £d, £(:)) € L*() and
Fu(-, £d1, £(1)) € L*(Q) forall § € Ly andCsesse sup,, |Fu(x, £d, £(x))| > 1.
(Fp2) Letl =[—d,d]andl; =[—d,d;]. NowF : © x I; x U is a Caratkodory
function convex inu for a.e.x € Q such thatF(x,u, &) = +oo for (x,u, &) €
Q x (R\I;) x U andF, : € x I; x U is a Caratbodory function; for al € Ly

C,C,Csesse supF,(x, £d, £(x))| < d. (4.2)
XeQ
(Fp3) The functionF,(x, 0, £(X)) # 0, for a.e.x € Q, x — |F(X, 0, &(x))| and
X = |F*(X, 0, £(x))| are integrable for alf € Ly.

We put

X = {u e W, P (Q) : [[ull Loy < ,u(x) el a.e.} .

4
C.C,
Below we shall consider a sequen@g};® ;, & € Lw such that —>_§ in LPX®(Q).
We put F¥(-, u(-)) = Fu(-, u(), &) and F(-, u()) = Fu(-,u(-), £(-)). ThusJ
reads as

Jk(u)=/i|Vu(x)|p(x)dx—/ F(x, u(x), &(x)) dx
Q Q

p(x)
and

Jo(u):/Q$|W(x)|p<x)dx—/9|:(x, u(x), £(x)) dx, (4.3)

with X, = Xforallk =0,1,2,....

THEOREM 4.1. Assume tha(Fp1D)—(Fp3) hold and that{&},, & € L, is a
sequence such thgi, — & in LP®(Q). For eachk = 0, 1,2, ... there exists a
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solution uy to problem(4.1). There exists a subsequengaeg }>>, of the sequence
{uJ>, andd e X such that,, — G, strongly inW, "™ (Q), u,, = q,

—div(]Vae)[PX72va) = F(x, 0(x), §(x)),  0x)|,, =0,
and Jo(0) = infucx Jo(0).
PrROOF. By (4.2) it follows that for allu € X we have
FuC, UC), 8() o> Ful, uC), £()) weakly inLP¥ ().

Hence Theoren3.1 applies withFX(-, u(-)) = Fy(-, u(:), &(:)). To prove the last
assertion we should show th&t(x, u(x), &(x)) — F(x, u(x), £(X)) a.e. and use
Proposition3.2. This follows since(&,}2; is convergent almost everywhere aRds
continuous with respect to the third variable. O

5. Applications to optimisation

Now we apply the results on continuous dependence on parameters in order tc
show that there exists an optimal solution to the optimisation probleg—(1.3).
We assume thaf, and F satisfy 1)—(F3) and that the following assumptions also
hold:

(Fp4) Letr > 0 be fixed and let : @ — R™ be a functional parameter from a set
Lm = {u:[0, 7] — R™ | uis Lipschitz with respect ta, u(t) € M a.e}.

Such a definition ofLy, provides that any bounded sequence of function& jn
contains a subsequence strongly convergehtii (2).

(Fp5) fo: Q2 x 1y x M is measurable with respect to the first variable and continuous
with respect to the two last variables. It is also quasi-convex with respegt to
Moreover there exists a functioh € L1(2) such that for alu € I, and allé € M

[fo(X,u, &) < ¥(x) forae.xeq.

Now we easily obtain that any sequencelif contains a subsequence that is
weakly convergent ih. P ($2). We consider a sek consisting of all these paicsl, &)
whereu € X is a solution to {.3) corresponding t§ € Ly and which minimises the
relevant action functional. Byn we denote the infimum ad, over A. We have the
following theorem.

THEOREM5. 1. Let us assume thgEp1)—(Fp5) all hold. There exists a paifu, &)
in A such thatJa(d, £) = m.
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PrROOF. We first observe that the satis relatively weakly compact i, ** () x

LP® () andJ, is bounded from below 0A. Thus there exists a minimising sequence
{uk, &2, for the problem {.2—(1.3). We may assume that a sequefiag &J}p>, is
weakly convergent to a certain pair, £) € W, "* (22) x LP® (). From Theorerd.1

it follows that there exists a subsequengesuch thaty, — @, strongly inW," " (),

ux, = 0, and thatl is a solution to the probleni(3) corresponding t§ and which
minimises the relevant action functional, sde3. Thus(l, £) € A. Sincef, is a
Caratleodory function, since it is quasi-convex with respect @nd sincal,, = 0,

it follows using [L, Theorem 10.9.vi] that, for a subsequence,

liminf Ja(Ui,. &.) = Ja(@,§) = m. O

REMARK 2. We observe that the optimal solutidrhas some qualitative properties,

forexample]|U||Lrw @) < %,G(x) e l a.e.and- div(|VG(-)[P®72V()) € L®(Q).
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