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ON THE STABILITY OF SOLUTIONS FOR THE p(x)-LAPLACIAN
EQUATION AND SOME APPLICATIONS TO OPTIMISATION

PROBLEMS WITH STATE CONSTRAINTS
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Abstract

We consider the stability of solutions for a family of Dirichlet problems with.p;q/-growth
conditions. We apply the results obtained to show continuous dependence on a functional
parameter and the existence of an optimal solution in a control problem with state constraints
governed by thep.x/-Laplacian equation.
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1. Introduction

We shall show the stability of solutions to the following family of Dirichlet problems:

− div
(|∇u.x/|p.x/−2∇uk.x/

) = Fk
u .x; u.x//; u ∈ W1;p.x/

0 .�/;

u.x/|@� = 0;
(1.1)

wherek = 0; 1; : : : ,� ⊂ RN is a bounded region,p;q ∈ C.S�/, 1=p.x/+1=q.x/ = 1
for x ∈ � andW1;p.x/

0 .�/ denotes the generalised Orlicz-Sobolev space, see [4, 5]. Let
p− = inf x∈� p.x/ > N > 2 andp+ = supx∈� p.x/. HereFk andFk

u are Carath́eodory
functions withFk being convex with respect tou on a certain interval in whichFk

u

satisfies some general growth conditions. The existence of a solution is obtained by a
variational method from [7]. We modify some growth assumptions and considerably
simplify the proof of the main existence theorem which is now obtained as a direct
consequence of a respective variational principle. Later we consider the stability of
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solutions for a family of problem type (1.1). The stability result is further applied
to show that solutions to equations like (1.1) depend continuously on a functional
parameter. By stability we mean conditions under which from a sequence{uk}∞

k=1

being a solution to (1.1) one may choose a subsequence converging strongly inW1;p.x/
0

to a certainū which is a solution to the problem

− div
(|∇ū.x/|p.x/−2∇ū.x/

) = F0
u .x; ū.x//

u.x/
∣∣
@�

= 0;

where alsouk � ū up to a subsequence.
Further we consider an optimisation problem with state governed by a forcedp.x/-

Laplacian equation. It is shown that under some mild assumptions on the objective
functional there exists an optimal solution to a certain control problem with state
constraints.

Variational problems with.p;q/-growth conditions are important in applications in
elastic mechanics and electro-rheological fluid dynamics (see [11, 14] and references
therein) and have been studied in the last few years, see [3,8] for existence results in the
supercritical case which are based on the application of a Palais-Smale condition and a
mountain pass geometry. Such an approach requires that the growth of a nonlinearity
is somehow restricted which need not be the case in the present paper. It also does not
allow one to prove that solutions are stable in the sense defined above.

To the best knowledge of the authors, neither the stability of solutions nor their
continuous dependence on parameters for variational problems withp.x/-Laplacian
equations have been considered so far.

The question of stability of solutions in the case when the solution itself may not
be unique, as is the case in the present paper, is rarely considered in the literature. The
first one to state this properly was Walczak in [12, 13]. Later Idczak [9] developed the
methods from [12, 13] to consider abstract sublinear Dirichlet problems. In the second
author’s work [6], stability of solutions for abstract superlinear Dirichlet problems is
considered. We use the ideas applied in the sources mentioned in order to prove that
the family (1.1) is stable in the sense mentioned above. Once the stability is proved
we are in a position to take up the question of the existence of optimal solutions to the
following control problem:

min JA.u; ¾ / =
∫
�

f0

(
x; u.x/; ¾.x/

)
dx; (1.2)

where the dynamics of the system are described by

− div
(|∇u.x/|p.x/−2∇u.x/

) = Fu

(
x; u.x/; ¾.x/

)
; u ∈ W1;p.x/

0 .�/;

u.x/
∣∣
@�

= 0:
(1.3)
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The assumptions onF andFu will guarantee that the solution to (1.3) exists for all¾
from a certain set of functions and that the system (1.3) is stable. This together with
some mild assumptions onf0 provides the optimal solutions to problem (1.2)–(1.3).

2. Assumptions and the existence of solutions

Now we state the growth condition onFk and modify the relevant existence results
from [7]. In what follows, we denote byCS the best Sobolev constant, that is,

‖u‖p.x/ ≤ CS‖∇u‖p.x/ for all u ∈ W1;p.x/
0 .�/:

SinceW1;p.x/
0 .�/ is continuously embedded intoW1;p−

0 .�/, see [5], we denote byC1

andC2 the following (best Sobolev) constants

‖∇u‖p− ≤ C1‖∇u‖p.x/ for all u ∈ W1;p.x/
0 .�/; (2.1)

max
x∈�

|u.x/| ≤ C2‖∇u‖p− for all u ∈ W1;p−
0 .�/: (2.2)

Let vol.�/ ≤ .1=p− + 1=q−/−1. In the existence and the stability results the
following assumptions will be made.

(F1) There exist positive numbersd0; d1; d2; : : : such thatdk ≤ d0 for k ∈ N and,
for all k = 0; 1; 2; : : : , Fk

u .·;±dk/ ∈ L∞.�/, CS esse supx∈�
∣∣Fk

u .x;±dk/
∣∣ ≥ 1 and

C1C2CS esse sup
x∈�

∣∣Fk
u .x;±dk/

∣∣ ≤ dk: (2.3)

(F2) There exists a positive numberd such that for allk = 0; 1; 2; : : : and I =
[−d; d]: Fk

u .·;±d/ ∈ L∞.�/, Fk.x; u/ : � × I → R are Carath́eodory functions
and convex inu for a.e.x ∈ �, Fk

u .x; u/ : � × I → R are Carath́eodory functions,
andFk.x; u/ := +∞ for .x; u/ ∈ �× .R− I /.
(F3) For all k = 0; 1; 2; : : : , Fk

u .x; 0/ 6= 0 a.e. on�, x 7→ Fk.x; 0/ and x 7→
.Fk/∗.x; 0/ are integrable on�, where.Fk/∗ denotes the Fenchel-Young conjugate
of the convex and l.s.c. functionFk : �×R → R, see [2].

Also a functionalJk : W1;p.x/
0 .�/ → R given by the formula

Jk.u/ =
∫
�

1

p.x/
|∇u.x/|p.x/ dx −

∫
�

Fk.x; u.x// dx

and the fact that (1.1) is the Euler-Lagrange equation for this functional, see [3], will
be used in our considerations. However, under the growth conditions (2.3) assumed
in (F1) the functionalJk is not well defined on the whole spaceW1;p.x/

0 .�/. We shall



248 El̇zbieta Galewska and Marek Galewski [4]

construct a subset ofW1;p.x/
0 , denoted byXk, on which the integral

∫
�

Fk.x; u.x// dx
is finite and the functionalJk is bounded from below.

For anyk = 0; 1; 2; : : : , we consider a setXk such that for allu ∈ Xk the relation

− div
(|∇ũ.x/|p.x/−2∇ũ.x/

) = Fk
u .x; u.x//; ũ ∈ W1;p.x/

0 .�/;

ũ.x/
∣∣
@�

= 0;

implies ũ ∈ Xk.
The setsXk may be constructed as follows, compare [7]:

Xk =
{

u ∈ W1;p.x/
0 .�/; ‖∇u‖L p.x/.�/ ≤ dk

C1C2
; u.x/ ∈ [−dk; dk] a.e.

}
:

SinceXk is now weakly compact, by convexity arguments we may now prove that for
eachk there exists a constant�k such that

∫
�

∣∣Fk
u .x; u.x//

∣∣ dx ≤ �k: (2.4)

From [7] the following Variational Principle follows.

THEOREM 2.1. Assume(F1)–(F3) hold. Assume that for everyk = 0; 1; 2; : : :
there existsuk ∈ Xk such that−∞ < J.uk/ = inf u∈Xk J.u/ < ∞. Then

− div
(|∇uk.x/|p.x/−2∇uk.x/

) = Fk
u .x; uk.x//;

uk.x/
∣∣
@�

= 0:

REMARK 1. We observe that if a solutionuk to (1.1) exists, it necessarily satisfies

− div
(|∇uk.·/|p.x/−2∇uk.·/

) ∈ L∞.�/:

Now we prove the existence theorem since its idea is quite different from the
approach of [7].

THEOREM 2.2. Assume(F1)–(F3) hold. For everyk = 0; 1; 2; : : : , there exists
uk ∈ Xk such that

− div
(|∇uk.x/|p.x/−2∇uk.x/

) = Fk
u .x; uk.x//; uk.x/

∣∣
@�

= 0; (2.5)

Jk.uk/ = inf
u∈Xk

Jk.u/ (2.6)

anduk = limn→∞ un
k, where{un

k}∞
n=1 is a minimising sequence for a the restriction of

a functionalJk to the setXk.
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PROOF. We fix k = 0; 1; 2 : : : . We first show thatJk is bounded from below onXk.
From (2.4) it follows that

Jk.u/ =
∫
�

1

p.x/
|∇u.x/|p.x/ dx −

∫
�

Fk.x; u.x// dx ≥ const:

Now we may find a minimising sequence{un
k}∞

n=1 for the restriction of a functionalJk

to the setXk. Due to the properties of the setXk this sequence may be assumed
to be weakly convergent inW1;p.x/

0 .�/ and therefore, up to a subsequence, strongly
convergent inL p−

.�/ sinceW1;p.x/
0 .�/ is embedded intoW1;p−

0 .�/. Thus a sequence
{un

k}∞
n=1 contains a subsequence convergent a.e. We denote this subsequence by{un

k}∞
n=1

and its limit byuk. We observe thatuk ∈ Xk. Indeed, we must show that

‖∇uk‖L p.x/ .�/ ≤ dk

C1C2
; (2.7)

and

uk.x/ ∈ [−dk; dk] a.e. (2.8)

We infer that‖∇un
k‖L p.x/.�/ ≤ dk=C1C2 for all n and

lim inf
n→∞

‖∇un
k‖L p.x/.�/ ≥ ‖∇uk|L p.x/ .�/:

Thus (2.7) holds. By the definition of the sequence{un
k}∞

n=1 we also get|un
k.x/| ≤ dk.

Since{un
k}∞

n=1 is convergent almost everywhere, we get (2.8).
We may now observe thatJk is weakly lower semicontinuous onXk. Indeed,

W1;p.x/
0 .�/ 3 x 7→

∫
�

1

p.x/
|∇u.x/|p.x/ dx ∈ R;

being convex and lower semicontinuous is weakly lower semicontinuous [2]. Since
the limit limn→∞

∫
�

Fk
u .x; un

k.x// dx = ∫
�

Fk
u .x; uk.x// dx exists we get

lim inf
n→∞

Jk.u
n
k/ ≥ Jk.uk/:

ThusJ.uk/ = inf u∈Xk Jk.u/. Therefore (2.6) holds.
From Theorem2.1 it follows that (2.5) is also satisfied.

3. Stability of solutions

We recall that

X0 =
{

u ∈ W1;p.x/
0 .�/ : ‖∇u‖L p.x/.�/ ≤ d0

C1C2
; u.x/ ∈ [−d0; d0] a.e.

}

and observe thatXk ⊂ X0 for all k = 1; 2; : : : .
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THEOREM 3.1. Assume(F1)–(F3) hold. Let us assume that for anyu ∈ X0 there
exists a subsequence{ki }∞

i =1 such thatlim i →∞ Fki
u .x; ū.x// = F0

u .x; ū.x// weakly
in L p.x/.�/. For eachk = 0; 1; 2; : : : there exists a solutionuk to problem(1.1).
There exists a subsequence{ukn}∞

n=1 of the sequence{uk}∞
k=1 andū ∈ W1;p.x/

0 such that
ukn → ū, strongly inW1;p.x/

0 .�/, ukn � ū and

− div
(|∇ū.x/|p.x/−2∇ū.x/

) = F0
u .x; ū.x//; ū.x/

∣∣
@�

= 0:

PROOF. By Theorem2.2 it follows that for eachk = 0; 1; 2; 3; : : : there exists
uk ∈ W1;p.x/

0 .�/ such that

− div
(|∇uk.x/|p.x/−2∇uk.x/

) = Fk
u .x; uk.x//; uk.x/

∣∣
@�

= 0:

Due to the fact thatXk ⊂ X0 it follows that the sequence{∇uk}∞
k=1 is bounded in

L p.x/.�/. Hence there exists a weakly convergent subsequence inW1;p.x/
0 .�/ and this

subsequence may be assumed to be strongly convergent inL p−
.�/. We denote its

limit by ū. Due to the growth assumptions we get

esse sup
x∈�

∣∣Fk
u .x; ū.x//− F0

u .x; ū.x//
∣∣ ≤ 2d0

C1C2CS
: (3.1)

Let {ki }∞
i =1 be such a subsequence that limi →∞ Fki

u .x; ū.x// = F0
u .x; ū.x// weakly in

L p.x/.�/. We denote all the resulting subsequences by the subscriptk for simplicity.
Moreover, by (3.1) and Remark1 we infer that{− div |∇uk.·/|p.x/−2∇uk.·/}∞

k=1 is
weakly convergent inL p.x/.�/, up to a subsequence, to a certain functiond ∈ L p.x/.�/.
Thus ∫

�

〈− div |∇uk.x/|p.x/−2∇uk − div |∇ū.x/|p.x/−2∇ū; uk.x/− ū.x/
〉 → 0:

Hence and by the fact that thep.x/-Laplacian has the.S/+ property, see [3], it follows
that

lim
k→∞

∫
�

∣∣∇uk.x/− ∇ū.x/
∣∣p.x/

dx = 0:

Indeed, it suffices to repeat the reasoning from the proof of [3, Theorem 3.1]. Thus
{∇uk}∞

k=1 is strongly convergent inW1;p.x/
0 .�/.

We show thatukn � ū, possibly up to a subsequence which we denote by{uk}∞
k=1.

Indeed, by (2.2)–(2.3) and by the mean value theorem it follows that the functionuk

for k = 0; 1; 2; : : : has a continuous extension toS�. Due to the construction of the
setXk and by the mean value theorem it follows that functions from a sequence{uk}∞

k=1

are uniformly bounded and equicontinuous.
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We will next prove that

− div |∇ū.x/|p.x/−2∇ū.x/ = F0
u .x; ū.x//:

By the convexity ofFk we get for anyu ∈ W1;p.x/
0 .�/

∫
�

〈
Fk

u .x; uk.x//− Fk
u .x; u.x//; uk.x/− u.x/

〉
dx ≥ 0:

Hence again by Theorem2.2

∫
�

〈− div |∇uk.x/|p.x/−2∇uk.x/− Fk
u .x; u.x//; uk.x/− u.x/

〉
dx ≥ 0:

Sinceuk → ū strongly inL p.x/.�/ andFk
u .·; u.·// * F0

u .·; u.·// weakly in L p.x/.�/

we easily get that

∫
�

〈−Fk
u .x; u.x//; uk.x/− u.x/

〉
dx →

∫
�

〈−F0
u .x; u.x//; ū.x/− u.x/

〉
dx:

Moreover
∫
�

〈− div |∇uk.x/|p.x/−2 ∇uk.x/;−u.x/
〉
dx

=
∫
�

〈|∇uk.x/|p.x/−2 ∇uk.x/;−∇u.x/
〉
dx

→
∫
�

〈|∇ū .x/|p.x/−2 ∇ū.x/;−∇u.x/
〉
dx

=
∫
�

〈− div |∇ū.x/|p.x/−2 ∇ū.x/;−u.x/
〉
dx:

Indeed, for anyf ∈ C∞
0 .�/ we get

∫
�

〈d.x/; f .x/〉 dx = lim
k→∞

∫
�

〈− div |∇uk.x/|p.x/−2 ∇uk.x/; f .x/
〉
dx

= lim
k→∞

∫
�

〈|∇uk.x/|p.x/−2 ∇uk.x/;∇ f .x/
〉
dx

=
∫
�

〈|∇ū.x/|p.x/−2 ∇ū.x/;∇ f .x/
〉
dx;

so by the Euler-Lagrange Lemma for multiple integrals [10], we infer that

d.x/ = − div |∇ū.x/|p.x/−2∇ū.x/:
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We further observe that
∫
�

〈− div |∇uk.x/|p.x/−2 ∇uk.x/; uk.x/
〉
dx

=
∫
�

|∇uk.x/|p.x/ dx →
∫
�

|∇ū.x/|p.x/ dx

=
∫
�

〈− div |∇ū.x/|p.x/−2∇ū.x/; ū.x/
〉
dx:

Hence
∫
�

〈− div |∇ū.x/|p.x/−2∇ū.x/− F0
u .x; u.x//; ū.x/− u.x/

〉
dx ≥ 0 (3.2)

for anyu ∈ W1;p.x/
0 .�/.

Now we apply the Minty “trick”, that is, we consider the pointsū + tu, where
u ∈ W1;p.x/

0 .�/, u.x/ ∈ I a.e. andt > 0 such that̄u.x/+ tu.x/ ∈ I a.e. By (3.2) we
obtain

∫
�

〈− div |∇ū.x/|p.x/−2 ∇ū.x/− F0
u .x; ū.x/+ tu.x// ; u.x/

〉
dx ≤ 0:

Since the function maps tot 7→ F0.·; ū.·/ + tu.·// and is convex it follows that
its derivativet 7→ ∫

�

〈
F0

u .x; ū.x/+ tu.x//; u.x/
〉
dx is continuous for sufficiently

small t . Hence

0 ≥ lim
t→0

∫
�

〈− div |∇ū.x/|p.x/−2 ∇ū.x/− F0
u .x; ū.x/+ tu.x//; u.x/

〉
dx

=
∫
�

〈− div |∇ū.x/|p.x/−2 ∇ū.x/− F0
u .x; ū.x//; u.x/

〉
dx

for anyu ∈ W1;p.x/
0 .�/. Since− div |∇ū.·/|p.x/−2∇ū.·/ − F0

u .·; ū.·// ∈ L p.x/.�/ we
obtain that− div |∇ū.x/|p.x/−2∇ū.x/ = F0

u .x; ū.x// a.e.

The above theorem provides a sufficient condition for the family of problems given
by (1.1) to be stable. It asserts that the problem

− div |∇u.x/|p.x/−2∇u.x/ = F0
u .x; u.x//; u.x/

∣∣
@�

= 0 (3.3)

has a solution̄u understood as a limit of a sequence of solutions to the family (1.1)
for k = 1; 2; : : : . Now problem (3.3) has yet another solutionu0 which minimisesJ0

over X0. We shall consider the question of whetherū is a minimiser ofJ0 over X0.
To assure this we have to make one additional assumption.
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PROPOSITION3.2. Assume(F1)–(F3) hold. Let us assume that for anyu ∈ X0 there
exists a subsequence{ki }∞

i =1 such thatlim i →∞ Fki
u .x; ū.x// = F0

u .x; ū.x// weakly
in L p.x/.�/. For eachk = 1; 2; : : : there exists a solutionuk to problem(1.1).
There exists a subsequence{ukn}∞

n=1 of the sequence{uk}∞
k=1 andū ∈ W1;p.x/

0 such that
ukn → ū, strongly inW1;p.x/

0 .�/ andukn � ū, and

− div
(|∇ū.x/|p.x/−2∇ū.x/

) = F0
u .x; ū.x//; ū.x/

∣∣
@�

= 0:

Let moreover for allu ∈ X0

Fkn.x; u.x// −−→
n→∞

F0.x; u.x// a.e. (3.4)

Thenū ∈ X0

lim
n→∞

(
Jkn.ukn/− J0.ukn/

) = 0; (3.5)

lim inf
n→∞

(
Jkn.ukn/− J0.u

0/
) ≤ 0 (3.6)

and

J0.ū/ = inf
u∈X0

J0.ū/: (3.7)

PROOF. The first part follows by Theorem3.1. We choose a sequence{ukn}∞
n=1 as

in the proof of Theorem3.1. It is evident that̄u ∈ X0 and limn→∞ J0.ukn/ ≥ J0.ū/.
To prove (3.5) it suffices to demonstrate that

lim
n→∞

∫
�

(
Fkn.x; ukn.x//− F0.x; ukn.x//

)
dx = 0:

We have

lim
n→∞

(∫
�

(
Fkn.x; ukn.x//− Fkn.x; ū.x//

)
dx

+
∫
�

(
Fkn.x; ū.x//− F0.x; ū.x//

)
dx

−
∫
�

(
F0.x; ukn.x//− F0.x; ū.x//

)
dx

)
= 0:

Now by (3.4) it follows that

lim
n→∞

(∫
�

(
Fkn.x; ū.x//− F0.x; ū.x//

)
dx

)
= 0

and sinceF0 is continuous and{ukn}∞
n=1 uniformly convergent we obtain

lim
n→∞

(∫
�

(
F0.x; ū.x//− F0.x; ukn.x//

)
dx

)
:
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Now by convexity we get the following estimation:
∫
�

(
Fkn.x; ū.x//− F kn.x; ukn.x//

)
dx

≤ max

{∫
�

∣∣Fkn
u .x; ukn/.ū.x/− ukn.x//

∣∣ dx;
∫
�

∣∣Fkn
u .x; ū/.ū.x/− ukn.x//

∣∣ dx

}
:

We observe that by the construction of the setX0∫
�

∣∣Fkn
u .x; ukn.x//

(
ū.x/− ukn.x/

)∣∣ dx

≤ d0

C1C2CS

∫
�

∣∣.ū.x/− ukn.x//
∣∣ dx

≤ d0

C1C2CS
vol.�/

(
1

p− + 1

q−

)∫
�

∣∣.ū.x/− ukn.x//
∣∣p.x/

dx → 0:

Analogously
∫
�

∣∣Fkn
u .x; ū.x//.ū.x/− ukn.x//

∣∣ dx → 0:

So we have (3.5).
To prove (3.6) we observe that sinceukn is a minimiser forJkn it follows that

Jkn.ukn/− J0.u
0/ ≤ Jkn.u

0/− J0.u
0/

=
∫
�

(
Fkn.x; u0.x//− F0.x; u0.x//

)
dx:

Now by (3.4) we obtain that
∫
�

(
Fkn.x; u0.x//− F0.x; u0.x//

)
dx → 0. Hence we

establish (3.6).
We now prove (3.7). By Theorem2.2 it follows that there existsu0 ∈ X0 and a

sequence{u0
n}∞

n=1 such thatu0
n * u0 in W1;p.x/

0 .�/, lim inf n→∞ J0.u0
n/ ≥ J0.u0/ and

J0.u0/ = inf u∈X0 J0.u/. We suppose thatJ0.u0/ < J0.ū/. Then there exists" > 0
(fixed) such thatJ0.u0/ < J0.ū/− ". We observe that

Jkn.ukn/− J0.u
0/ > Jkn.ukn/− J0.ū/+ "

=
∫
�

1

p.x/

(|∇ukn.x/|p.x/ − |∇ū.x/|p.x/
)

dx

−
∫
�

(
Fkn.x; ukn.x//− F0.x; ū.x//

)
dx + " → ":

Thus lim infn→∞
(

Jkn.ukn/− J0.u0/
)
> ". Thus we have obtained a contradiction with

(3.6) andū is a minimiser ofJ0 over X0.
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4. The continuous dependence on parameters

Now we shall apply stability results to investigate a continuous dependence on
parameters for the Dirichlet problem

− div
(|∇u.x/|p.x/−2∇u.x/

) = Fu.x; u.x/; ¾.x//; u.x/
∣∣
@�

= 0; (4.1)

where¾ : � → Rm is a functional parameter from a set

L M = {¾ : � → Rm : ¾ is measurable ,¾.x/ ∈ M a.e.}
andM ⊂ Rm is a given bounded set.

We assume that the following assumptions hold.

(Fp1) There exist numbersd1 > d > 0 such thatFu.·;±d; ¾.·// ∈ L∞.�/ and
Fu.·;±d1; ¾.·// ∈ L∞.�/ for all ¾ ∈ L M andCS esse supx∈� |Fu.x;±d; ¾.x//| ≥ 1.
(Fp2) Let I = [−d; d] and I1 = [−d1; d1]. Now F : �× I1 × U is a Carath́eodory
function convex inu for a.e. x ∈ � such thatF.x; u; ¾ / = +∞ for .x; u; ¾ / ∈
�× .R\I1/× U andFu : �× I1 × U is a Carath́eodory function; for all¾ ∈ L M

C1C2CS esse sup
x∈�

|Fu.x;±d; ¾.x//| ≤ d: (4.2)

(Fp3) The functionFu.x; 0; ¾.x// 6= 0, for a.e.x ∈ �, x 7→ |F.x; 0; ¾.x//| and
x 7→ |F∗.x; 0; ¾.x//| are integrable for all¾ ∈ L M .

We put

X =
{

u ∈ W1;p.x/
0 .�/ : ‖u‖L p.x/.�/ ≤ d

C1C2
; u.x/ ∈ I a.e.

}
:

Below we shall consider a sequence{¾k}∞
k=1, ¾k ∈ L M such that¾k → ¾̄ in L p.x/.�/.

We put Fk
u .·; u.·// = Fu.·; u.·/; ¾k.·// and F0

u .·; u.·// = Fu.·; u.·/; ¾̄ .·//. Thus Jk

reads as

Jk.u/ =
∫
�

1

p.x/
|∇u.x/|p.x/ dx −

∫
�

F.x; u.x/; ¾k.x// dx

and

J0.u/ =
∫
�

1

p.x/
|∇u.x/|p.x/ dx −

∫
�

F.x; u.x/; ¾̄ .x// dx; (4.3)

with Xk = X for all k = 0; 1; 2; : : : .

THEOREM 4.1. Assume that(Fp1)–(Fp3) hold and that{¾k}∞
k=1, ¾k ∈ L M, is a

sequence such that¾k → ¾̄ in L p.x/.�/. For eachk = 0; 1; 2; : : : there exists a
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solution uk to problem(4.1). There exists a subsequence{ukn}∞
n=1 of the sequence

{uk}∞
k=1 andū ∈ X such thatukn → ū, strongly inW1;p.x/

0 .�/, ukn � ū,

− div.|∇ū.x/|p.x/−2∇ū.x// = F0
u .x; ū.x/; ¾̄ .x//; ū.x/

∣∣
@�

= 0;

and J0.ū/ = inf u∈X J0.ū/.

PROOF. By (4.2) it follows that for allu ∈ X we have

Fu.·; u.·/; ¾k.·// −−→
k→∞

Fu.·; u.·/; ¾̄ .·// weakly in L p.x/.�/.

Hence Theorem3.1 applies withFk
u .·; u.·// = Fu.·; u.·/; ¾k.·//. To prove the last

assertion we should show thatF.x; u.x/; ¾k.x// → F.x; u.x/; ¾̄ .x̄// a.e. and use
Proposition3.2. This follows since{¾k}∞

k=1 is convergent almost everywhere andF is
continuous with respect to the third variable.

5. Applications to optimisation

Now we apply the results on continuous dependence on parameters in order to
show that there exists an optimal solution to the optimisation problem (1.2)–(1.3).
We assume thatf0 and F satisfy (F1)–(F3) and that the following assumptions also
hold:

(Fp4) Let½ > 0 be fixed and let¾ : � → Rm be a functional parameter from a set

L M = {
u : [0; ³ ] → Rm | u is Lipschitz with respect to½; u.t/ ∈ M a.e.

}
:

Such a definition ofL M provides that any bounded sequence of functions inL M

contains a subsequence strongly convergent inL p.x/.�/.
(Fp5) f0 : �× I1 × M is measurable with respect to the first variable and continuous
with respect to the two last variables. It is also quasi-convex with respect to¾ .
Moreover there exists a function ∈ L1.�/ such that for allu ∈ I1 and all¾ ∈ M

| f0.x; u; ¾ /| ≤  .x/ for a.e.x ∈ �:
Now we easily obtain that any sequence inL M contains a subsequence that is

weakly convergent inL p.x/.�/. We consider a setA consisting of all these pairs.u; ¾ /
whereu ∈ X is a solution to (1.3) corresponding to¾ ∈ L M and which minimises the
relevant action functional. Bym we denote the infimum ofJA over A. We have the
following theorem.

THEOREM5.1. Let us assume that(Fp1)–(Fp5) all hold. There exists a pair.ū; ¾̄ /
in A such thatJA.ū; ¾̄ / = m.
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PROOF. We first observe that the setA is relatively weakly compact inW1;p.x/
0 .�/×

L p.x/.�/ andJA is bounded from below onA. Thus there exists a minimising sequence
{uk; ¾k}∞

k=1 for the problem (1.2)–(1.3). We may assume that a sequence{uk; ¾k}∞
k=1 is

weakly convergent to a certain pair.ū; ¾̄ / ∈ W1;p.x/
0 .�/×L p.x/.�/. From Theorem4.1

it follows that there exists a subsequenceukn such thatukn → ū, strongly inW1;p.x/
0 .�/,

ukn � ū, and thatū is a solution to the problem (1.3) corresponding tō¾ and which
minimises the relevant action functional, see (4.3). Thus.ū; ¾̄ / ∈ A. Since f0 is a
Carath́eodory function, since it is quasi-convex with respect to¾ and sinceukn � ū,
it follows using [1, Theorem 10.9.vi] that, for a subsequence,

lim inf
n→∞

JA.ukn; ¾kn/ ≥ JA.ū; ¾̄ / = m:

REMARK 2. We observe that the optimal solutionū has some qualitative properties,
for example,‖ū‖L p.x/.�/ ≤ d

C1C2
, ū.x/ ∈ I a.e. and− div.|∇ū.·/|p.x/−2∇ū.·// ∈ L∞.�/.
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