ANZIAM  J.  48 (2007), 343-359
On the dynamics of a family of third-order iterative functions

Sergio Amat
  Departamento de Matemática Aplicada
  y Estadística
  Universidad Politécnica de Cartagena
  Spain
  sergio.amat@upct.es
Sonia Busquier
  Departamento de Matemática Aplicada
  y Estadística
  Universidad Politécnica de Cartagena
  Spain;
  sonia.busquier@upct.es
and
Sergio Plaza
  Depto. de Matemáticas
  Facultad de Ciencias
  Universidad de Santiago de Chile
  Casilla 307, Correo 2
  Santiago
  Chile
    splaza@lauca.usach.cl


Abstract
We study the dynamics of a family of third-order iterative methods that are used to find roots of nonlinear equations applied to complex polynomials of degrees three and four. This family includes, as particular cases, the Chebyshev, the Halley and the super-Halley root-finding algorithms, as well as the so-called c-methods. The conjugacy classes of these iterative methods are found explicitly.
Download the article in PDF format (size 252 Kb)

Australian Mathematical Publishing Association Inc. ©  Australian MS