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Abstract

The linear governing equations of a micropolar thermoelastic medium without energy
dissipation are solved to show the existence of four plane waves in a two-dimensional model.
The expressions for velocities of these plane waves are obtained. The boundary conditions
at the free surface are used to obtain a system of four nonhomogeneous equations. These
equations are solved numerically for a particular model to obtain reflection coefficients for
the incidence of coupled longitudinal displacement and coupled transverse microrotational
waves. These reflection coefficients as well as the energy ratios are computed and are shown
graphically with the angle of incidence in the presence and absence of thermal effects.
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1. Introduction

The dynamical theory of thermoelasticity is the study of interaction between thermal
and mechanical fields in solid bodies and is of considerable importance in various engi-
neering fields. The generalized theories of thermoelasticity which admit a finite speed
of thermal signals (second sound) have aroused much interest in the last four decades.
For example, Lord and Shulman [16], by incorporating a flux-rate term into Fourier’s
law of heat conduction, formulated a generalized theory which involves a hyperbolic
heat transport equation admitting finite speed for thermal signals. Green and Lind-
say [12], by including temperature rate among the constitutive variables, developed a
temperature-rate-dependent thermoelasticity that does not violate the classical Fourier
law of heat conduction, when the body under consideration has a centre of symmetry
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and this theory also predicts a finite speed for heat propagation. Chandrasekharaiah
[4] referred to this wave-like thermal disturbance as “second sound”.

Green and Naghdi [14] established a new thermomechanical theory of deformable
media that uses a general entropy balance as postulated in Green and Naghdi [13].
The theory is explained in detail in the context of flow of heat in a rigid solid, with
particular reference to the propagation of thermal waves at finite speed. A theory of
thermoelasticity for nonpolar bodies, based on the new procedure, was discussed by
Green and Naghdi [15]. This theory permits the flow of heat as thermal waves at finite
speed, and the heat flow does not involve energy dissipation.

The linear theory of micropolar thermoelasticity was developed by extending the
theory of micropolar continua to include thermal effects by Eringen [10] and Nowacki
[17]. A generalized theory of linear micropolar thermoelasticity was developed by
Boschi and Iesan [3]. Dost and Tabarrok [9] have presented a generalized micropolar
thermoelasticity by using Green-Lindsay theory. A theory of micropolar thermoelas-
ticity without energy dissipation which admits the finite speed of heat propagation is
due to Ciarletta [8].

Various problems on the propagation of thermal waves at finite speed have been
tackled by many authors. For example, Chandrasekharaiah [6, 5, 7] studied the
propagation of thermoelastic plane waves without energy dissipation. Sinha and Sinha
[23] and Sinha and Elsibai [21, 22] studied the reflection of thermoelastic waves from
the free surface of a solid half-space and at the interface of two semi-infinite media
in welded contact, in the context of generalized thermoelasticity. Abd-Alla and Al-
Dawy [1] studied the reflection phenomena of SV waves in a generalized thermoelastic
medium. Singh and Kumar [20] and Singh [19] have discussed problems on wave
propagation in micropolar thermelasticity in the context of the Lord-Shulman and
Green-Lindsay theories.

The present paper is motivated by the theory of micropolar thermoelasticity given
by Ciarletta [8]. The paper is organized as follows: In Section 2, the linear governing
equations for an isotropic micropolar thermoelastic body without energy dissipation
are solved to obtain the expressions for the velocities of four plane waves. Section 3
deals with the reflection phenomena of these plane waves from a stress-free insulated
boundary. The last section discusses the numerical part of the problem for a particular
model to view the thermal effects on various reflected waves.

2. Governing equations

A homogeneous, isotropic, micropolar thermoelastic solid occupying the half-
space is considered in an undisturbed state. It initially has a uniform temperature
T0. The rectangular Cartesian coordinates are introduced, having the origin on the



[3] Reflection coefficients and energy ratios in a micropolar thermoelastic medium 435

surface y = 0 and the y-axis is chosen in the direction of increasing depth. A two-
dimensional problem (in the xy-plane) is being discussed with the wave front parallel
to the z-axis.

Following Green and Naghdi [15], Eringen [10] and Ciarletta [8], the constitutive
and field equations for an isotropic micropolar thermoelastic medium without energy
dissipation and in the absence of body forces and couples become

¦i j = ½ur;rŽi j + ¼.ui; j + u j;i/+ �.u j;i − ži jr�r/− ¹Ži j T; (2.1)

mi j = Þ�r;rŽi j + þ�i; j + �� j;i ; (2.2)

.½+ ¼/∇.∇:u/+ .¼+ �/∇2u + �∇ × � − ¹∇T = ²ü; (2.3)

.Þ + þ + � /∇.∇:�/− �∇ × .∇ × �/+ �∇ × u − 2�� = ² j �̈; (2.4)

K ∗∇2T − ¹T0∇ü = ²C∗T̈ ; (2.5)

where ½; ¼; �; Þ; þ; � are material constants, ² is the density, j is the microinertia,
¹ = .3½ + 2¼ + �/Þt , Þt are the coefficients of linear thermal expansion, C∗ is
the specific heat at constant strain and K ∗ = C∗.½ + 2¼/=4 is a material constant
characteristic of the theory. Here T .x; y; t/ is the temperature change above the
uniform reference temperature T0, u is the displacement vector, � is the microrotation
vector, ti j are the components of force stress and mi j are the components of couple
stress. The superposed dots denote the time derivatives.

For the two-dimensional problem, let

u = .u1; u2; 0/ and � = .0; 0; �3/; (2.6)

where the displacement components u1 and u2 may be written in terms of the potential
functions q.x; y; t/ and  .x; y; t/ as

u1 = @q

@x
− @ 

@y
; u2 = @q

@y
+ @ 

@x
; (2.7)

where  = −→
 z.

With the help of Equations (2.6) and (2.7), Equations (2.3)–(2.5) reduce to

.½+ 2¼+ �/∇2q − ¹T = ²q̈; (2.8)

K ∗∇2T − ¹T0∇2q̈ = ²C∗T̈ ; (2.9)

.¼+ �/∇2 − ��3 = ² ̈; (2.10)

�∇2�3 + �∇2 − 2��3 = ² j �̈3: (2.11)

Equations (2.8) and (2.9) are coupled in q and T , whereas Equations (2.10) and (2.11)
are coupled in � and  . Solutions of Equations (2.8) to (2.11) are now sought in the
form of the harmonic travelling wave

{q; T; �;  } = {q̄; T̄ ; �̄;  ̄}e�k.x sin �+y cos �−vt/; (2.12)
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in which v is the phase speed, k is the wave number, and .sin �; cos �/ denotes the pro-
jection of the wave normal onto the xy-plane. The homogeneous system of equations
in q̄; T̄ ; �̄ and  ̄ , obtained by inserting (2.12) into (2.8)–(2.11), admits non-trivial
solutions and enables us to conclude that there exist four plane waves, namely Cou-
pled Longitudinal Displacement (CLD), Coupled Thermal (CT), Coupled Transverse
Displacement (CTD) and Coupled Transverse Microrotational (CTM) waves, with the
following distinct velocities:

v1 = VCLD = [.½+ 2¼+ �/+ d1] +
√

[.½+ 2¼+ �/− d1]2 + 4e1; (2.13)

v2 = VCT = [.½+ 2¼+ �/+ d1] −
√

[.½+ 2¼+ �/− d1]2 + 4e1; (2.14)

v3 = VCTD = [.¼+ �/+ d2] +
√

[.¼+ �/− d2]2 + 4e2; (2.15)

v4 = VCTM = [.¼+ �/+ d2] −
√

[.¼+ �/− d2]2 + 4e2; (2.16)

where

d1 = K ∗

C∗ ; d2 = �

j
+ 2�

jk2
; e1 = ¹2T0

C∗ ; e2 = �2

jk2
: (2.17)

If the thermal effect is neglected, these four plane waves will reduce to a Longitudinal
Displacement wave and two coupled waves as obtained by Parfitt and Eringen [18].
In the next section, the reflection of CLD and CTM waves from a stress-free insulated
boundary is considered.

3. Reflection from a free surface

In the previous section, it has been discussed that there exist four plane waves in
an isotropic micropolar generalized thermoelastic solid without energy dissipation.
Any incident wave at the interface of two elastic solid bodies, in general, produces
dilatational and rotational waves in both media. Let us now consider an incident CLD
or CTM wave (Figure 1). The boundary conditions at the free surface y = 0 are
satisfied if the incident CLD or CTM wave gives rise to reflected CLD, reflected CT,
reflected CTD and reflected CTM waves. The surface y = 0 is free from surface
tractions and is assumed to be thermally insulated so that there is no variation of
temperature on it. Therefore, the boundary conditions on y = 0 may be written as

¦yy = 0; ¦yx = 0;
@T

@y
= 0; myz = 0: (3.1)
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FIGURE 1. Geometry of the problem showing various reflected waves.

The appropriate potentials q, T ,  and �3 are taken in the form

q = A0 exp[�k1.x sin �0 + y cos �0/− �!t/]
+ A1 exp[�k1.x sin �1 − y cos �1/− �!t]
+ A2 exp[�k2.x sin �2 − y cos �2/− �!t]; (3.2)

T = �1 A0 exp[�k1.x sin �0 + y cos �0/− �!t/]
+ �1 A1exp[�k1.x sin �1 − y cos �1/− �!t]
+ �2 A2 exp[�k2.x sin �2 − y cos �2/− �!t]; (3.3)

 = B0 exp[�k4.x sin �0 + y cos �0/− �!t/]
+ B1 exp[�k3.x sin �3 − y cos �3/− �!t]
+ B2 exp[�k4.x sin �4 − y cos �4/− �!t]; (3.4)

�3 = �4 B0 exp[�k4.x sin �0 + y cos �0/− �!t/]
+ �3 B1 exp[�k3.x sin �3 − y cos �3/− �!t]
+ �4 B2 exp[�k4.x sin �4 − y cos �4/− �!t]; (3.5)

where the wave normal of the incident CLD or CTM wave makes angle �0 with the
positive direction of the y-axis, and those of the reflected CLD, CT, CTD and CTM
waves make �1; �2; �3 and �4 with the same direction, and

�i = ki
2[²vi

2 − .½+ 2¼+ �/]=¹; .i = 1; 2/ (3.6)

� j = k j
2.²v j

2 − ¼− �/=�; . j = 3; 4/: (3.7)

The ratios of the amplitudes of the reflected waves to the amplitude of the incident
CLD wave, namely A1=A0; A2=A0; B1=A0 and B2=A0, give the reflection coefficients
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for reflected CLD, reflected CT, reflected CTD and reflected CTM waves, respec-
tively. Similarly for the incident CTM wave, A1=B0; A2=B0; B1=B0 and B2=B0 are the
reflection coefficients for the reflected CLD, reflected CT, reflected CTD and reflected
CTM waves, respectively. The wave numbers k1; k2; k3; k4 and the angles �1; �2; �3; �4

are connected by the relation

k1 sin �1 = k2 sin �2 = k3 sin �3 = k4 sin �4; (3.8)

at the surface y = 0. The relation (3.8) may also be written in order to satisfy the
boundary conditions (3.1) as

sin �1

v1
= sin �2

v2
= sin �3

v3
= sin �4

v4
: (3.9)

Using Equations (2.1) and (2.2) and the potentials given by (3.2)–(3.5), the boundary
conditions (3.1) result in the following system of four nonhomogeneous equations:

4∑
j=1

ai j Z j = bi ; i = 1; : : : ; 4; (3.10)

where

a1 j =
{

[½+ .2¼+ �/cos2� j + ¹� j=k j
2].k j= l/2; j = 1; 2;

−.2¼+ �/ sin � j cos � j.k j= l/2; j = 3; 4;

a2 j =
{
.2¼+ �/ sin � j cos � j.k j= l/2; j = 1; 2;

[.¼ + �/cos2� j − ¼sin2� j − �� j=k j
2].k j= l/2; j = 3; 4;

a3 j =
{
.cos � j/.� j=k j

2/.k j= l/3; j = 1; 2;

0; j = 3; 4;

a4 j =
{

0; j = 1; 2;

.cos � j/.� j=k j
2/.k j= l/3; j = 3; 4:

For the incident CLD wave, b1 = −a11, b2 = a21, b3 = a31, b4 = a41, l = k1. For the
incident CTM wave, b1 = a14, b2 = −a24, b3 = a34, b4 = a44, l = k4, and Z1, Z2,
Z3, Z4 are the reflection coefficients of the reflected CLD, CT, CTD and CTM waves,
respectively.

Let us consider the energy partition between various reflected waves at a surface
element of unit area. The rate of energy transmission at a free surface of a micropolar
thermoelastic solid is given by

P∗ = tyy u̇2 + tyx u̇1 + m yz�̇3: (3.11)
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Following Achenbach [2], for any two complex functions of the form

F = F0 exp{�.�1 − !t/}; f = f0 exp{�.�2 − !t/}; (3.12)

where F0 and f0 are real-valued functions, the time average of the product of the real
parts of the two complex functions is given by

〈R.F/× R. f /〉 = 1

2
R.F f̄ /; (3.13)

where f̄ is the complex conjugate of f .
The energy ratios of the reflected waves are obtained by calculating the ratio of

P∗ for the reflected waves to P∗ for the incident wave. Substituting Equations (2.1),
(2.2), (2.7), (3.12) and (3.13) into Equation (3.11), we obtained the P∗ for various
incident and reflected waves and hence the energy ratios. The following expressions
of energy ratios Ei (i = 1; : : : ; 4) for various reflected waves are obtained:

(i) For the incident CLD wave

E1 = Z1
2;

E2 =
[
½+ 2¼+ � + ¹�2=k2

2

½+ 2¼+ � + ¹�1=k1
2

] (
cos �2

cos �0

)(
k2

k1

)3

Z2
2;

E3 =
[
¼+ � − .�3=k3

2/.� �3 + �/

½+ 2¼+ � + ¹�1=k1
2

] (
cos �3

cos �0

)(
k3

k1

)3

Z3
2;

E4 =
[
¼+ � − .�4=k4

2/.� �4 + �/

½+ 2¼+ � + ¹�1=k1
2

] (
cos �4

cos �0

)(
k4

k1

)3

Z4
2:

(ii) For the incident CTM wave

E1 =
[

½+ 2¼+ � + ¹�1=k1
2

¼+ � − .�4=k4
2/.� �4 + �/

](
cos �1

cos �0

)(
k1

k4

)3

Z1
2;

E2 =
[

½+ 2¼+ � + ¹�2=k2
2

¼+ � − .�4=k4
2/.� �4 + �/

](
cos �2

cos �0

)(
k2

k4

)3

Z2
2;

E3 =
[
¼+ � − .�3=k3

2/.� �3 + �/

¼+ � − .�4=k4
2/.� �4 + �/

](
cos �3

cos �0

)(
k3

k4

)3

Z3
2;

E4 = Z4
2:

Here the energy ratios E1; E2; E3 and E4 correspond to the reflected CLD, CT, CTD
and CTM waves, respectively.
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FIGURE 2. Reflection coefficients of reflected CLD waves for incidence of CLD wave.
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FIGURE 3. Reflection coefficients of reflected CT waves for incidence of CLD wave.
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FIGURE 4. Reflection coefficients of reflected CTD waves for incidence of CLD wave.



[9] Reflection coefficients and energy ratios in a micropolar thermoelastic medium 441

Reflected CTM waves

Angle of incidence
0 18 36 54 72 90

0.002

0.000

0.006

0.004

0.010

0.008

R
ef

le
ct

io
n 

C
oe

ff
ic

ie
nt

s

FIGURE 5. Reflection coefficients of reflected CTM waves for incidence of CLD wave.
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FIGURE 6. Energy ratios of reflected CLD waves for incidence of CLD wave.
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FIGURE 7. Energy ratios of reflected CT waves for incidence of CLD wave.
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FIGURE 8. Energy ratios of reflected CTD waves for incidence of CLD wave.
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FIGURE 9. Energy ratios of reflected CTM waves for incidence of CLD wave.
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FIGURE 10. Reflection coefficients of reflected CLD waves for incidence of CTM wave.
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FIGURE 11. Reflection coefficients of reflected CT waves for incidence of CTM wave.
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FIGURE 12. Reflection coefficients of reflected CTD waves for incidence of CTM wave.
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FIGURE 13. Reflection coefficients of reflected CTM waves for incidence of CTM wave.



444 Baljeet Singh [12]

1 4 7 10 13 16 19 22

Reflected CLD waves

En
er

gy
 R

at
io

s

Angle of incidence

0.36

0.24

0.00

0.60

0.12

0.48

FIGURE 14. Energy ratios of reflected CLD waves for incidence of CTM wave.
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FIGURE 15. Energy ratios of reflected CT waves for incidence of CTM wave.
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FIGURE 16. Energy ratios of reflected CTD waves for incidence of CTM wave.
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FIGURE 17. Energy ratios of reflected CTM waves for incidence of CTM wave.

4. Numerical results and discussion

Following Gauthier [11], the physical constants for a micropolar thermoelastic
solid are considered to be ½ = 7:59 × 1011 dyne=cm2, ¼ = 1:89 × 1011 dyne=cm2,
� = 0:0149 × 1011 dyne=cm2, � = 0:268 × 1011 dyne, C∗ = 0:23 cal=g◦C, ¹ = 0:3,
j = 0:0196 cm2, ² = 2:19 gm=cm3, jk2 = 0:1.

Making use of Equations (2.13) to (2.17) and (3.6) to (3.9), the system of equations
(3.10) is solved numerically by the Gauss elimination method and the reflection
coefficients of various reflected waves are obtained. The energy ratios Ei (i =
1; : : : ; 4) of the reflected waves are also computed for the incidence of both the
coupled longitudinal displacement and the coupled transverse microrotational waves.
The reflection coefficients and energy ratios are shown graphically with the angle
of incidence of the striking wave. The dotted curves in Figures 2–17 represent the
variations in the absence of thermal disturbances.
(a) Incidence CLD wave. The reflection coefficients and energy ratios for reflected
CLD waves first decrease to their minimum values and then increase to their maximum
values. The reflection coefficients and energy ratios of the reflected CLD waves are
shown graphically in Figures 2 and 6, respectively. The deviation of the solid curve
from the dotted curve in these figures shows the thermal effect on the reflection
coefficient and the energy ratio of the reflected CLD wave at a particular angle of
incidence.

The reflection coefficient and energy ratio for reflected coupled thermal waves
decrease with the increase in the angle of incidence. The dotted curve does not appear
in Figures 3 and 7 due to the absence of thermal disturbances.

The reflection coefficients and energy ratios for the reflected CTD and CTM waves
increase from minimum to maximum and then decrease to their respective minimum
values. The effect of thermal disturbances is observed at a maximum near peaks and at
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a minimum at normal and grazing incidence. These reflection coefficients and energy
ratios are shown graphically in Figures 4 and 5 and Figures 8 and 9.
(b) Incidence CTM wave. The reflection coefficients and energy ratios for reflected
waves are shown graphically with the angle of incidence varying from 1◦ to 21◦, as
there is no reflected wave beyond the critical angle 21◦. The reflection coefficients
and energy ratios for the reflected CLD waves increase with the increase in the angle
of incidence, as shown in Figures 10 and 14. The effect of thermal disturbance on the
reflection coefficient and energy ratio of the reflected CLD wave is less considerable.

The reflection coefficients and energy ratios for reflected coupled thermal waves
are shown in Figures 11 and 15. The dotted curves in these figures disappear due to
the absence of thermal disturbance. The solid curve variation in Figure 15 is shown
after multiplying its original value by 103.

The reflection coefficients and energy ratios of the reflected CTD waves are shown
graphically in Figures 12 and 16, respectively. The comparison of solid and dotted
curves in these figures shows the impact of thermal disturbances on the reflected CTD
waves. The solid and dotted curve variations in Figure 16 are shown after multiplying
their original values by 103 and 109, respectively.

The reflection coefficients and energy ratios for reflected CTM waves decrease with
the increase in the angle of incidence. The maximum thermal effect on the reflection
coefficient and the energy ratio is observed near the critical angle and is at a minimum
near normal incidence. These variations are shown graphically in Figures 13 and 17.

Conclusions

The field equations of micropolar thermoelasticity without energy dissipation are
solved for a two-dimensional model in the xy-plane. The four plane waves are found
to propagate with distinct speeds. The reflection of coupled longitudinal displacement
and coupled transverse microrotational waves from a thermally insulated free surface
is considered. The boundary conditions at the free surface are used to obtain a
system of four equations in the reflection coefficients of various reflected waves. The
energy ratios are calculated for the incidence of both striking waves. These reflection
coefficients and energy ratios are also computed numerically for a particular material.
The thermal disturbances in the micropolar material significantly affect the reflection
coefficients and the energy ratios of various reflected waves.
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