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Abstract

The state of a patient is an important concept in biomedical sciences. While analytical
methods for predicting and exploring treatment strategies of disease dynamics have proven
to have useful applications in public health policy and planning, the state of a patient
has attracted less attention, at least mathematically. As a result, models constructed in
relation to treatment strategies may not be very informative. We derive a patient-dependent
parameter from an age-physiology dependent population model, and show that a single
treatment strategy is not always optimal. Also, we derive a function which increases with
the patient dependence parameter and describes the effort expended to be in good health.
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1. Introduction

Despite the reasonable level of progress and advances made in the fight against
emerging and re-emerging infectious diseases, challenges still remain in the detec-
tion, treatment, and management of these diseases that engender multidisciplinary
approaches [1]. Theoretical studies of disease dynamics have been carried out for a
long time. However, most models have focussed on the transmission dynamics, and
the evolution of the disease amongst classes: the so-called compartmental models.
The understanding of the principles underlying the complexity of the state of each
patient being diagnosed has not received much attention, at least mathematically. This
requires integrated individual-based models describing the combination of drug con-
centration, and the population dynamics. Such models present a new and interesting
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class of problems, which allow us to study how to link individual-based models with
continuum theory in decision-making [2]. Mathematical models of disease dynamics
with treatment always assume one-size-fits-all treatment strategies. This is not very
realistic in nature because such models in a sense are uncontrolled. A good treatment
strategy should be administered on a case-by-case basis. This may help control the
resistance of a pathogen to drugs.

Population dynamics studies and their connection to the lower individual-level is
interesting. As a model strategy, we focus mainly on functional analytic techniques,
since they are a paradigm in many regards - they are useful tools for handling math-
ematics - much is known about their abstract nature and their interpretation is fairly
accessible to non mathematicians.

Most diseases are characterized by different stages and individuals at each of
these stages may respond differently to any administered treatment. For instance,
individuals can be exposed or infectious and at this stage sickness might be mild
or strong, and their condition may deteriorate to critical or supercritical. Sexually
transmitted diseases such as syphilis and gonorrhea have such dynamics. For our
model, we assume that each stage of any given disease is simply represented by a
positive integer. Consequently, the parameter ½.t/ (derived in Section 3) representing
this patient dependence may be assumed to measure the level of infectivity. It is
therefore understood that increments are related to disease progression so that if a
disease has only three stages for example, then the value of ½.t/ is simply 3, which
means the patient’s condition is not improving, while ½.t/ = 1 will mean he is
recovering or has just been infected (early stage of the disease). In line with the above
argument, we propose an equation relating the state of the patient (which for simplicity
can be considered as an integer value) and the error in treatment in Section 3, from
which we observe that the effort expended to be in good health is never zero.

This paper is motivated by a desire to derive a patient-dependent parameter, ½.t/,
say, from the classical equations of population dynamics, capable of representing
adequately the many degrees of freedom specific to each individual. Here we ask: Is
a patient non-specific treatment always adequate? Can the effort expended to be in
good health be zero in someone’s life cycle? Our analysis reveals that the answers
are not affirmative. An essential complexity in treatment strategy is that individuals
respond to physical and chemical changes differently. However, the differences in a
number of details may show a similar structural behaviour. A potential strategy for
developing such a model is to search for simple generic equations that include the
relevant physics of the problem, and to extract the much needed result. For instance,
during surgical procedures, patients are usually under general anaesthesia, defined
as the lack of response. The control of neuromuscular blockade provides a good
illustration of the main features and inherent constraints associated with the control of
physiological variables, which is characterized by a very high degree of uncertainty
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in the dynamics of the system due both to inter-patient variability as well as time
variations [10]. This suggests that multiple-models-based control techniques may be
adequate to provide a suitable solution.

Since experience has shown that it is sometimes necessary to simplify a model in
order to achieve satisfactory results, we present herein a theoretical model which high-
lights the importance of the state of each individual patient’s dependence in relation
to drug administration, and obtain conditions under which the patient is disease-free
or does not respond to treatment. The concept of a patient-dependent parameter is
not new in the language of biomathematics. Indeed, Afenya in [1] used this important
biomedical notion [4] in a cancer treatment strategy model. Below, we attempt to
introduce this concept to a generic model equation of population dynamics using the
idea of a Hamiltonian. In a nutshell, this paper deals with a mathematical approach to
exploring treatment strategies of disease dynamics and one of the fundamental results
is that the patient’s state of health is a parameter to be given prominence.

We consider a model described by a first-order partial differential equation with
given age- and physiology-dependent density u.t; a; g/, where t is time, a is age, and g
is a structural-physiological variable; initial and boundary conditions depending on g
are also given.

This work is organized as follows: The basic notation is listed in Section 2, while
Section 3 deals with the model analysis and the result. The analysis is based on
minimizing a certain cost functional via a suitably defined Hamiltonian. The quasi-
linear model is reformulated as an abstract Cauchy problem and it is this form of the
model equation that is related to the Hamiltonian. Section 4 concludes the paper.

2. Notation

Before describing the basic model, the following notation is needed. In the regula-
tion of population growth, age, physiological factors, density dependence, and mating
patterns are some of the key factors to be included in a realistic mathematical model
of the dynamics of a 2-sex population [17]. We assume that the age structure of
the population spans over the half open interval [0; A/, where A is the least upper
bound of all attainable ages or life span (anyone approaching that age dies just before
it is attained). Since the physiological factor appears to have been among the least
favoured [17], we incorporate it into the model, as g. Below is some notation.

Here a; t ∈ R+; and g ∈ � ⊆ R+ represent the independent variables time,
age and physiological variable, respectively.

The parameter G represents the rate of change of g with respect to age.
The parameter B.·; ·/ represents the renewal (or birth) function.
We define the age-physiology density function u.t; a; g/ ≥ 0, representing
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the density of individuals at time t . Here g may represent size, dietary requirement or
any other characteristic attribute of individuals in the population.

In addition r.a; g/ is the average per capita death rate of individuals aged a,
with physiological variable g. The age-physiology dependent mortality rate r.a; g/
is assumed to be sex independent.

If u ∈ L1
([0; A/ × �

)
and g ∈ � ⊂ R+ then define a Banach space X such

that X := W 1;2
([0; A/×�

)
.

Here� is the infinitesimal generator of a C0-semigroup S.t/, so that S.t/u is
continuous in .t; u/, together with Fréchet derivatives in u [6].

3. Model framework and results

Mathematical models use many tools to describe the dynamics of populations.
When the number of individuals is large enough, the dynamical equations for pop-
ulation densities are obtained by applying a conservation law of the continuum. By
considering a population with an additional structure g, the balance or evolution
equation of such a population is given by the first-order nonlinear partial differential
equation

@u

@t
+ @u

@a
+ @

@g
[G.a; g/u] = −r.a; g/u;

initial condition : .0; a; g/ = u0.a; g/

boundary condition : u.t; 0; g/ = B.t; g/ :

(3.1)

System (3.1), the basic model on which our analysis will be built, shows that one must
know the initial state of the population, u.0; a; g/. The parameter g in B.t; g/may de-
scribe how such a factor is distributed among newborns. Existence and uniqueness of
solution(s) of evolution equations being a proof of the principle of scientific determin-
ism, a complete derivation of Equation (3.1) can be found in [15], while the existence
and uniqueness of an integral solution can be found in [19]. Oster and Takahashi [11]
also used this equation in their model, while Tchuenche [19] implicitly solved the
quasi-linear form obtained when G is age-dependent only (see Equation (3.2) below).

Because of the complexity involved in dealing with the nonlinear form, we shall
simplify (3.1) in order to carry out our analysis. Thus, without loss of realism, let
G.a; g/ be independent of g, that is, the non-linear equation (3.1) reduces to the
quasi-linear form

@u

@t
+ @u

@a
+ G.a/

@u

@g
= −r.a; g/u: (3.2)

In order to derive the patient-dependent parameter ½.t/, we first transform Equa-
tion (3.2) into its abstract form, and then we introduce a control term which allows
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for birth to those individuals already present at the beginning of the process. This
enables us to derive an appropriate cost function and a Hamiltonian functional. Since
treatment may be imperfect, we shall also assume that an error denoted by e.t/ may
occur. Using the performance index in [10], we also derive an effort function, which
is proportional to the square of the state of the patient and inversely proportional to
the success in treatment.

Define the operator

� �.a; g/ := −@�.a; g/

@a
; a ∈ [0; A]; g ∈ �; (3.3)

where� is a linear but unbounded operator in L1.R+/ [13]. Then the domain of this
operator is given by:

X = D.� / =
{

u ∈ L2 .[0; A/×�/ ;
@u

@a
∈ L1[0; A/

}
:

In general, L1.[0; A];R+/ := X represents the set of equivalence classes of
Lebesgue integrable functions from [0; A] to R+ [7]. It is assumed that u is ab-
solutely continuous on the appropriate interval where it is defined, and the regularity
on the variable g given by u0.0/ =  .0/ is assumed to be known. Also, we define the
linear operator

F.�/.a; g/ := −
(

G.a/
@

@g
+ r

)
�.a; g/;

taking values in L1.[0; A/×�/, that is;

F : L1.[0; A/×�/ −→ L1.[0; A/×�/:

Therefore, by a suitable choice of operators � and F [18], the quasi-linear system
can be reformulated as an abstract Cauchy problem

dy.t/

dt
= � y.t/+ F.y.t//;

y.0/ = y0:

(3.4)

Thus, S.t/y as defined above is continuous in .t; y/, with Fréchet derivatives in y.
In general, F is a Lipschitz perturbation of the generator � of a strongly continuous
semigroup [20]. The study of this model is interesting in its own right, and the addition
of a control variable v.t/ = ∫

�
v.t; g/dg which must be positive (see [12]) leads to a

controlled evolution equation, which covers many interesting problems among which
the heat, wave, beam and delay equations are typical examples [21]. The control must
satisfy the constraint 0 ≤ v.t/ ≤ vmax , where the upper limit is because facilities
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and personnel may be limited. In fact, the upper bound could be some function of
time reflecting various ways of administering the treatment. We shall not pursue this
further, but shall note that for simplicity, it is nice to assume that vmax is a constant.
The control may also be added for some technical reasons, or to account for birth to
those individuals already present at the beginning of the process. So, the new system
now reads:

ut + ua + G.a/ug = −ru;

u.0; a; g/ = u0.a; g/;

u.t; 0; g/ = B.t; g/+ v.t; g/;

(3.5)

and Equation (3.4) takes the form

dy.t/

dt
= � y.t/+ F.y.t/; v.t//: (3.6)

By applying the one-sided Laplace transform [16] to Equation (3.6), we obtain

y.t/ = e� t y0 +
∫ t

0

e� .t−− /F.y.− /; v.− //d−

= S.t/y0 +
∫ t

0

S.t − − /F.y.− /; v.− //d−;

(3.7)

where e� t is a C0-semigroup on the B-space X in which y.t/ is defined [5].
Let V be a metric space so that v.t/ takes on values therein. Then F in (3.6) is

defined as F : X × V → X: Thus

.T .t/u/.a; g/ :=
{

u0.a − t; g/; t < a < A

0; otherwise;
(3.8)

satisfies the semigroup properties [18]. Without any ambiguity of notation, T .t/ is the
semi-group of translations, and T below is the duration of the process, with t ∈ [0; T ].
In order to introduce the individual patient dependent-parameter, we need to define
an appropriate cost functional or performance criterion [8, 20], with T as the final
treatment time,

J .v/ :=
∫ T

0

F0.y.t/; v.t// dt; (3.9)

F0 : X × V → R is a real valued function and v is a continuously differentiable
function. The basic optimal control problem is to find a control v∗ ∈ V such that
J .v∗/ = minu∈V J .v/ [8]. For convenience, we drop the suffix ∗. From Theorem 2.2
in [8], the above problem is well-posed.
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The functional defined in Equation (3.9) is imperative in the investigation of treat-
ment strategies with the view of giving some insights into its merits, and the problem
of minimizing this equation greatly enhances a proper derivation of a Hamiltonian (a
non-negative energy function) for the model described above. Therefore, in an attempt
to gain insight into the present study, we follow the non-classical approach based on
our intuition, and on what we wish to achieve. For problems in which potential and
kinetic energies are involved, we guess the theory of a suitable Hamiltonian system
may be appropriate. In any case, the required function here must be an energy func-
tion, because chemotherapy for instance deals primarily with the amount of energy
required to destroy a tumour. A good candidate in the definition of the Hamiltonian is
the total population at time t with physiological variable g given by

P.t; g/ =
∫ ∞

0

u.t; a; g/ da (3.10)

where the integral to infinity is for convenience. The basic idea for choosing a
Hamiltonian of the form below comes from the energy equation, and also the fact that
for biological relevance, only positive solutions are of interest [14].

Let

� .t; g/ := 1

2
P2.t; g/+ 1

2
v2.t; g/+ other terms (3.11)

be a Hamiltonian, which obviously is conservative, then the problem of minimizing
Equation (3.9) takes the form

min JT .v/ :=
∫
�

∫ T

0

[|u2.t; ·; g/|2
X + |v.t; g/|2] dtdg (3.12)

defined over all controls v ∈ X = L2.[0; T ] × �/. This is a difficult problem
because the state equation (boundary condition) of (3.1) is irregular in most cases.
Nevertheless, JT is a quadratic coercive form which has a unique minimum optimal
control v̄, say, so that the corresponding function denoted by ū = u.·; u0; v̄/, is the
optimal state or effective reserve, while the pair (ū, v̄) constitutes the optimal pair
[12].

Generally, the initial step in studying a free-boundary value problem is to reformu-
late it in such a way that the free-boundary disappears. Such reformulation can often
be achieved by resorting to variational principles, and one of the most celebrated of
such problems can be found in [3], where the cost functional to be minimized is

J .v/ =
∫

X

[|v|2 + 2 f v] dtdg; (3.13)

with X being the underlying B-space.
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Since (3.13) has a solution, it follows immediately that there exists a solution of
the free-boundary problem in its variational form. Thus, according to a universal
principle of conservation of difficulty [20], we reformulate problem (3.12) in a simple
manner. The price to be paid consists in ending up with a non-ergodic system.

Let

|u2.t; g/| =
∫ A

0

u2.t; a; g/ da

define

h2 : =
∫
�

∫ T

0

|u2.t; g/|2
X dtdg:

Malnutrition and poor living conditions for instance influence the severity of dis-
eases. Therefore, defining an adequate cost functional enables us to incorporate
implicitly such parameters into the model. This concept opens a new horizon, be-
cause the state of the patient is central to decision making related to treatment options.
A candidate functional is

J = 1

2

∫ T

0

{h2 + ¦ E.t/}dt; (3.14)

where h and ¦ are constants, T is the final treatment time, while [0; T ] is the treatment
interval, and E.t/ is a measure representing the amount of drug expended, which could
be taken to represent a second power of the combination of drug concentration ¹.t/,
say (see, for example, [1]).

By conveniently re-scaling Equation (3.14) by taking t∗ = ¦ t , and dropping the
asterisk for convenience, we obtain

min J = 1

2

∫ T

0

.Ž2 + ¹2.t// dt; (3.15)

where Ž := h¦−1=2.

THEOREM 3.1. Let ¦ > 0 and ½.t/ = ce−¾ t be the patient-dependent parameter.
Then a single treatment strategy is feasible if ¾ = h¦−1=2.

PROOF. Consider Equations (3.6) and (3.9), and let

J .v/ =
∫ T

0

F0.y.t/; v.t//dt (3.16)

be such that

f .y/ : = dy

dt
= � y.t/+ F.y.t/; v.t//

y.0/ = y0:
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We know that if v.t/ is the optimal control, and ¹.t/ is the corresponding response,
then there exists ½.t/ which we refer to as a patient dependent parameter, such that

d¹

dt
= @�

@½
;

@½

@t
= −@�

@¹
;

(3.17)

and the Hamiltonian has the form� .¹; v; ½; t/ [9]. Thus

� = F0.y; ¹/+ ½.� y + F.y; v// (3.18)

may represent a conservative system which is in general not ergodic, and
dy

dt
= @�

@½
= � y + F.y; v/; (3.19)

d½

dt
= −@�

@y
= −F0

y .y; v/− ½.� + Fy.y; v//

= −F0
y .y; v/− ½ f ′.y/: (3.20)

Comparing Equations (3.9) and (3.15), we note that F0
y .y; v/ ≡ 0, hence

d½

dt
= −½ f ′.y/: (3.21)

If ½ is appropriately defined, then we can assume without loss of realism that f ′.y/ = ¾

along a singular constant path ¾ , and

� .v; t/ = 1

2
Ž2 + 1

2
¹2.t/+ ¾½.t/y.t/; (3.22)

which can simply be denoted by

� .t/ = 1

2
Ž2 + 1

2
¹2.t/+ c¾e−¾ t y.t/: (3.23)

From (3.21) and the fact that f ′.y/ = ¾ ,

½ = ce−¾ t ; (3.24)

where c is a constant. Finally, we assume that the patient dependent parameter is
proportional to the control ¹, that is, ½ = ¼¹. Let ¹ = 1, then

� .T / = 1

2
Ž2 + 1

2
¹2.T /+ c¾e−¾ t y.T / = 0

= 1

2
Ž2 + 1

2
.ce−¾T /2 + c¾e−¾T y.T / = 0: (3.25)
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For convenience, let y.T / = −1, then we have:

Ž2 + .ce−¾T /2 − 2c¾e−¾T = 0;

that is,

.ce−¾T /2 − 2¾ce−¾T + Ž2 = 0; (3.26)

a quadratic in ce−¾T . Since ½ = ce−¾T , then the process being modelled is biologically
relevant if solutions of Equation (3.26) are real and positive. This holds true if, Ž > 0,
and ¾ 2 > Ž2 ⇒ ¾ > Ž = h¦−1=2. Hence, the first solution ½1, say, is positive if ¾ > Ž,
while the second solution is given by

½2 = ¾ + √
¾ 2 − Ž2 = ¾ +

√
¾ 2 − h2

¦
: (3.27)

This solution is meaningful (or real) if h2 ≤ ¦¾ 2, or

¾ ≥ h¦−1=2: (3.28)

Equality should hold for all patients if a single treatment is to be administered. This is
indeed not achievable except in the case of epidemics, when many people are rushed to
the hospital at the same time. If the inequality in (3.28) is reversed, this may indicate
that patients are either disease-free or do not respond to treatment (a condition which
may be due to pathogen resistance to drugs). A similar approach was adopted in [1]
for Leukemia chemotherapy, and our result agrees on this point. Models such as this
highlight the complexity of the state of each patient, and have relevance in public
health decision-making in the sense that each individual is unique. Consequently,
the state of the patient is a parameter to be given prominence in models related to
treatment strategies as well as other disease-related models.

The decision as to whether to use low or high drug dosages rests with the physician
who attends to the patient. From the aforementioned, we need a criterion to measure
the performance of the control program. An error e may occur, which can be measured
through a certain convex function known as the treatment performance index ³ , [10]
given by

³.t + 1/ = ½³.t/+ .1 − ½/e.t/: (3.29)

If the error is identically zero, then the treatment performance index behaves like a
Markov chain in which performance at time t + 1 depends only on the performance at
time t . That is, the former is proportional to the latter with the constant of proportional-
ity being the patient-dependent parameter. Equation (3.29) can be interpreted to mean
that the treatment performance one unit of time later depends on the patient-dependent
parameter and the treatment performance index at time t .
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FIGURE 1. A three-stage disease.

LEMMA 3.2. The effort expended to be in good health is an increasing function of
the patient dependence.

PROOF. From Equations (3.14) and (3.15),

¦ E.t/ = ¹2 =
(
½

¼

)2

; (3.30)

where ¼ is a constant of proportionality. Now, assume that when ¦ is a function of
time, it is related to the error by ¦.t/ = 1 − e.t/. Thus

E.t/ = ½2.t/

[1 − e.t/]¼2
: (3.31)

Equation (3.31) has a singularity at e.t/ = 1. This implies that there is a phase
transition which is not reversible at this value and the patient dies. Thus, transients pass
away whenever the error in treatment is 100%, a value which agrees with observations.
The error in treatment parameter E.t/ increases as ½.t/ increases and decreases as
the error in treatment is improved. If control is no longer possible, either ½.t/ = 0,
or the disease has died out. We observe that ½.t/ approaches zero only in laboratory
conditions. It is evident that good health is closely related to low values of ½.t/ as
well as to low levels of errors in treatment, which minimize the value of E.t/.

Figures 1 and 2 represent the effort at constant error value (e = 1=10 or 10%) for
a three- and four-stage disease (that is, for ½ ∈ [0; 3] and ½ ∈ [0; 4]). For simplicity,
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FIGURE 2. A four-stage disease.

we take ¼ = 1. We note that at integer values of the patient dependence .½ = 1; 2; 3/,
the function E.t/ is not smooth and this may indicate the passing from one level of
complexity to another. By stage here we mean the level of infectivity so that 1 may
mean end of the incubation period. For instance Figure 2 shows that there are two
level of complexities or two stages of disease dynamics. It may also indicate the level
of pathogenicity or the transition into critical health stages.

4. Discussion and conclusions

For any disease affecting individuals in a locality, the ability to determine or estimate
the patient-dependent parameter is essential in order to determine whether a patient-
non-specific treatment will be recommended. But, this is difficult, and such a unique
treatment can only be administered during epidemics. Patients respond differently to
the same treatment, and when the disease or the epidemic is prolonged, they should
be diagnosed appropriately before any treatment is administered, in order to avoid
resistance and persistence of the pathogen.

We have transformed a population dynamics problem into an individual patient-
dependent problem, using some functional analytical techniques (non-classical), with
the goal of showing that a single treatment strategy may not be the best at all times. The
state of the patient at the time of diagnosis is central to decision-making in treatment
options. We have considered the simple case where h is a constant, but in general the
condition of the patient is a function of time.
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For t → ∞ and ¾ small, ¹ ∼ 0, and the patient no longer responds to treatment. In
this case, either the latter is disease-free or the pathogens are resistant to the treatment
administered. If T < ∞ for small values of the parameters, then J ∼ 1 (the minimum
value).

An open problem: Characterize the phase transition between good and ill health.
The result of this study is readily applicable to infectious diseases as ½.t/ may

measure the level of infectivity, even though its variability at the population level is a
direct consequence of the parameter being random. For instance, a disease dynamic
model including treatment and vaccination should account for effectiveness of these
therapeutic measures.
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