ANZIAM J. 49 (2007), no. 1, pp. 85–97.
|
Biorthogonal interpolatory multiscaling functions and corresponding multiwavelets
|
Shou Zhi Yang |
Department of Mathematics Shantou University Shantou 515063 P.R. China szyang@stu.edu.cn. |
Received 2 May, 2004; revised 30 June, 2006
Abstract
A method for constructing a pair of biorthogonal interpolatory multiscaling functions is given and an explicit formula for constructing the corresponding biorthogonal multiwavelets is obtained. A multiwavelet sampling theorem is also established. In addition, we improve the stability of the biorthogonal interpolatory multiwavelet frame by the linear combination of a pair of biorthogonal interpolatory multiwavelets. Finally, we give an example illustrating how to use our method to construct biorthogonal interpolatory multiscaling functions and corresponding multiwavelets.
Download the article in PDF format (size 136 Kb)
References
-
C. K. Chui and J. Lian, “A study on orthonormal multiwavelets”, J. Appl. Numer. Math. 20 (1996) 273–298.
MR1402703
-
C. K. Chui and J. Z. Wang, “A cardinal spline approach to wavelets”, Proc. Amer. Math. Soc. 113 (1991) 785–793.
MR1077784
-
I. Daubechies and J. C. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal. 23 (1991) 1031–1079.
MR1166574
-
G. C. Donovan, J. S. Geronimo and D. P. Hardin, “Construction of orthogonal wavelets using fractal interpolation functions”, SIAM J. Math. Anal. 27 (1996) 1158–1192.
MR1393432
-
J. S. Geronimo, D. P. Hardin and P. R. Massopust, “Fractal functions and wavelet expansions based on several scaling functions”, J. Approx. Theory 78 (1994) 371–401.
MR1292968
-
S. S. Goh, Jiang Qingtang and Xia Tao, “Construction of biorthogonal multiwavelets using the lifting scheme”, Appl. Comput. Harmon. Anal. 9 (2000) 336–352.
MR1793422
-
T. N. T. Goodman, S. L. Lee and W. S. Tang, “Wavelets in wandering subspaces”, Trans. Amer. Math. Soc. 338 (1993) 639–654.
MR1117215
-
J. Lian, “Orthogonal criteria for multiscaling functions”, Appl. Comp. Harm. Anal. 5 (1998) 277–311.
MR1632545
-
G. C. Rota and G. Strang, “A note on the joint spectral radius”, Indag. Math. 22 (1960) 379–381.
MR147922
-
Yang Shouzhi, “A fast algorithm for constructing orthogonal multiwavelets”, ANZIAM J. 46 (2004) 185–202.
MR2099504
-
Yang Shouzhi, “An algorithm for constructing biorthogonal multiwavelets with higher approximation orders”, ANZIAM J. 47 (2006) 513–526.
MR2234018
-
Yang Shouzhi, Cheng Zhengxing and Wang Hongyong, “Construction of biorthogonal multiwavelets”, J. Math. Anal. Appl. 276 (2002) 1–12.
MR1944332
-
G. Strang and D. X. Zhou, “Inhomogeneous refinement equations”, J. Fourier Anal. Appl. 4 (1998) 733–747.
MR1666013
-
X. G. Xia and Z. Zhang, “On sampling theorem, wavelets, and wavelet transforms”, IEEE Trans. Signal Processing 41 (1993) 3524–3535.
-
D. X. Zhou, “Existence of multiple refinable distributions”, Michigan Math. J. 44 (1997) 317–329.
MR1460417
-
D. X. Zhou, “The p-norm joint spectral radius for even integers”, Methods Appl. Anal. 5 (1998) 39–54.
MR1631335
-
D. X. Zhou, “Multiple refinable Hermite interpolants”, J.Approx. Theory 102 (2000) 46–71.
MR1736045
-
D. X. Zhou, “Interpolatory orthogonal multiwavelets and refinable functions”, IEEE Trans. Signal Processing 50 (2002) 520–527.
MR1895060