ANZIAM J. 49 (2007), no. 1, pp. 75–83.
|
A note on the stability and the approximation of solutions for a Dirichlet problem with p(x)-Laplacian
|
Marek Galewski |
Faculty of Mathematics and Computer Science University of Lodz Banacha 22 90-238 Lodz Poland galewski@math.uni.lodz.pl. |
Received 1 September 2006; revised 11 June 2007
Abstract
We show the stability results and Galerkin-type approximations of solutions for a family of Dirichlet problems with nonlinearity satisfying some local growth conditions.
Download the article in PDF format (size 120 Kb)
References
-
R. A. Adams, Sobolev Spaces (Academic Press, New York, 1975).
MR450957
-
S. N. Antontsev and S. I. Shmarev, “Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of the solutions”, Nonlinear Anal. 65 (2006) 728–761.
MR2232679
-
J. Chabrowski and Y. Fu, “Existence of solutions for p(x)-Laplacian problem on a bounded domain”, J. Math. Anal. Appl. 306 (2005) 604–618.
MR2136336
-
I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976).
MR463994
-
X. L. Fan and H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem”, Nonlinear Anal. 52 (2003) 1843–1852.
MR1954585
-
X. L. Fan and D. Zhao, “On the spaces L^{p}(x)(Ω) and W^{k},p(x)(Ω)”, J. Math. Anal. Appl. 263 (2001) 424–446.
MR1866056
-
X. L. Fan and D. Zhao, “Sobolev embedding theorems for spaces W^{k},p(x)(Ω)”, J. Math. Anal. Appl. 262 (2001) 749–760.
MR1859337
-
M. Galewski, “On the existence and stability of solutions for Dirichlet problem with p(x)-Laplacian”, J. Math. Anal. Appl. 326 (2007) 352–362.
MR2277787
-
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasi-linear elliptic equations (Academic Press, New York, 1968).
MR244627
-
M. Růžička, Electrorheological fluids: Modelling and Mathematical Theory, Volume 1748 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 2000).
MR1810360
-
V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR Izv. 29 (1987) 33–66.
MR864171